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Abstract

Our goal is to develop a limit approach for a class of probl@medditive combinatorics that
is analogous to the limit theory of dense graph sequencesinWéeluce metric, convergence and
limit objects for functions on groups and for measurablecfioms on compact abelian groups. As

an application we find exact minimizers for densities ofdineonfigurations of complexity.

1 Introduction

The so-called graph limit theory (see [10], [11]} [2]} [9]ygs an analytic approach to a large class
of problems in graph theory. A very active field of applicagds extremal graph theory where,
roughly speaking, the goal is to find the maximal (or mininpal¥sible value of a graph parameterin
a given family of graphs and to study the structure of grapiagrang the extremal value. A classical
example is Turan’s theorem which implies that a triangéefgraphi on 2n vertices maximizes
the number of edges i is the complete bipartite graph with equal color classestAer example

is given by the Chung-Graham-Wilson theorérn [3]. If we wighrtinimize the density of the four
cycles in a grapl with edge densityl /2 then H has to be sufficiently quasi random. However
the perfect minimum of the problem (thatlig16) can not be attained by any finite graph but one
can get arbitrarily close to it. Such problems justify grdiphit theory where in an appropriate
completion of the set of graphs the optimum can always baatiaf the extremal problem satisfies
a certain continuity property. Furthermore one can usatianal principles at the exact maximum
or minimum bringing the tools of differential calculus ingoaph theory.

Extremal graph (and hypergraph) theory has a close commettiadditive combinatorics. It is
well known that the triangle removal lemma by Szemerédi Rndsa implies Roth’s theorem on
three term arithmetic progressions. The proof relies onrao@ing of an integer sequence (or a
subset in an abelian group) by a graph that is rather sinuilarGayley graph. Such representations
of additive problems in graph theory hint at a limit theory$obsets in abelian groups that is closely

connected to graph limit theory. This new limit theory, tiaactually a limit theory for functions
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on abelian groups, was initiated by the authof in [15] [16] i8] in a rather general form. It turns
out that there is a hiararchy of limit notions correspondmg-th order Fourier analysis where the
limit notion gets finer as% is increasing and the limit objects get more complicatede fitus of
this paper is the linear cage= 1 that was called “harmonic analytic limit” in_[15]. This case
interesting on its own right, covers numerous importantstjoas and is illustrative for the more
general limit concept.

We introduce metric, convergence and limit objects for stdb# abelian groups. More gen-
erally, since subsets can be represented by their chastictéunctions, we study the convergence
of functions on abelian groups. This extends the range dfiplesapplications of our approach to
problems outside additive combinatorics.

In the first part of the paper we study a metdi@nd related convergence notion f8rfunc-
tions on discrete (not necessarily commutative) groupis ithportant that the metri¢ allows us
to compare two functions defined on different groups. In t&d we introduce a distane&for
measurable functiong € L?(A;),g € L?(A3) defined on compact ablelian grougs, A, such
thatd(f,g) := d(f,j) wheref andg denote the Fourier transforms gfandg. In additive com-
binatorics, we can use the distantéo compare subsets in finite abelian groups in the following
way. If S; C A; andS; C A, are subsets in finite abelian grougs and A; then their distance is
d(1s,,1s,). This allows us to talk about convergent sequences of ssibsatsequence of abelian
groups.

A crucial property of the metrid (see theorernl2) is that it puts a compact topology on the set
of all pairs(f, A) whereA is a compact abelian group arfds a measurable function of with
values in a fixed compact convex $étC C. As a consequence we have that any sequence of subsets
{S; C A;}52, infinite abelian groupsl; has a convergent sub-sequence with limit object which is a
measurable function of the forifi: A — [0, 1] whereA is some compact abelian group. This result
is analogous to graph limit theory where graph sequencesyallwave convergent subsequences
with limit object which is a symmetric measurable functidrte formW : [0,1]% — [0, 1].

The success of a limit theory depends on how many intereptingmeters are continuous with
respect to the convergence notion. The parameters thatestenteresting in additive combinatorics
are densities of linear configurations. A linear configunaits given by a finite set of linear formsii.e.
homogeneous linear multivariate polynomials o¥ef~or example & term arithmetic progression
is given by the linear forms, a + b, a + 2b. If f is a bounded measurable function on a compact
abelian groupA then we can compute the density 3term arithmetic progressions ifi as the
expected valu&, ,c 4 (f(a)f(a + b)f(a + 2b)) according to the normalized Haar measuren
This density concept can be generalized to an arbitrarafinenfigurationC = {L;, Lo, ..., Ly}
and the density of in f is denoted by (L, f) (see formulal{ll) and the following sentence.). Gowers

and Wolf introduced a complexity notion![7] for linear configtions calledrue complexity(see



definition[4.1 in this paper). A useful upper bound for theetoomplexity is the so-called Cauchy-
Schwarz complexity developed by Green and Ta@lin [8].

We prove the following fact (for precise formulation seedtean4).

Theorem: If £ ha true complexity at most then the density function @ is continuous in the

metricd.

Examples for linear configurations of complexityinclude the3-term arithmetic progression
[8], the parallelogram, a+b, a+c¢, a+b+c, and the system y := {z; +x; : (i,5) € E(H)}
where H is an arbitrary finite graph ofil,2,...,n}. The last example gives a close connection
with graph limit theory. The density af in f € L>(A) is equal to the density of the grapghin
the symmetric kerndlV’ : A x A — C defined byW (z,y) = f(x + y). Note that if f has values
in [0, 1] thenW is a graphon in the graph limit language. We will elaboratetas connection in
chaptefID

Let £ be an arbitrary linear configuration. For< § < 1 andn € N let p(6,n, L) de-
note the minimal possible density df in subsets ofZ,, of size at leastin. Let p(6,L£) =
liminf,, p(d, p, £) wherep runs through the prime numbers. A result by Candela and ISisas
implies that thdim inf can be relaced bym in the definition ofp(d, £). Note that Roth’s theorem
is equivalent with the fact that(s, £) > 0if 6 > 0andl = {a, a + b, a + 2b}.

