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Limits of functions on groups
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Abstract

Our goal is to develop a limit approach for a class of problemsin additive combinatorics that

is analogous to the limit theory of dense graph sequences. Weintroduce metric, convergence and

limit objects for functions on groups and for measurable functions on compact abelian groups. As

an application we find exact minimizers for densities of linear configurations of complexity1.

1 Introduction

The so-called graph limit theory (see [10], [11], [2], [9]) gives an analytic approach to a large class

of problems in graph theory. A very active field of applications is extremal graph theory where,

roughly speaking, the goal is to find the maximal (or minimal)possible value of a graph parameter in

a given family of graphs and to study the structure of graphs attaining the extremal value. A classical

example is Turán’s theorem which implies that a triangle free graphH on 2n vertices maximizes

the number of edges ifH is the complete bipartite graph with equal color classes. Another example

is given by the Chung-Graham-Wilson theorem [3]. If we wish to minimize the density of the four

cycles in a graphH with edge density1/2 thenH has to be sufficiently quasi random. However

the perfect minimum of the problem (that is1/16) can not be attained by any finite graph but one

can get arbitrarily close to it. Such problems justify graphlimit theory where in an appropriate

completion of the set of graphs the optimum can always be attained if the extremal problem satisfies

a certain continuity property. Furthermore one can use variational principles at the exact maximum

or minimum bringing the tools of differential calculus intograph theory.

Extremal graph (and hypergraph) theory has a close connection to additive combinatorics. It is

well known that the triangle removal lemma by Szemerédi andRuzsa implies Roth’s theorem on

three term arithmetic progressions. The proof relies on an encoding of an integer sequence (or a

subset in an abelian group) by a graph that is rather similar to a Cayley graph. Such representations

of additive problems in graph theory hint at a limit theory for subsets in abelian groups that is closely

connected to graph limit theory. This new limit theory, thatis actually a limit theory for functions
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on abelian groups, was initiated by the author in [15] [16] and [13] in a rather general form. It turns

out that there is a hiararchy of limit notions correspondingto k-th order Fourier analysis where the

limit notion gets finer ask is increasing and the limit objects get more complicated. The focus of

this paper is the linear casek = 1 that was called “harmonic analytic limit” in [15]. This caseis

interesting on its own right, covers numerous important questions and is illustrative for the more

general limit concept.

We introduce metric, convergence and limit objects for subsets in abelian groups. More gen-

erally, since subsets can be represented by their characteristic functions, we study the convergence

of functions on abelian groups. This extends the range of possible applications of our approach to

problems outside additive combinatorics.

In the first part of the paper we study a metricd̂ and related convergence notion forl2 func-

tions on discrete (not necessarily commutative) groups. Itis important that the metriĉd allows us

to compare two functions defined on different groups. In chapter 3 we introduce a distanced for

measurable functionsf ∈ L2(A1), g ∈ L2(A2) defined on compact ablelian groupsA1, A2 such

thatd(f, g) := d̂(f̂ , ĝ) wheref̂ andĝ denote the Fourier transforms off andg. In additive com-

binatorics, we can use the distanced to compare subsets in finite abelian groups in the following

way. If S1 ⊆ A1 andS2 ⊆ A2 are subsets in finite abelian groupsA1 andA2 then their distance is

d(1S1
, 1S2

). This allows us to talk about convergent sequences of subsets in a sequence of abelian

groups.

A crucial property of the metricd (see theorem 2) is that it puts a compact topology on the set

of all pairs(f,A) whereA is a compact abelian group andf is a measurable function onA with

values in a fixed compact convex setK ⊂ C. As a consequence we have that any sequence of subsets

{Si ⊆ Ai}∞i=1 in finite abelian groupsAi has a convergent sub-sequence with limit object which is a

measurable function of the formf : A → [0, 1] whereA is some compact abelian group. This result

is analogous to graph limit theory where graph sequences always have convergent subsequences

with limit object which is a symmetric measurable function of the formW : [0, 1]2 → [0, 1].

