A note on the distribution of normalized prime gaps

János Pintz

1 Introduction

The Prime Number Theorem implies that the average value of

\begin{equation}
(1.1) \quad d_n = p_{n+1} - p_n
\end{equation}

is \((1 + o(1)) \log p_n\) if \(n \in [N, 2N]\), for example, where \(\mathbb{P} = \{p_i\}_{i=1}^\infty\) is the set of primes. This motivates the investigation of the sequence \(\{d_n/\log p_n\}_{n=1}^\infty\) or \(\{d_n/\log n\}_{n=1}^\infty\) (which is asymptotically equal). Erdős formulated the conjecture that the set of its limit points

\begin{equation}
(1.2) \quad J = \left\{ \frac{d_n}{\log n} \right\} \subset [0, \infty].
\end{equation}

He writes in [Erd 1955]: “It seems certain that \(d_n/\log n\) is everywhere dense in \((0, \infty)\)” (after mentioning the conjecture \(\liminf_{n \to \infty} d_n/\log n = 0\)). The fact that \(\infty \in J\) was proved already in 1931 by Westzynthius [Wes 1931].

In 2005 Goldston, Yıldırım and the author [GPY 2006], [GPY 2009] showed \(0 \in J\) which is the hitherto only concrete known element of \(J\). On the other hand already 60 years ago Ricci [Ric 1954] and Erdős [Erd 1955] proved (simultaneously and independently) that \(J\) has a positive Lebesgue measure. A partial result towards the full conjecture (1.2) was shown by the author in [Pín 2013arX] according to which there exists an ineffective constant \(c\) such that

\begin{equation}
(1.3) \quad [0, c] \subset J.
\end{equation}

*Supported by OTKA Grants NK104183, K100291 and ERC-AdG. 321104.
In a recent work W. Banks, T. Freiberg and J. Maynard \cite{BFM2014arX} proved that for any sequence of \(k = 9 \) nonnegative real numbers \(\beta_1 \leq \beta_2 \leq \cdots \leq \beta_k \) we have
\[
{\beta_j - \beta_i : 1 \leq i < j \leq k} \cap J \neq \emptyset.
\]
As a corollary they obtained that if \(\lambda \) denotes the Lebesgue measure, then
\[
\lambda([0, T] \cap J) \geq (1 + o(1)) T/8.
\]

2 Generalization and Improvement

The purpose of this note is to generalize this result for the case when \(d_n \) is normalized by a rather general function \(f(n) \to \infty \), that is to consider instead of \(J \) the more general case of the set of limit points
\[
J_f = \left\{ \frac{d_n}{f(n)} \right\}
\]
where we require from \(f \) to belong to the class \(\mathcal{F} \) below.

Definition. A function \(f(n) \nearrow \infty \) belongs to \(\mathcal{F} \) if for any \(\varepsilon > 0 \)
\[
(1 - \varepsilon)f(N) \leq f(n) \leq (1 + \varepsilon)f(N) \quad \text{for } n \in [N, 2N], \ N > N_0,
\]
further if
\[
f(n) \ll \log n \log_2 n \log_4 n / (\log_3 n)^2
\]
where \(\log_\nu n \) denotes the \(\nu \)-times iterated logarithm.

The first condition means that \(f(n) \) is slowly oscillating, while the second one that it does not grow more quickly than the Erdős–Rankin function, which until the recent dramatic new developments by Maynard \cite{May2014arX}, Ford–Green–Konyagin–Tao \cite{FGKT2014arX}, and Ford–Green–Konyagin–Maynard–Tao \cite{FGKMT2014arX} described the largest known gap between consecutive primes. The improvement means that it is sufficient to work with \(k = 5 \) values of \(\beta_i \) in (1.4) instead of \(k = 9 \) values. As an immediate corollary we obtain a lower bound \((1 + o(1))T/4\) instead of \((1.5)\) for the Lebesgue measure of the more general set \([0, T] \cap J_f\).
Theorem 1. If \(f \in \mathcal{F} \), then for any sequence of \(k = 5 \) nonnegative real numbers \(\beta_1 \leq \beta_2 \leq \cdots \leq \beta_k \) we have
\[
\{ \beta_j - \beta_i : 1 \leq i < j \leq k \} \cap J_f \neq \emptyset.
\]