Theorem 1 Let £ be a linear configuration of true complexity at mastFor every0 < § < 1 we

have that
p(6,£) = min(t(L, ))

wheref runs through all measurable functions of the fofm A — [0, 1] with E(f) = § on compact

abelian groupsA with torsion-free dual groups.

We emphasize that in theorémh 1 we obta{, £) as an actual minimum and thus there is some
function f5 - realizing the value(¢). If for exampleLl = {a, a + b, a + 2b} then it is easy to
deduce Roth’s theorem by using Lebesgue density theoremduofficiently precise approximation
of fs.. by its projection to a large enough finite dimensional fagiaup of A. One gets thafs .
has positive3-term arithmetic progression densitydf > 0 and thusp(d) > 0 holds. It would
be very interesting to find the explicit form of a minimizgy . for everyé or even to obtain any

information onf; . like on which abelian group it is defined?

It is important to mention that our convergence notion bekayuite differently from usual con-
vergence notions in functional analysis. There is an exafigpla convergent sequence of functions,
all of them defined on the circle (complex unit circle with ttiplication or equivalently the quotient

groupR/Z), but the limit object exists only on the torus.



In the proofs we will extensively use ultra limit methodstrdlimt methods in graph and hyper-
graph regularization and limit theory were first introdu@efé]. There are two different reasons to
use these methods. One is that they seem to help to get ridrea deal of technical difficulties
and provide cleaner proofs for most of our statements. Therakason is that they point to an
interesting connection between ergodic theory and out timeiory. The ultra produch of compact
abelian groupg A; }$2, behaves as a measure preserving system. Our limit concetasily be

explained through a factdF (A) of A which is a variant of the so called Kronecker factor.

2 Alimit notion for functions on discrete groups

For an arbitrary grouii: we denote by?(G) the Hilbert space of all functiong : G — C such
that[|f[13 = > ,cq 1f(9)]? < oco. If f € I*(G) ande > 0 then we denote byupp, (f) the set
{g9:9 € G,|f(g)] > €}| In particularsupp(f) := supp,(f) is the support off. Not that ife > 0
then|supp, (f)| < ||f]|3/€% and thussupp(f) is a countable (potentially finite) set. We denote by
(f) the subgroup of7 generated byupp(f). Itis clear that{f) is a countable (potentially finite)
group.

Two functionsf; € 12(G1) and f, € 12(G>) are called isomorphic if there is a group isomor-
phisma : (fi1) — (f) such thatf; = f» o a. Let us denote byM the isomorphism classes Bf
functions on groups. Our goal is to define a metric spacetstreon M. We will need the next

group theoretic notion.

Definition 2.1 Let G; and G> be groups. A partial isomorphism of weightis a bijection¢ :
S1 — Sy between two subsef§ C G, .52 C G suchthatg? g5 ... ¢g&~ = 1 holds if and only if
d(g1)“ P(g2)*2 ... d(gn)* = 1 for every sequencg € S1,a; € {—1,0,1} with1 <4 <n.

Definition 2.2 Let f; € [?(Gy) and f» € [?(G2). An e-isomorphism betweey; and f, is a
partial isomorphismp : S; — S3 of weight[1/€] between sets withupp,.(f1) € S1 C G; and
supp, (f2) C Sa C G suchthat f1(g) — f2(¢(g))| < € holds for every; € S;. We definel(f1, f2)

as the infimum of ald’s such that there is an-isomorphism betweefy and fs.

Proposition 2.1 The functiond is a metric onM.

Proof. First we show thadi(fh f2) = 0ifand only if f, and f> are isomorphic. Iff; is isomorphic
to f then itis clear thatl(f1, f2) = 0. For the other direction assume w.l.0.g. th#|l2 < || f1]|2-
Let oy, : S1,n — S2.,, be anl/n-isomorphism betweelf;, to f, for everyn. Clearly, for every
elementy € supp(f1) there are finitely many possible elements in the sequéngéy)}52 ; since
lim, . f2(an(g)) = fi(g) and there are finitely many elemeritsin G2 on which f5(h) >

f1(g)/2. Using that the support of; is countable we obtain that there is a subsequége of



{a, } such that the sequencgs, (g)} stabilize (become constant) after finitely many steps fergv
g with f1(g) > 0. This defines a mag = lim 8,, from supp(f1) to supp(f2). Itis clear thats
extend to an injective homomorphism froffy ) to (f2) and it satisfies2(8(g)) = f1(g) for every
g € (f1). Using||f2|l2 < || f1]]2 it follows that every element isupp( f2) is in the image of3 and
so/ is a value preserving isomorphism betweén and(fs).

It remains to check the triangle inequality for the metticAssume thaty : S; — S5 is ane
isomorphism betweefy and f, and assume thdt: S, — S5 is ane’ isomorphism betweef, and
f3. Without loss of generality we can assume (by reversingnaiib necessary) that > ¢. We

have the following inclusions:
B (supp,ie(f3)) C B~ (suppe (f3)) € B (S3) = S5,

B~ (suppy(f3)) € supp (f2) C S,
a(suppery (1)) C suppe(f2) € S2 N Sy.

Let T, = B! (supp.,(f3)) Usupp.(f2) (note thatT, C S, N S5) and letTy = o (1),
T3 = B(Tz). We have thasupp,., . (f1) € T1 andsupp, . (f3) C T5. Lety : Ty — T3 be the
restriction of3 o o to T7. To complete the proof of the triangle inequality we show ths ane’ + ¢
isomorphism. We have thatis a bijection and thaltf;(g1) — f3(7v(g1))| < € + € holds for every
g € Ty. It remains to check thaj is a partial isomorphism of weightl /(¢’ + €)]. This follows
form the fact that the composition of a partial isomorphignweight n and a partial isomorphism
of weightm is a partial isomorphism of weightin(n, m). However the minimum of1/¢] and
[1/¢']is atleast{1/(e’ + €)].