The success of a limit theory depends on how many interestingparameters are continuous with

respect to the convergence notion. The parameters that are most interesting in additive combinatorics

are densities of linear configurations. A linear configuration is given by a finite set of linear forms i.e.

homogeneous linear multivariate polynomials overZ. For example a3 term arithmetic progression

is given by the linear formsa, a + b, a+ 2b. If f is a bounded measurable function on a compact

abelian groupA then we can compute the density of3-term arithmetic progressions inf as the

expected valueEa,b∈A(f(a)f(a + b)f(a + 2b)) according to the normalized Haar measure onA.

This density concept can be generalized to an arbitrary linear configurationL = {L1, L2, . . . , Lk}
and the density ofL in f is denoted byt(L, f) (see formula (1) and the following sentence.). Gowers

and Wolf introduced a complexity notion [7] for linear configurations calledtrue complexity(see
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definition 4.1 in this paper). A useful upper bound for the true complexity is the so-called Cauchy-

Schwarz complexity developed by Green and Tao in [8].

We prove the following fact (for precise formulation see theorem 4).

Theorem: If L ha true complexity at most1 then the density function ofL is continuous in the

metricd.

Examples for linear configurations of complexity1 include the3-term arithmetic progression

[8], the parallelograma, a+ b, a+ c, a+ b+ c, and the systemLH := {xi+xj : (i, j) ∈ E(H)}
whereH is an arbitrary finite graph on{1, 2, . . . , n}. The last example gives a close connection

with graph limit theory. The density ofLH in f ∈ L∞(A) is equal to the density of the graphH in

the symmetric kernelW : A × A → C defined byW (x, y) = f(x + y). Note that iff has values

in [0, 1] thenW is a graphon in the graph limit language. We will elaborate onthis connection in

chapter 10

Let L be an arbitrary linear configuration. For0 ≤ δ ≤ 1 andn ∈ N let ρ(δ, n,L) de-

note the minimal possible density ofL in subsets ofZn of size at leastδn. Let ρ(δ,L) :=

lim infp→∞ ρ(δ, p,L) wherep runs through the prime numbers. A result by Candela and Sisask

implies that thelim inf can be relaced bylim in the definition ofρ(δ,L). Note that Roth’s theorem

is equivalent with the fact thatρ(δ,L) > 0 if δ > 0 andL = {a, a+ b, a+ 2b}.

Theorem 1 LetL be a linear configuration of true complexity at most1. For every0 ≤ δ ≤ 1 we

have that

ρ(δ,L) = min
f

(t(L, f))

wheref runs through all measurable functions of the formf : A → [0, 1]withE(f) = δ on compact

abelian groupsA with torsion-free dual groups.

We emphasize that in theorem 1 we obtainρ(δ,L) as an actual minimum and thus there is some

functionfδ,L realizing the valueρ(δ). If for exampleL = {a, a + b, a + 2b} then it is easy to

deduce Roth’s theorem by using Lebesgue density theorem fora sufficiently precise approximation

of fδ,L by its projection to a large enough finite dimensional factorgroup ofA. One gets thatfδ,L

has positive3-term arithmetic progression density ifδ > 0 and thusρ(δ) > 0 holds. It would

be very interesting to find the explicit form of a minimizerfδ,L for everyδ or even to obtain any

information onfδ,L like on which abelian group it is defined?

It is important to mention that our convergence notion behaves quite differently from usual con-

vergence notions in functional analysis. There is an example for a convergent sequence of functions,

all of them defined on the circle (complex unit circle with multiplication or equivalently the quotient

groupR/Z), but the limit object exists only on the torus.
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In the proofs we will extensively use ultra limit methods. Ultralimt methods in graph and hyper-

graph regularization and limit theory were first introducedin [4]. There are two different reasons to

use these methods. One is that they seem to help to get rid of a great deal of technical difficulties

and provide cleaner proofs for most of our statements. The other reason is that they point to an

interesting connection between ergodic theory and our limit theory. The ultra productA of compact

abelian groups{Ai}∞i=1 behaves as a measure preserving system. Our limit concept can easily be

explained through a factorF(A) of A which is a variant of the so called Kronecker factor.