Corollary 2. If \(f \in \mathcal{F} \), then
\[
\lambda([0,T] \cap J) \geq (1 + o(1))T/4.
\]

In an earlier work \([\text{Pin 2013arX}]\) we showed that for any \(f \in \mathcal{F} \) there exists an ineffective constant \(c_f \) such that \([0,c_f] \subset J_f\). We further remark that since \(\beta_i \) can be arbitrarily large, Theorem 1 includes the improvement of the Erdős–Rankin function given in \([2.3]\) proved recently in \([\text{May 2014arX}]\) and \([\text{FGKT 2014arX}]\). (We note that the proof uses some refinement of the argument of \([\text{May 2014arX}]\), so it does not represent an independent new proof.)

In connection with the original Erdős conjecture for general \(f \in \mathcal{F} \) we remark that it was proved in \([\text{Pin 2014arX}]\) that the conjecture is in some sense valid for almost all functions \(f \in \mathcal{F} \). More precisely it was shown in \([\text{Pin 2014arX}]\) that if \(\{f_n\}_1^\infty \in \mathcal{F} \) with \(\lim_{x \to \infty} f_{n+1}(x)/f_n(x) = \infty \), then
\[
J_{f_n} = [0, \infty]
\]
apart from at most 98 exceptional functions \(f_n \).

3 Proof

The generalization for the case \(f \in \mathcal{F} \) instead of the single case \(f = \log n \) runs completely analogously to the proofs in \([\text{Pin 2014arX}]\) so we will only describe how to improve \(k = 9 \) to \(k = 5 \) in Theorem 1 which leads to the improved Corollary 2 in the same simple way as described in the Introduction of the work of Banks, Freiberg and Maynard \([\text{BFM 2014arX}]\).

The result will follow from the following improvement of Theorem 4.3 of their work. Let \(\mathcal{Z} \) be given by (4.8) of \([\text{BFM 2014arX}]\).

Theorem 3. Let \(m, k \) and \(\varepsilon = \varepsilon(k) \) be fixed. If \(k \) is a sufficiently large multiple of \(4m + 1 \) and \(\varepsilon \) is sufficiently small, there is some \(N(m,k,\varepsilon) \) such that the following holds for \(N \geq N(m,k,\varepsilon) \) with
\[
w = \varepsilon \log N, \quad W = \prod_{p \leq w, p | \mathcal{Z}} p.
\]
Let $\mathcal{H} = \{h_1, \ldots, h_k\}$ be an admissible k-tuple (that is it does not cover all residue classes mod p for any prime p) such that
\begin{equation}
0 \leq h_1 < \cdots < h_k \leq N
\end{equation}
and
\begin{equation}
p \mid \prod_{1 \leq i < j \leq k} (h_j - h_i) \implies p \leq w.
\end{equation}

Let $\mathcal{H} = \mathcal{H}_1 \cup \cdots \cup \mathcal{H}_{4m+1}$ be a partition of \mathcal{H} into $4m + 1$ sets of equal size and let b be an integer with
\begin{equation}
\left(\prod_{i=1}^{k} (b + h_i), W \right) = 1.
\end{equation}

Then there is some $n \in (N, 2N]$ with $n \equiv b \pmod{W}$ and some set of distinct indices $\{i_1, \ldots, i_{m+1}\} \subseteq \{1, \ldots, 4m + 1\}$ such that
\begin{equation}
|\mathcal{H}_i(n) \cap \mathbb{P}| \geq 1 \quad \text{for all } i \in \{i_1, \ldots, i_{m+1}\}.
\end{equation}

Remark. The original analogous statement (4.20) of [BFM 2014arX] should have been stated with ≥ 1 instead of $= 1$ (oral communication of James Maynard). This form is enough to imply their Corollary 1.2 or our Corollary 2.