Lemma 2.1 Assume that a sequenég; }>°, of [? functions on abelian groups convergedrto
f € 12(G) then(f) is also abelian.

Proof. Let g1,92 € supp(f) be two elements. Let = min(f(g1)/2, f(g2)/2,1/4). Then by

convergence of; there is an index such that there is arrisomorphismp betweenf andf;. Since

91,92 € supp, f we have that is defined oryy, g2 and¢(g1)¢(g2)#(g1) ~*é(g2) "+ = 1 implies
thatg; gog; *g, * = 1 because < 1/4.

For every real number > 0 let M, denote the subset g¥1 consisting of equivalence classes
of functionsf € 1?(G) with || f||2 < a.
Proposition 2.2 The metric spacéM,, ci) is compact for every > 0.

Let F,. denote the free group ingenerators. We will need the next lemma.

Lemma 2.2 Assume tha{G,,}5° , is a sequence of groups and for everye have a sequence of

elementq g, :}:2, in G,. Then there is a sequence of elemegtg 2, in some groug and a set
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S C N such that for every € N and wordw € F.. there is a natural numbew,, such thatift € S

andk > N,, thenw(gx 1, gk.2, - - -, grr) = Lifand only ifw(g1, g2,...,9-) = 1.

Proof. Let {w;}2, be an arbitrary ordering of the words U2, F,. with w; € F,,. We con-
struct a sequence of infinite subsétsC N in a recursive way. Assume th8f = N. If S;_; is
already constructed then we constri¢tin a way thatS; is an infinite subset irb;_; and either
w;i(gs1,9s.2s -+, 9s,r;) = 1 holds for everys € S; or w;(gs,1,9s,2,---,9s.r;) 7 1 holds for every
s € S;. This can be clearly achieved sinSe_, is infinite. We then chose a sequencg}s2,
such thats; € S; ands; < s; hold for every pairi < j. We obtain for{s,;}°, that for every
r € N and wordw € F, eitherw(gs, 1,9s;.2,---,9s;,») = 1 holds with finitely many exceptions
or wy(gs; 1,9s;.25- - - » gs,,r) 7 1 holds with finitely many exceptions. L& denotes the collection
of words for which the first case holds. Létbe the group with generatofg; }3°, and relations
{w(g1,92,---,9-) = 1|r € Nyw € F. nW}. ltis clear form the construction d¥ that every
relation thatGG satisfies in its generators is already listedlin This follows from the fact that if a
wordw is not inW then for an arbitrary finite subs8t”’ in W there is a withess among the groups
G5, in whichw does not hold but all words i’ hold. Now we have that = {s;}5°, andG with

{g:}$2, satisfies the lemma.

Proof of propositiof 2. Let {f, : G, — C}°2, be a sequence of functions &f norm at
mosta. For everyn let {g,;}5°, be an ordering of the elementssdnpp(f,) is such a way that
fn(gn,i) > fn(gn,;) Whenevei < j. (if f, is defined on a finite group then, to make the list infinite,
we can extend it to an infinite group containiég with 0 values outsidé&r,,.) LetS C N, G and
{9:}52, be chosen for the sequendgs, ; }°, according to lemma22. L&’ C S be an infinite
subset ofS sucha; := lim,, 00 nes’ fn(gn,:) eXists for every € N. Now we define the function
f+ G — Csuch thatf(g;) = a, inside the se{g;}°, and f(g) = 0 for the rest of the elements.
Itis clear thatf is well defined since,, ; # g, ; holds for everyn if ¢ # j and thusg; # g;. Itis
clear thaf| f||2 < liminf,cgs || fn|l2 @and thud|f]]2 < a.

To create an-isomorphism betweeyfi and f,, (if n € S’ is big enough) we consider the sets
Tn = {gni i < a?/e?} and the sel’ = {g; : i < a?/e*}. Leta,, : T,, — T be the bijection
defined by, (95,:) = g:. Itis clear thasupp, (f,,) C T;, holds for everyr and thasupp, (f) C S.
The construction guarantees that(g) — f(an(g9)| < e holdsifn € S’ is big enough. Furthermore
the property given by lemnia 2.2 shows thatis a partial isomorphism of weight for an arbitrary

m € Nif n € S is big enough. This completes the proof.



3 Convergence notions on compact Abelian groups

Compact abelian groups in this paper will be assumed to nsemountable. In this case the dual
group is always countable. For a compact abelian gr@we denote by ?(G) the Hilbert space of
Borel measurable complex valued functighsen G with [ | f|? du < co wherey is the normalized
Haar measure.

Let f1 € L*(G,) andf, € L?(G2) be functions on the compact abelian groghsandG,. We
say thatf, f» are isomorphic if there is a third functigih € L?(G3) and continuous epimorphisms
a; : G; = G fori = 1,2 such thatfs(«;(g)) = fi(g) holds for almost every with respect to the
Haar measure it/;.

For a functionf € L?(G) on a compact abelian group we denotefby G — C the Fourier
transform off where the discrete grou@is the dual of. Itis clear thatf; e L?(G4) is isomorphic
to fo € L?(G>) if and only if f1 is isomorphic tof2 in the sense of chaptel 2.

Let H# denote the set of isomorphism classes of Borel measurdablnctions on compact
Abelian groups. We introduce the distanten# by d(f1, f2) := d(f1, f2). The metricd induces
a convergence notion oH. If we say{f;}52, is convergent then we mean convergencé ifinot
stated explicitly in which other meaning it is convergenét , denote the set of functions iH
with L2-norm at most.. Using the fact that Fourier transform preservesiBenorm we have by

lemmd 2.1l and propositign 2.2 the following statement.
Proposition 3.1 (#,, d) is a compact metric space for every> 0.