2 A limit notion for functions on discrete groups

For an arbitrary groupG we denote byl2(G) the Hilbert space of all functionsf : G → C such

that‖f‖22 =
∑

g∈G |f(g)|2 ≤ ∞. If f ∈ l2(G) andǫ ≥ 0 then we denote bysuppǫ(f) the set

{g : g ∈ G, |f(g)| > ǫ}| In particularsupp(f) := supp0(f) is the support off . Not that if ǫ > 0

then|suppǫ(f)| ≤ ‖f‖22/ǫ2 and thussupp(f) is a countable (potentially finite) set. We denote by

〈f〉 the subgroup ofG generated bysupp(f). It is clear that〈f〉 is a countable (potentially finite)

group.

Two functionsf1 ∈ l2(G1) andf2 ∈ l2(G2) are called isomorphic if there is a group isomor-

phismα : 〈f1〉 → 〈f2〉 such thatf1 = f2 ◦ α. Let us denote byM the isomorphism classes ofl2

functions on groups. Our goal is to define a metric space structure onM. We will need the next

group theoretic notion.

Definition 2.1 Let G1 andG2 be groups. A partial isomorphism of weightn is a bijectionφ :

S1 → S2 between two subsetsS1 ⊆ G1, S2 ⊆ G2 such thatgα1

1 gα2

2 . . . gαn
n = 1 holds if and only if

φ(g1)
α1φ(g2)

α2 . . . φ(gn)
αn = 1 for every sequencegi ∈ S1, αi ∈ {−1, 0, 1} with 1 ≤ i ≤ n.

Definition 2.2 Let f1 ∈ l2(G1) and f2 ∈ l2(G2). An ǫ-isomorphism betweenf1 and f2 is a

partial isomorphismφ : S1 → S2 of weight⌈1/ǫ⌉ between sets withsuppǫ(f1) ⊆ S1 ⊆ G1 and

suppǫ(f2) ⊆ S2 ⊆ G2 such that|f1(g)−f2(φ(g))| ≤ ǫ holds for everyg ∈ S1. We definêd(f1, f2)

as the infimum of allǫ’s such that there is anǫ-isomorphism betweenf1 andf2.

Proposition 2.1 The functiond̂ is a metric onM.

Proof. First we show that̂d(f1, f2) = 0 if and only if f1 andf2 are isomorphic. Iff1 is isomorphic

to f2 then it is clear thatd(f1, f2) = 0. For the other direction assume w.l.o.g. that‖f2‖2 ≤ ‖f1‖2.
Let αn : S1,n → S2,n be an1/n-isomorphism betweenf1 to f2 for everyn. Clearly, for every

elementg ∈ supp(f1) there are finitely many possible elements in the sequence{αn(g)}∞n=1 since

limn→∞ f2(αn(g)) = f1(g) and there are finitely many elementsh in G2 on which f2(h) >

f1(g)/2. Using that the support off1 is countable we obtain that there is a subsequence{βn} of
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{αn} such that the sequences{βn(g)} stabilize (become constant) after finitely many steps for every

g with f1(g) > 0. This defines a mapβ = limβn from supp(f1) to supp(f2). It is clear thatβ

extend to an injective homomorphism from〈f1〉 to 〈f2〉 and it satisfiesf2(β(g)) = f1(g) for every

g ∈ 〈f1〉. Using‖f2‖2 ≤ ‖f1‖2 it follows that every element insupp(f2) is in the image ofβ and

soβ is a value preserving isomorphism between〈f1〉 and〈f2〉.
It remains to check the triangle inequality for the metricd. Assume thatα : S1 → S2 is anǫ

isomorphism betweenf1 andf2 and assume thatβ : S′
2 → S3 is anǫ′ isomorphism betweenf2 and

f3. Without loss of generality we can assume (by reversing arrows if necessary) thatǫ′ ≥ ǫ. We

have the following inclusions:

β−1(suppǫ′+ǫ(f3)) ⊆ β−1(suppǫ′(f3)) ⊆ β−1(S3) = S′
2,

β−1(suppǫ′+ǫ(f3)) ⊆ suppǫ(f2) ⊆ S2,

α(suppǫ′+ǫ(f1)) ⊆ suppǫ′(f2) ⊆ S2 ∩ S′
2.