The needed change in the Deduction of Theorem 4.3 is the following. First, using $4m + 1 \mid k$ we write
\begin{equation}
\mathcal{H} = \mathcal{H}_1 \cup \cdots \cup \mathcal{H}_{4m+1}
\end{equation}
as a partition of \mathcal{H} into $4m + 1$ sets each of size $k/(4m + 1)$. Instead of the quantity S in [BFM 2014arX] we introduce with a new parameter $\alpha = \alpha(m)$ the new quantity $S(\alpha)$, where α will be chosen relatively small (we will see that $\alpha(m) = 1/(5m)$ is a good choice, for example). Thus, let with a further parameter β
\begin{equation}
S(\alpha, \beta) = \sum_{N < n \leq 2N} \left(\sum_{i=1}^{k} 1_\mathbb{P}(n + h_i) - \beta m - \alpha \sum_{j=1}^{4m+1} \sum_{h, h' \in \mathcal{H}_j, h \neq h'} 1_\mathbb{P}(n + h)1_\mathbb{P}(n + h') \right)
\end{equation}

\begin{equation}
\times \left(\sum_{d_1, \ldots, d_k \mid d_i \mid n + h_i \forall i} \lambda_{d_1, \ldots, d_k} \right)^2
\end{equation}
where under the summation sign we consider unordered pairs \(h, h' \in \mathcal{H}_j \). Let

\[
\beta = \beta(\alpha) = \max_{\ell \in \mathbb{Z}^+} \left(\ell - \alpha \left(\frac{\ell}{2} \right) \right).
\]

Then the contribution of any set \(\mathcal{H}_j \) to \(S(\alpha, \beta) = S(\alpha) \) is at most \(\beta \), so if we have for every \(n \in (N, 2N] \) at most \(m \) sets of the form \(\mathcal{H}_j \) with

\[
\sum_{h \in \mathcal{H}_j} 1_F(n + h) > 0,
\]

then consequently

\[
S(\alpha) \leq 0.
\]

In contrary to the choice \(\varrho \in (0, 1) \) and \(\delta \varrho \log k = 2m \) of \cite{BFM_2014_arXiv} we will choose now \(\delta \varrho \log k \) much larger

\[
\delta \varrho \log k = u := \frac{4m + 1}{4\alpha}, \quad \alpha = \frac{1}{5m}, \quad \varrho \in (0, 1).
\]

This implies with an easy calculation

\[
\beta = \frac{5m + 1}{2}.
\]

Using the same argument for the estimation of the negative double sum as \cite{BFM_2014_arXiv} we obtain a choice of a function \(F \) such that

\[
S(\alpha) = \frac{N}{W} B^{-k} I_k(F) \left(\sum_{i=1}^{k} \frac{u}{k} (1 + O(\gamma)) - \beta m - 4\alpha \sum_{j=1}^{4m+1} \sum_{h, h' \in \mathcal{H}_j, h \neq h'} \frac{u^2}{k^2} (1 + O(\delta + \gamma)) \right)
\]

\[
= \frac{N}{W} B^{-k} I_k(F) \left(u(1 + O(\gamma)) - \frac{(5m+1)m}{2} - \frac{4(4m+1)}{5m} \left(k/(4m+1) \right) \frac{u^2}{k^2} (1 + O(\delta + \gamma)) \right).
\]

By the above choice of the parameters in \((3.11)\) we have from \((3.13)\) with \(\gamma = (\log k)^{-1/2} \)

\[
S(\alpha) W B^k \leq \frac{5m(4m+1)(1 + O(\gamma))}{4} - \frac{(5m+1)m}{2}
\]

\[
- \frac{5m(4m+1)(1 + O(\delta + \gamma))}{8}
\]

\[
= \frac{m(1 + O(m(\delta + \gamma))))}{8} > 0,
\]
which contradicts to \((3.10)\).

In order to see the validity of the last inequality we can choose

\[(3.15)\]

\[m < (\log k)^{1/4} \iff \delta \simeq \left(\frac{m^2}{\log k}\right)\]

which implies \(m\gamma = o(1)\) and \(m\delta = o(1)\). This contradiction proves our Theorem \[1\]. Corollary \[2\] follows from it in the same way as Corollary 1.2 from Theorem 1.1 in \[BFM 2014arX\].

References

János Pintz
Rényi Mathematical Institute
of the Hungarian Academy of Sciences
Budapest, Réáltanoda u. 13–15
H-1053 Hungary
e-mail: pintz.janos@renyi.mta.hu