For a setk’ C C let H(K) denote the set of functions iH which take values . We will

prove the next theorem.
Theorem 2 If K C Cis a compact convex set théH (K ), d) is a compact metric space.

Corollary 3.1 IF {f;}5°, is a sequence of0,1} valued functions ir{ converging tof in the

metricd then the values of are in the interval0, 1].

Theoreni® is somewhat surprising. The medris given in terms of Fourier transforms however
it is not trivial to relate the set of values of a function te tbroperties of its Fourier transform. The
condition thatK is convex turns out to be necessary in theotém 2. Cordlldllyis3useful when
we study limits of sets in abelian groups by the limits of thekiaracteristic functions. We give the
proof of theoreni R in a later chapter.

We say that a sequendd;}2°, in H is tightly convergentf it converges ind and the limit f

satisfiedim;_, || fi]l2 = || f]|2- Tight convergence can be metrized by the distance

d'(f1, f2) = d(f, f2) + I fullz = Il f2ll2l-



Convergence i’ is stronger than convergencedrand it has stronger consequences. To formulate
our result we need the following notation. For a measurabietion f on a compact abelian group
we denote by:  the probability distribution of (x) wherez is chosen randomly from according

to the Haar measure. The measpugeis a Borel probability distribution oft.

Theorem 3 Let{f;}$2, be a sequence of uniformly bounded function&inonverging tof in d’.

Thenyy, converges tq:; in the weak topology of measures.

Note that the above theorem is not true for convergence iA trivial example for a tightly
convergent sequence is AR-convergent sequence of functions on a fixed compact algiGapA.
However there are more interesting examples. We finish tlagter with an example which shows
that a sequence df? functions on the circle groui /Z can have a limit (even id’) which can not
be defined on the circle group. The limit object exists on thed. Letf, (z) = 2™ 4 2inme
defined onR/Z for n € N. It is easy to see thaf, is convergent and the limit is the function
f = €2 4 %7 on the toruR/Z x R/Z. Note that the sequengg is tightly convergent since

[ fallz = 1£ll2 = V2.

4 Densities of linear configurations in functions on Abeliargroups

A linear form is a homogeneous linear multivariate polynalnwith coefficients inZ. If L =
A1x1 + Ao + ... + A\px, IS alinear form then we can evaluate it in an arbitrary albedisoup A

by giving values fromA to the variables:; and thus it becomes a function of the fofm A™ — A.

A systemLy, Lo, ..., L; of linear forms determines a type of linear configuration. éample
for a linear configuration is th&term arithmetic progression which is encoded by the lifieans

x1, 1 + x2, 1 + 229. Assume thatd is a compact abelian group atid= {f; §:1 is a system

of bounded measurable functionsiii®(A). Assume furthermore that = {L, Lo, ..., L} isa
sytem of linear forms ifZ(x1, zo, . .., z,). Thenitis usual to define the density of the configuration

L in F by the formula

k
(L, F) =By my..anen | [ FiLilar, x2, ... 20)). (1)
i=1

If f; = f foreveryl < i < k in the function systen¥ then we use the notatiof L, f) for
t(L,F).

In this chapter we address the following type of problem.

Assumethaf = {Lq, Lo, ..., L} is alinear configuration and! is a class of compact abelian

groups. Under what conditions afrand A is the functionf — ¢(L, f) continuous in the metrid

when functions are assumed to be uniformly bounded medsutaicrtions on groups il ?



The role of the classl is to exclude certain degeneracies that occur for numberéiie reasons.
For example the linear forrdxz becomes degenerated on the elementary abelian ¢@(®7.)™.

We will need the following definition introduced by Gowersdawolf in a slightly different form in
(7).

Definition 4.1 Let £ = {L4, Lo, ..., Li} be a linear configuration. Theue complexity of £ in
a classA of abelian groups is the smallest numbere N with the following property. For every
e > 0 there exists > 0 such that ifA € A is any abelian group andF = {f;}¥_, is a system of

measurable functions witlf;| < 1 and|| f;||v,.,, < ¢ for somej thent(L, F) < e.

m-+41

In the above definitiot}. ||, ., denotes Gowers's: + 1-th uniformity norm. Our main theorem

states is the following.

Theorem 4 Leta > 0. Let L be a linear configuration andd be a family of compact abelian
groups such thaf has true complexity at mostin A. Thenf — t(L, f) is continuous with respect

to the metricd for measurable functiong € L>°(A) with A € Aand|f| < a.

5 Ultra products and ultralimits

Let w be a non principal ultra filter on the natural numbers. {&}°, be a sequnece of sets.
For two elementss = (z1,22,...) andy = (y1,¥2,...) in the product][];2, X; we say that
x ~y yif {i ]2, = y;} € w. Itis well known that~,, is an equivalence relation. The set
IL, X = (H;’il XZ-)/ ~. is called thaultraproductof the setsX;.

Let T' be a compact Hausdorrf topological space and{ig}°, be a sequence ifi. The
ultralimit lim,, ¢; is the unique point in 7" with the property that for every open détcontaining
ttheset{i | t; € U}isinw. Let{f; : X; — T}, be a sequence of functions. We define
f = lim,, f; as the function o[ , X; whose value on the equivalence clasof € X;}2, is
lim,, fi(2;).

Let { X, u; }$2, be pairs whereX; is a compact Hausdorff space gmds a probability measure
on the Borel sets of;. We denote byX the ultra product spacf[  X;. The space&X has the

following structures on it.

Strongly open sets:We call a subset oK strongly open if it is the ultra product of open sets
{Si € Xi}2,.