Let T2 = β−1(suppǫ′+ǫ(f3)) ∪ suppǫ′(f2) (note thatT2 ⊆ S2 ∩ S′
2) and letT1 = α−1(T2),

T3 = β(T2). We have thatsuppǫ′+ǫ(f1) ⊆ T1 andsuppǫ′+ǫ(f3) ⊆ T3. Let γ : T1 → T3 be the

restriction ofβ ◦α to T1. To complete the proof of the triangle inequality we show that γ is anǫ′+ ǫ

isomorphism. We have thatγ is a bijection and that|f1(g1) − f3(γ(g1))| ≤ ǫ′ + ǫ holds for every

g ∈ T1. It remains to check thatγ is a partial isomorphism of weight⌈1/(ǫ′ + ǫ)⌉. This follows

form the fact that the composition of a partial isomorphism of weightn and a partial isomorphism

of weightm is a partial isomorphism of weightmin(n,m). However the minimum of⌈1/ǫ⌉ and

⌈1/ǫ′⌉ is at least⌈1/(ǫ′ + ǫ)⌉.

Lemma 2.1 Assume that a sequence{fi}∞i=1 of l2 functions on abelian groups converge in̂d to

f ∈ l2(G) then〈f〉 is also abelian.

Proof. Let g1, g2 ∈ supp(f) be two elements. Letǫ = min(f(g1)/2, f(g2)/2, 1/4). Then by

convergence offi there is an indexi such that there is anǫ-isomorphismφ betweenf andfi. Since

g1, g2 ∈ suppǫf we have thatφ is defined ong1, g2 andφ(g1)φ(g2)φ(g1)−1φ(g2)
−1 = 1 implies

thatg1g2g
−1
1 g−1

2 = 1 becauseǫ < 1/4.

For every real numbera > 0 let Ma denote the subset ofM consisting of equivalence classes

of functionsf ∈ l2(G) with ‖f‖2 ≤ a.

Proposition 2.2 The metric space(Ma, d̂) is compact for everya > 0.

Let Fr denote the free group inr generators. We will need the next lemma.

Lemma 2.2 Assume that{Gn}∞n=1 is a sequence of groups and for everyn we have a sequence of

elements{gn,i}∞i=1 in Gn. Then there is a sequence of elements{gi}∞i=1 in some groupG and a set
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S ⊆ N such that for everyr ∈ N and wordw ∈ Fr there is a natural numberNw such that ifk ∈ S

andk > Nw thenw(gk,1, gk,2, . . . , gk,r) = 1 if and only ifw(g1, g2, . . . , gr) = 1.

Proof. Let {w1}∞i=1 be an arbitrary ordering of the words in∪∞
r=1Fr with wi ∈ Fri . We con-

struct a sequence of infinite subsetsSi ⊆ N in a recursive way. Assume thatS0 = N. If Si−1 is

already constructed then we constructSi in a way thatSi is an infinite subset inSi−1 and either

wi(gs,1, gs,2, . . . , gs,ri) = 1 holds for everys ∈ Si or wi(gs,1, gs,2, . . . , gs,ri) 6= 1 holds for every

s ∈ Si. This can be clearly achieved sinceSi−1 is infinite. We then chose a sequence{si}∞i=1

such thatsi ∈ Si andsi < sj hold for every pairi < j. We obtain for{si}∞i=1 that for every

r ∈ N and wordw ∈ Fr eitherw(gsi,1, gsi,2, . . . , gsi,r) = 1 holds with finitely many exceptions

orwr(gsi,1, gsi,2, . . . , gsi,r) 6= 1 holds with finitely many exceptions. LetW denotes the collection

of words for which the first case holds. LetG be the group with generators{gi}∞i=1 and relations

{w(g1, g2, . . . , gr) = 1|r ∈ N, w ∈ Fr ∩ W}. It is clear form the construction ofW that every

relation thatG satisfies in its generators is already listed inW . This follows from the fact that if a

wordw is not inW then for an arbitrary finite subsetW ′ in W there is a witness among the groups

Gsi in whichw does not hold but all words inW ′ hold. Now we have thatS = {si}∞i=1 andG with

{gi}∞i=1 satisfies the lemma.