Open setsWe say thatS ¢ X is open if it is a countable union of strongly open sets. Open
sets onX form ac-topology. This is similar to a topology but it has the weaigiom that only
countable unions of open sets are required to be open. Itepandved thaX with this o-topology

is countably compact. This means thaXifis covered by countably many open sets then there is a

finite sub-system which covels.



Borel sets:A subset ofX is called Borel if it is in ther-algebra generated by strongly open sets.

Ultra limit measure:If S C X is a strongly open set of the for§= []  S; then we defing:(S)
aslim,, u;(S;). Itis well known thatu extends as a probability measure to thalgebra of Borel

sets onX.

Ultra limit functions: Let T' be a compact Hausdorff topological space. {£t: X; — T}, be
a sequence of Borel measurable functions. We call functdnise form f = lim,, f; ultra limit
functions. It is easy to see that ultra limit functions canals be modified on & measure set that
they becomes measurable in the Baredlgebra onX. This means that ultra limit functions are

automatically measurable in the completion of the Berallgebra.

Measurable functionstt is an important fact (se¢[4]) that every bounded meadarainction on

X is almost everywhere equal to some ultra limit functjps: lim,, f;.

Continuity: A function f : X — T from X to a topological spacg is called continuous if ~*(U)
is open inX for every open set if’. If T is a compact Hausdorff topological space thers
continuous if and only if it is the ultra limit of continuousrictionsf; : X; — T. Furthermore the

image ofX in a compact Hausdorff spa@éunder a continuous map is compact.

6 The Fourier o-algebra

If Ais a compact Abelian group then linear characters are asoti®i homomrphisms of the form
x : A — C whereC is the complex unit circle with multiplication as the groupevation. Note that
on compact abelian groups we typically uses the group operation. However if we think@®és
a subset ofC then we are forced to use multiplicativ notation. On the pttend, if we think ofC
as the groufR /Z then we are basically forced to use additive notation.

Linear characters are forming the Fourier basis40A). In particular linear characters generate
the whole Borelo-algebra onA. Assume now thalA = []_ A; is the ultraproduct of compact
abelian groups. Linear charactersAfcan be similarly defined as for compact abelian groups. In

this case we require them to be continuous indHepology onA.

Proposition 6.1 A functiony € L*>°(A) is a linear character if and only i§ = lim,, x; for some

sequencéy; € L>°(A;)}2, of linear characters.

The proof of the lemma relies on a rigidity result saying tiatost linear characters on compact

groups can be corrected to proper characters.

Lemma 6.1 For everye > 0 there is§ > 0 such thatiff : A — C is a continuous function

on a compact abelian groug with the property thatf(z + a)f*(x) — f(y + a)f*(y)] < ¢,
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[|f(x)] — 1| < ¢ foreveryz,y,a € Aand|f(0) — 1| < § then there is a charactey of A such that
Ix(z) — f(x)| < eholds for everyr € A.

Proof. As atool we introduce group theoretic expected values afoamvariables taking values in
C. Letl denote the arc length metric on the circle gréup R/Z normalized by the total lengthw.
Itis clear that the metritis topologically equivalent with the complex metfic— y| onC. Assume
that a random variabl& takes its values in an arc of the circle group of lengtB. Then thereis a
lift Y of X toR such thaft” + Z = X andY takes its values in an interval of lengtii3. The lift
Y with this property is unique up to an integer shift. Then wérdgE(X) € R/Z asE(Y) + Z.
Switching to multiplicative notation i€ this expected value satisfi@ X, X3) = E(X;)E(X2)
whereX;, X take values in an arc of length'6.

Let us definefa(x) = f(x)/|f(z)|. If 6 < 1thenf(z) # 0 on A and thusfs is defined onA.
If 6 > 0is small enough then for every fixeédhe functionz — f(x + ) f*(x) takes values in an
arc of length at most/6. For everyt € A let g(t) = E.(f(x + t)f*(x)) whereE is the group
theoretic expected value. dfis small enough thefy(t) — f(¢)| < € holds for every € A because
[fz+t)f*(x) — f(t)f*(0)] < dandf(0) is close tol. Using our multiplicativity property oE

we have for every paii, b € A that
9la+0b)g*(0) = Eo(f(z + a+b)f*(2) [*(z + ) f(z)) = B (f(z + a + b) f*(x + b)) =

= E.((x +a)f*(x)) = g(a).

This implies thaty is a linear character of.

Now we are ready to prove proposition6.1

Proof. The continuity ofy guarantees that = lim,, f; for some sequence of continuous functions
fionA,. The fact thaty is a character implies that there is a sequenaich thatf; satisfies the
conditions of lemm&®6l1 withi; for every: andlim,, §; = 0. It follows by lemmd®&.1 that there is

a sequence of linear characterson A, such thatim, max(|x; — f;|) = 0. Thus we have that

lim,, x; = limy, f; = x.

Propositiof 6.11 implies that the set of linear characterA ¢élso as a group) is equal fq,, A;.
We denote this set bA. If f € L2(A) then the Fourier transform of on A is the function
f € I2(A) defined byf (x) = (f, x). If f = lim,, f; then we have thaf = lim, f;.

It was observed in [14] that linear charactersfofno longer spar.?(A). This shows that in
general we only havgf|» < ||f|» instead of equality. Furthermore thealgebraF(A) generated
by linear characters oA is smaller than the whole ultraproductalgebra omA. (The only excep-
tion is the case wheA is a finite group. This can happen if the groupsare finite and there is a

uniform bound on their size.)
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We call 7(A) the Fourier o-algebra on A. The fact that the Fouries-algebra is not the
completes-algebra onA gives rise to the interesting operatign— E(f|F(A)) that isolates the
“Fourier part” of a functionf € L?(A). Using that linear characters &f are closed with respect to
multiplication we obtain that linear characters are forgrarbasis inL?(F(A)). This implies that if
f € L*(A) thenf = g whereg = E(f|F(A)). Thus we have thatf||, = [|3]}> = [|E(f|F(A))]|2.
In particular| f||» = || f||2 holds if and only iff is measurable itF (A).