Proof of proposition 2.2. Let {fn : Gn → C}∞n=1 be a sequence of functions ofl2 norm at

mosta. For everyn let {gn,i}∞i=1 be an ordering of the elements insupp(fn) is such a way that

fn(gn,i) ≥ fn(gn,j) wheneveri < j. (if fn is defined on a finite group then, to make the list infinite,

we can extend it to an infinite group containingGn with 0 values outsideGn.) Let S ⊆ N, G and

{gi}∞i=1 be chosen for the sequences{gn,i}∞i=1 according to lemma 2.2. LetS′ ⊆ S be an infinite

subset ofS suchai := limn→∞,n∈S′ fn(gn,i) exists for everyi ∈ N. Now we define the function

f : G → C such thatf(gi) = ai inside the set{gi}∞i=1 andf(g) = 0 for the rest of the elements.

It is clear thatf is well defined sincegn,i 6= gn,j holds for everyn if i 6= j and thusgi 6= gj. It is

clear that‖f‖2 ≤ lim infn∈S′ ‖fn‖2 and thus‖f‖2 ≤ a.

To create anǫ-isomorphism betweenf andfn (if n ∈ S′ is big enough) we consider the sets

Tn = {gn,i : i ≤ a2/ǫ2} and the setT = {gi : i ≤ a2/ǫ2}. Let αn : Tn → T be the bijection

defined byαn(gn,i) = gi. It is clear thatsuppǫ(fn) ⊆ Tn holds for everyn and thatsuppǫ(f) ⊆ S.

The construction guarantees that|fn(g)− f(αn(g)| ≤ ǫ holds ifn ∈ S′ is big enough. Furthermore

the property given by lemma 2.2 shows thatαn is a partial isomorphism of weightm for an arbitrary

m ∈ N if n ∈ S′ is big enough. This completes the proof.
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3 Convergence notions on compact Abelian groups

Compact abelian groups in this paper will be assumed to be second countable. In this case the dual

group is always countable. For a compact abelian groupG we denote byL2(G) the Hilbert space of

Borel measurable complex valued functionsf onG with
∫

|f |2 dµ ≤ ∞ whereµ is the normalized

Haar measure.

Let f1 ∈ L2(G1) andf2 ∈ L2(G2) be functions on the compact abelian groupsG1 andG2. We

say thatf1, f2 are isomorphic if there is a third functionf3 ∈ L2(G3) and continuous epimorphisms

αi : Gi → G3 for i = 1, 2 such thatf3(αi(g)) = fi(g) holds for almost everyg with respect to the

Haar measure inGi.

For a functionf ∈ L2(G) on a compact abelian group we denote byf̂ : Ĝ → C the Fourier

transform off where the discrete group̂G is the dual ofG. It is clear thatf1 ∈ L2(G1) is isomorphic

to f2 ∈ L2(G2) if and only if f̂1 is isomorphic tof̂2 in the sense of chapter 2.

Let H denote the set of isomorphism classes of Borel measurableL2 functions on compact

Abelian groups. We introduce the distanced onH by d(f1, f2) := d̂(f̂1, f̂2). The metricd induces

a convergence notion onH. If we say{fi}∞i=1 is convergent then we mean convergence ind if not

stated explicitly in which other meaning it is convergent. LetHa denote the set of functions inH
with L2-norm at mosta. Using the fact that Fourier transform preserves theL2-norm we have by

lemma 2.1 and proposition 2.2 the following statement.

Proposition 3.1 (Ha, d) is a compact metric space for everya > 0.

For a setK ⊆ C let H(K) denote the set of functions inH which take values inK. We will

prove the next theorem.

Theorem 2 If K ⊆ C is a compact convex set then(H(K), d) is a compact metric space.

Corollary 3.1 IF {fi}∞i=1 is a sequence of{0, 1} valued functions inH converging tof in the

metricd then the values off are in the interval[0, 1].

Theorem 2 is somewhat surprising. The metricd is given in terms of Fourier transforms however

it is not trivial to relate the set of values of a function to the properties of its Fourier transform. The

condition thatK is convex turns out to be necessary in theorem 2. Corollary 3.1 is useful when

we study limits of sets in abelian groups by the limits of their characteristic functions. We give the

proof of theorem 2 in a later chapter.

We say that a sequence{fi}∞i=1 in H is tightly convergentif it converges ind and the limitf

satisfieslimi→∞ ‖fi‖2 = ‖f‖2. Tight convergence can be metrized by the distance

d′(f1, f2) := d(f1, f2) + |‖f1‖2 − ‖f2‖2|.
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Convergence ind′ is stronger than convergence ind and it has stronger consequences. To formulate

our result we need the following notation. For a measurable functionf on a compact abelian groupA

we denote byµf the probability distribution off(x) wherex is chosen randomly fromA according

to the Haar measure. The measureµf is a Borel probability distribution onC.

Theorem 3 Let {fi}∞i=1 be a sequence of uniformly bounded functions inH converging tof in d′.

Thenµfi converges toµf in the weak topology of measures.

Note that the above theorem is not true for convergence ind. A trivial example for a tightly

convergent sequence is anL2-convergent sequence of functions on a fixed compact abeliangroupA.

However there are more interesting examples. We finish this chapter with an example which shows

that a sequence ofL2 functions on the circle groupR/Z can have a limit (even ind′) which can not

be defined on the circle group. The limit object exists on the torus. Letfn(x) = e2iπx + e2inπx

defined onR/Z for n ∈ N. It is easy to see thatfn is convergent and the limit is the function

f = e2iπx + e2iπy on the torusR/Z × R/Z. Note that the sequencefn is tightly convergent since

‖fn‖2 = ‖f‖2 =
√
2.

4 Densities of linear configurations in functions on Abeliangroups

A linear form is a homogeneous linear multivariate polynomial with coefficients inZ. If L =

λ1x1 + λ2x2 + . . .+ λnxn is a linear form then we can evaluate it in an arbitrary abelian groupA

by giving values fromA to the variablesxi and thus it becomes a function of the formL : An → A.

A systemL1, L2, . . . , Lk of linear forms determines a type of linear configuration. Anexample

for a linear configuration is the3-term arithmetic progression which is encoded by the linearforms

x1, x1 + x2, x1 + 2x2. Assume thatA is a compact abelian group andF = {fi}ki=1 is a system

of bounded measurable functions inL∞(A). Assume furthermore thatL = {L1, L2, . . . , Lk} is a

sytem of linear forms inZ(x1, x2, . . . , xn). Then it is usual to define the density of the configuration

L in F by the formula

t(L,F) := Ex1,x2,...,xn∈A

k
∏

i=1

fi(Li(x1, x2, . . . , xn)). (1)

If fi = f for every1 ≤ i ≤ k in the function systemF then we use the notationt(L, f) for

t(L,F).

In this chapter we address the following type of problem.

Assume thatL = {L1, L2, . . . , Lk} is a linear configuration andA is a class of compact abelian

groups. Under what conditions onL andA is the functionf 7→ t(L, f) continuous in the metricd

when functions are assumed to be uniformly bounded measurable functions on groups inA ?
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The role of the classA is to exclude certain degeneracies that occur for number theoretic reasons.

For example the linear form2x becomes degenerated on the elementary abelian group(Z/2Z)m.

We will need the following definition introduced by Gowers and Wolf in a slightly different form in

[7].

Definition 4.1 LetL = {L1, L2, . . . , Lk} be a linear configuration. Thetrue complexity of L in

a classA of abelian groups is the smallest numberm ∈ N with the following property. For every

ǫ > 0 there existsδ > 0 such that ifA ∈ A is any abelian group andF = {fi}ki=1 is a system of

measurable functions with|fi| ≤ 1 and‖fj‖Um+1
≤ δ for somej thent(L,F) ≤ ǫ.