The Fourieww-algebra has an elegant description in terms of the secon@Gamornl/;. Recall

that theU; norm [5],[6] of a functionf € L>°(A4) on a compact abelian groupis defined by

1/4
1£llvs = (Eraseas @f(@+a) fl@+b) f(@+a+b) " 2)

The next lemma gives a description of ttig-norm in terms of Fourier analysis.

Lemma 6.2 If f € L>(A) then||f[|u, = || fll+ and thus| fl|oc < | fllvz < (I fllz] /o).

One can defing ||y, by the formula[(R) for functions on ultraproduct groups. hiis def-
inition we have that| f ||y, = lim,, || fi||v, wheneverf = lim,, f;. The main differnece from the
compact case is thdt||y, is no longer a norm for functions iB>°(A). It is only a semi-norm.
However the next lemma shows thal s, is @ norm when restricted tb>°(F(A)) and thatF(A)

is the largestr-algebra with this property.

Lemma 6.3 If g € L°°(A) then||g||y, = 0 if and only ifg is orthogonal toL.?(F(A)). A function
f € L*>(A) is measurable iF (A) if and only if f is orthogonal to every function € L>(A)

with ||g|lu, = 0. In particular we have thaf. ||, is a norm onL>°(F(A)).

Proof. We can assume thagt= lim,, g; for some sequence of functiofig, € L>(A;)}$2, such
that ||g:]lcoc < |lglloo holds for everyi. Assume first thaf|g||y, = 0. Let x = lim, x; be an

ultralimit of linear characters. Using lemmalk.2 we have tha, x:)| < ||l < |l9illv, and thus

(93] = i (go, o)l < 1 lgi oz, = o = 0.

It follows that g is orthogonal to the spade?(F(A)) spanned by linear characters Af For the
other direction assume that~ 0 is orthogonal?(F(A))). For everyi we choose a linear character
xi on A; such that(g;, x;)| = 1|dil|c- We have by lemmia®.2 and Biy; |2 < ||g:]loo < |9l that
(95 x| = Ilg:l12, g1l Then we have fox = lim,, x; that0 = |(g, )| = (lim, [lg:]12,) gl
It follows that||g||, = 0.

To complete the proof assume ttfat L>°(A) is orthogonalto every € L>°(A) with ||¢||v, =
0. Letg := f —E(f|F(A)) € L*(A). Note that sincé is an orthogonal projection it follows
that(f,g) = ||g/|3. We have thay is orthogonal taL?(F(A)) and so||g||y, = 0. It implies that
(f,9) = 0 butthatis only possible i§ = 0 andf = E(f|F(A)).

12



Let Q : L?(A) — M be such thaD(f) is the isomorphism class gfin M. Let furthermore
Q(f) denote the isomorphism class # representing the Fourier transform @f f). Note that
o(f) = Q(E(f|F(A))). We have thaD( f) can be represented as a measurable function on some
second countable compact abalian group Wi@( /)|l < ||f]|2 which in some sense imitates

However it is not even clear from this definition thatfifis a bounded function the@( f) is also

bounded. The next theorem provides a structure theoremfatibns inL>°(F(A)) and describes

Q(f)-

Theorem 5 A functionf € L°°(A) is measurable inF(A) if and only if there is a continuous,
surjective, measure preserving homomorphism A — A to some second countable compact
abelian groupA and a functionh € L*°(A) such thatf = h o ¢ (up to 0 measure change).

Furthermored(h, Q(f)) = 0 implying that the isomorphism class/ofs Q(f).

Proof. Assume first thaf = h o ¢ for some homomaorphism and function, as in the statement.
Leth = > :°, Xix: be the Fourier decomposition bfconverging inL?(A) wherey; is a sequence
of linear characters afi. We have thaj; o ¢ is a linear character oA for everyi. The measure
preserving property of implies thatf = Y. A\;(x; o ¢) and thusf is measurable icF(A).

For the other direction assume thate L>°(F(A)). Thenf = >~°, a;x; for some (distinct)
linear charactergy;}5°, of A where the convergence is it and || f||3 = > 2, |a;|?. Letus
consider the homomorphisi: A — C*° such that theé-th coordinate ofy(z) = x;(z). Using the
continuity of ¢ we have that the image of ¢ is a closed subgroup i@>. Let v denote the Borel
measure ol satisfyingv(S) = u(¢~1(S)) wherep is the ultralimit measure oA. The fact that
¢ is a homomorphism implies thatis a group invariant Borel probability measure 4rand thus
is equal to the normalized Haar measure. In other wordsmeasure preserving with respect to the
Haar measure oA.

Let us denote by; thei-th coordinate function od. Itis clear thaf «; } 52, is a system of linear
characters ofi. Sinceg is surjective it induces an injective homomorphigmA — A defined by
d(x) = x o ¢ with the property that(e;) = x; holds for everyi. We have that, = Yoo aicy
(which is defined up to & measure set o) is convergentin.? and has the property thft= ho ¢
(up to a0 measure set). The fact thais an injective homomorphism implies thi(tfz, f) =0and
thusd(h, Q(f)) = 0.

If £ is a system of linear forms anfle L°°(A) then we can defing L, f) by the formulal(lL)

using the ultralimit measure ox.

Proposition 6.2 Let f € L*°(F(A)) and letL be a system of linear forms. The(C, f) =
t(L,Q(f)). Furthermore if£ has complexityl in a family.4 of compact abelian groups\ is an

ultraproduct of groups ind and f € L>(A) thent(L, f) = t(L, Q(f)).
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Proof. For the first part we use theord 5. We get tfiat h o ¢ for some measure preserving
homomorphsimp : A — A. It follows thatt(L, f) = t(L£,h) = t(L£, 9(f)). For the sencond
partletf = lim,, f; andg = E(f|F(A)) = lim,, g; for some functions with| f;||c < |||/ and

lgilloo < 11glloo- We have thalim,, || fi—g:llv, = ||f —gllu, = 0. Then using thaf has complexity
1 we obtaint(£, Q(f)) = t(£, Q(g)) = t(£L, g) = limy, t(L, g;) = lim, ¢(£, i) = t(L, f).

7 The ultraproduct descriptions of d and d convergence

We give a simple and useful descriptiondstonvergence using ultrafilters. The price that we pay for

the simplicity is that we don’t get an explicit metric @, we only get the concept of convergence.

Theorem 6 Leta > 0. Assume thaf f;}52, is a sequence itM,, that converges tg in dthenf
is isomorhic tolim,, f; for every (non-principal) ultrafilteto. Consequently a sequengé }2; in
M, is convergent inl if and only if the isomorphism class bfn,, f;-limit doesn’t depend on the

choice of the ultra filter.

Proof. Foreveryilet«; : T; — S; be ane;-isomorphism betweef; and f with T; C G;,5; C G
such thatim;_, . ¢; = 0. Assume tha{h; };°, represents an elemehin []  G; thatis insupp(g)
whereg = lim,, f;. We have for some se&t € w that f;(h;) > g(h)/2 ande; < g(h)/4fori € S.

It follows thata;(h;) € supp,(y),4(f) holds for everyi € S. Sincesupp,,,4 is finite we have
thatlim,, a;(h;) exists and it is an element (@ that we denote by (k). The mapg : supp(g) —
supp(f) is a partial isomorphis of arbitrary high weight and so itexds to an isomorphism from

(g9) to (f). Itis clear that3 is also an isomorphism betweg¢randg.

Corollary 7.1 Leta > 0. Assume thaf f;}5°, is a sequence of functions wifh € L>(A;) and
I fillo < afor some sequended; }$2, of compact abelian groups. {ff;}52, convergestq € H,

in the metricd then f = Q(lim,, f;) for an arbitrary (non-principal) ultrafilterw.

Proof. Since the Fourier transform ¢gf = lim,, f; is the ultra limit of the Fourier transforms ¢f

we have by theorefd 6 thdt f’, f) = 0. It follows thatQ(f') = f.

Corollary 7.2 Leta > 0. Assume thaff;}2, is a convergent sequence of functions withe
L>(4;) and || filloc < a for some sequencid; }°, of compact abelian groups. Then the limit

fof {f;}2, can be represented as a functigh: A € L°(A) where the dual group ofl is a

subgroup in[],, A;.

Proof. We have by corollarly 711 thgt= Q(lim,, f;). This means thaft has an injective embedding
into A whereA =[] 4;. By A =[], 4, the proof is complete.
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Corollary[7.2 gives a useful restriction on the structuréhefgroup on which the limit function
of a convergent segence is defined. For examplg iére growing groups of prime order then the
limit function is defined on a compact group whose dual greupiision-free. On the other hand if

pis a fix prime andf; is defined orZ;; then the limit function is defined on the compact graijp.

8 Proofs of theorems 2 13,14

For the proofs of theoref 2 and theorlem 3 assume(th&f° , is a convergent sequencefif{ K) for
some convex compact sat C C. Corollary(7.1 implies that the limit i©(f) wheref = lim,, f;.
Note thatf takes its values if. We have thaQ(f) = Q(g) whereg = E(f|F(A)). It follows
by theoreni b thayy = h o ¢ for some measure preserving homomorphism A — A and the
isomorphism class of is Q(g). Sinceg is a projection off to ac-algebra we have that(and thus
h) takes its values if. This completes the proof of theorémn 2.

For the proof of theoreill 3 assume tifats tightly convergentan& = {x : z € C, ||z|| < a}.
Then, using the above notation we have thal: = |||z = lim;— oo || fill2 = limy, || fill2 = || f]l2
where we use tightness in the second equality. This is ordgipel if f = g and thusu, = pf =
lim,, 15, holds. Since this is true for every ultrafilierwe obtain thatim; .. p1y, = ps holds with
respect to weak convergence of measures.

To prove theorernl4 assume thiahas complexityl andf; is ad convergent sequence as above.
Using the above notation and proposition 6.2 we havelithat t(Z, f;) = t(L, f) = (£, Q(f))
where (using corollary 7119( f) is equal to thei-limit of the sequencé f,}5°,. Since this is true

for every ultrafilterw the proof is complete.

9 Proof of theorem[1

For the proof of theoreil 1 we will need the next propositiorichtis interesting on its own right.

Proposition 9.1 Let B be a compact abelian group with torsion-free dual group agtdfl: B —
[0, 1] be an arbitrary measurable function. Then there are subSgts Z, for every prime number

p such that the functionks, converge tof.

Lemma 9.1 For everye there isN (¢) such that ifA is a finite abelian group with4| > N (e) and
f: A —0,1]is afunction then there is a functign: A — {0,1} such thafl| f — by, <e.

Proof. Letus fixe > 0. Let f : A — [0, 1] be a function on a finite abelian group. Lkete
the random function oml whose distribution is uniquely determined by the followipperties:
1.) his {0, 1}-valued, 2.){h(a) | a« € A} is an independent system of random variables and 3.)
E(h(a)) = f(a) holds for everyu € A. We claim that with a large probability the functién— f
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hasU, norm at most if | A| is big enough. Obsereve th&Y, := h(a) — f(a) is a random variable
for eacha € A with 0 expectation and X, || < 1. The random variableX, are all independent.
Letx : A — C be a linear character. Then we have tffat- f, x) = |[A|™' 3" .4 Xax(a). By

Chernoff’s bound we have th&(|(h — f, x)| > €2) is exponentially small inA|. This implies that
if |A| is large enough then with probability close tave have that|i — §||c < €2 and thus by

lemmd6.2 we gelth — g||v, < € holds in these cases.