In the above definition‖.‖Um+1
denotes Gowers’sm+1-th uniformity norm. Our main theorem

states is the following.

Theorem 4 Let a > 0. Let L be a linear configuration andA be a family of compact abelian

groups such thatL has true complexity at most1 in A. Thenf → t(L, f) is continuous with respect

to the metricd for measurable functionsf ∈ L∞(A) with A ∈ A and|f | ≤ a.

5 Ultra products and ultralimits

Let ω be a non principal ultra filter on the natural numbers. Let{Xi}∞i=1 be a sequnece of sets.

For two elementsx = (x1, x2, . . .) and y = (y1, y2, . . .) in the product
∏∞

i=1 Xi we say that

x ∼ω y if {i | xi = yi} ∈ ω. It is well known that∼ω is an equivalence relation. The set
∏

ω Xi :=
(
∏∞

i=1 Xi

)

/ ∼ω is called theultraproductof the setsXi.

Let T be a compact Hausdorrf topological space and let{ti}∞i=1 be a sequence inT . The

ultralimit limω ti is the unique pointt in T with the property that for every open setU containing

t the set{i | ti ∈ U} is in ω. Let {fi : Xi → T }∞i=1 be a sequence of functions. We define

f = limω fi as the function on
∏

ω Xi whose value on the equivalence class of{xi ∈ Xi}∞i=1 is

limω fi(xi).

Let {Xi, µi}∞i=1 be pairs whereXi is a compact Hausdorff space andµi is a probability measure

on the Borel sets ofXi. We denote byX the ultra product space
∏

ω Xi. The spaceX has the

following structures on it.

Strongly open sets:We call a subset ofX strongly open if it is the ultra product of open sets

{Si ⊂ Xi}∞i=1.

Open sets:We say thatS ⊂ X is open if it is a countable union of strongly open sets. Open

sets onX form aσ-topology. This is similar to a topology but it has the weakeraxiom that only

countable unions of open sets are required to be open. It can be proved thatX with thisσ-topology

is countably compact. This means that ifX is covered by countably many open sets then there is a

finite sub-system which coversX.
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Borel sets:A subset ofX is called Borel if it is in theσ-algebra generated by strongly open sets.

Ultra limit measure:If S ⊆ X is a strongly open set of the formS =
∏

ω Si then we defineµ(S)

aslimω µi(Si). It is well known thatµ extends as a probability measure to theσ-algebra of Borel

sets onX.

Ultra limit functions: Let T be a compact Hausdorff topological space. Let{fi : Xi → T }∞i=1 be

a sequence of Borel measurable functions. We call functionsof the formf = limω fi ultra limit

functions. It is easy to see that ultra limit functions can always be modified on a0 measure set that

they becomes measurable in the Borelσ-algebra onX. This means that ultra limit functions are

automatically measurable in the completion of the Borelσ-algebra.

Measurable functions:It is an important fact (see [4]) that every bounded measurable function on

X is almost everywhere equal to some ultra limit functionf = limω fi.

Continuity:A functionf : X → T fromX to a topological spaceT is called continuous iff−1(U)

is open inX for every open set inT . If T is a compact Hausdorff topological space thenf is

continuous if and only if it is the ultra limit of continuous functionsfi : Xi → T . Furthermore the

image ofX in a compact Hausdorff spaceT under a continuous map is compact.

6 The Fourier σ-algebra

If A is a compact Abelian group then linear characters are continuous homomrphisms of the form

χ : A → C whereC is the complex unit circle with multiplication as the group operation. Note that

on compact abelian groups we typically use+ as the group operation. However if we think ofC as

a subset ofC then we are forced to use multiplicativ notation. On the other hand, if we think ofC

as the groupR/Z then we are basically forced to use additive notation.