Proof of propositioi 9]1. For a number: let a(n) denote the minimum of(1s, f) whereS is a
subset inZ,. The statement of the proposition is equivalent With,,_, ., a(n) = 0 wherep runs
through the prime numbers. Assume by contradiction thaktieex > 0 and a growing infinite
sequencep; };°, of prime numbers withu(p;) > €. Let A, = Z,, andA = []  A;. We have that
A= IL, A; ~ [I, Ai = A. SinceA is not only an abelian group but a field @fcharacteristic
with uncountable many elements we have tAafand thusA) as an abelian group is isomorphic to
an infinite direct sum of)*. It follows that the torsion-free group has an embedding: B — A
into A. This embedding induces a continuous homomorphsimA — B in the way thatp(z)
denotes the unique elementihsuch thaty (¢(z)) = ¢(x)(z) holds for everyy € B.

Letg = f o ¢. We have thay : A — [0, 1] is a measurable function and thys= lim,, g;
for a system of functiongg; : 4, — [0,1]}5°,. By lemma3.1 for every we can find & — 1
valued functiory; such thatim;_, . ||g; — gi||u, = 0. By choosing a subsequence we can assume
that both{g.}5°, and{g;}$°, ared-convergent. Ley’ = lim,, g;. We have thatlg — ¢'||yz, = 0
and thus sincg is measurable ioF(A) we have thay = E(¢’'|F(A)). By corollary{7.1 we obtain
that thed limit of {g;}>°, is f. This implies tha0® = lim d(g¢}, f) > liminf a(p;) > e which is a

contradiction.

Now we are ready to prove theorérh 1. First observe that ind&itpn[9.1 we can assume
with no additional cost that the sef§ have density at leadi(f). This follows from the fact that
their densities converge () and so it is enough to set a few valuesltéwith density tending
to 0). This observation together with Proposition]9.1 and thedd imply that iff : A — [0, 1]
is a measurable function witi(f) = § on an abelian group with torsion-free dual thei, £) <
t(L, f). Itremains to find a function where equality holds. For eyeprime letS, C Z, be such
that|S,|/p > d and that (£, 1s,) is minimal possible. We can choosé-@onvergent subsequence
{fi}2, from 1g, such thatim; . t(£, f;) = p(d, £). Let f be the limit of { f;}$,. By theorem
Mwe have that(L, f) = lim; .o t(L, fi) = p(d, L£). Corollary[7.2 guarantess thatis defined on

a group whose dual is torsion-free.
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10 Connection to dense graph limit theory and concluding re-
marks

Let H andG be finite graphs. The density éf in G is the probability that a random map from
V(H) to V(G) takes edges to edges. We denote this quantit{ By G). One can generalize this
notion of density for the case whe# is replaced by a symmetric bounded measurable function
W : Q2 — C where(9, 1) is a probability space. TheriH, W) is defined by

t(H,W) ::/ H W(x;, z;) du™
T1,L2,...,LnEN (i,5)€E(H)

where the verices off are indexed by{1,2,...,n}. Itis easy to check that 2 = V(G) , u is
the uniform distribution or/(G) andW : V(G)? — {0,1} is the adjacency matrix off then
t(H,G) =t(H,W).

In the framework of dense graph limit theory, a sequence aplgs{G,}:°, is called conver-
gent if for every fixed graplif the sequencét(H, G;)}:2, is convergent. It was proved if [10]
that for a convergent graph sequerc®; }:°, there is a limit object of the form of a symmetric
measurable functioh : Q2 — [0, 1] (called agraphon such that for every grapi we have
lim; o0 t(H, G;) = t(H,W).

In the above theorerf? can be chosen to H6, 1] with the uniform measure however in many
cases it is more natural to use other probability spaces. nesiigate the case whéf, i) is
a compact abelian group with the normalized Haar measure. Lgt: A — C be a bounded
measurable function and 18, : A*> — C be defined byW;(z,y) := f(z + y). As it was
pointed out in the introduction, for a finite graghthe densityt(H, W;) is equal tot(L, f) where
Ly :={z;+z; : (,j) € E(H)}. Using this correspondence and our results in this papertve g

the following theorem on graph limits.

Theorem 7 Let {f; : A, — K}, be a sequence of measurable functions on compact abelian
groups with values in a compact convexBet_ C. Assume thdim;_, . t(H, Wy, ) exists for every
graph H. Then there is a measurable functign A — K on a compact abelian groug such that

lim;_oo t(H, Wy,) = t(H, W;) holds for every grapl.

Proof. By chosing a subsequence we can assume by thédremg/that, is convergentinl with
limit f: A — K. Then by theorer1 we obtain that; ., t(Lx, fi) = t(Lx, f) holds for every
graphH. This completes the proof.

TheorentY is closely related to the resultslinl [12]. etG — [0, 1] be a mesurable function
on a compact but not necessarily commutative group. Asshatdtie technical conditiofi(g) =
f(g~1) holds for everyy € G. Then the functiodV : G2 — [0, 1] defined byW (z,y) = f(zy~?)
is symmetric. We call graphons of this type Cayley grphonsvds proved inl[[12] that limits of
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Cayley graphons are also Cayley graphons. This theoremémilat one can talk about limits
of functions on compact topological groups and the limiteabjare also functions on compact
topological groups. More complicated limit objects commipicture if in the commutative setting
when we wish for the continuity of densities of linear configfions of higher complexity. As it was
showed in[[13], this refinement of the limit concept requimesre complicated limit objects. There

are examples for functions on abelian groups convergingriotions on nilmanifolds.
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