Linear characters are forming the Fourier basis inL2(A). In particular linear characters generate

the whole Borelσ-algebra onA. Assume now thatA =
∏

ω Ai is the ultraproduct of compact

abelian groups. Linear characters ofA can be similarly defined as for compact abelian groups. In

this case we require them to be continuous in theσ-topology onA.

Proposition 6.1 A functionχ ∈ L∞(A) is a linear character if and only ifχ = limω χi for some

sequence{χi ∈ L∞(Ai)}∞i=1 of linear characters.

The proof of the lemma relies on a rigidity result saying thatalmost linear characters on compact

groups can be corrected to proper characters.

Lemma 6.1 For everyǫ > 0 there isδ > 0 such that iff : A → C is a continuous function

on a compact abelian groupA with the property that|f(x + a)f∗(x) − f(y + a)f∗(y)| ≤ δ ,
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||f(x)| − 1| ≤ δ for everyx, y, a ∈ A and|f(0)− 1| ≤ δ then there is a characterχ ofA such that

|χ(x)− f(x)| ≤ ǫ holds for everyx ∈ A.

Proof. As a tool we introduce group theoretic expected values of random variables taking values in

C. Let l denote the arc length metric on the circle groupC ≃ R/Z normalized by the total length2π.

It is clear that the metricl is topologically equivalent with the complex metric|x− y| onC. Assume

that a random variableX takes its values in an arc of the circle group of length1/3. Then there is a

lift Y of X to R such thatY + Z = X andY takes its values in an interval of length1/3. The lift

Y with this property is unique up to an integer shift. Then we defineE(X) ∈ R/Z asE(Y ) + Z.

Switching to multiplicative notation inC this expected value satisfiesE(X1X2) = E(X1)E(X2)

whereX1, X2 take values in an arc of length1/6.

Let us definef2(x) = f(x)/|f(x)|. If δ < 1 thenf(x) 6= 0 onA and thusf2 is defined onA.

If δ > 0 is small enough then for every fixedt the functionx 7→ f(x + t)f∗(x) takes values in an

arc of length at most1/6. For everyt ∈ A let g(t) = Ex(f(x + t)f∗(x)) whereE is the group

theoretic expected value. Ifδ is small enough then|g(t)− f(t)| ≤ ǫ holds for everyt ∈ A because

|f(x + t)f∗(x) − f(t)f∗(0)| ≤ δ andf(0) is close to1. Using our multiplicativity property ofE

we have for every paira, b ∈ A that

g(a+ b)g∗(b) = Ex(f(x+ a+ b)f∗(x)f∗(x+ b)f(x)) = Ex(f(x+ a+ b)f∗(x+ b)) =

= Ex((x+ a)f∗(x)) = g(a).

This implies thatg is a linear character ofA.

Now we are ready to prove proposition 6.1

Proof. The continuity ofχ guarantees thatχ = limω fi for some sequence of continuous functions

fi onAi. The fact thatχ is a character implies that there is a sequenceδi such thatfi satisfies the

conditions of lemma 6.1 withδi for everyi andlimω δi = 0. It follows by lemma 6.1 that there is

a sequence of linear charactersχi on Ai such thatlimω max(|χi − fi|) = 0. Thus we have that

limω χi = limω fi = χ.

Proposition 6.1 implies that the set of linear characters ofA (also as a group) is equal to
∏

ω Âi.

We denote this set bŷA. If f ∈ L2(A) then the Fourier transform off on A is the function

f̂ ∈ l2(Â) defined byf̂(χ) = (f, χ). If f = limω fi then we have that̂f = limω f̂i.

It was observed in [14] that linear characters ofA no longer spanL2(A). This shows that in

general we only have‖f̂‖2 ≤ ‖f‖2 instead of equality. Furthermore theσ-algebraF(A) generated

by linear characters onA is smaller than the whole ultraproductσ-algebra onA. (The only excep-

tion is the case whenA is a finite group. This can happen if the groupsAi are finite and there is a

uniform bound on their size.)
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We call F(A) the Fourier σ-algebra on A. The fact that the Fourierσ-algebra is not the

completeσ-algebra onA gives rise to the interesting operationf 7→ E(f |F(A)) that isolates the

“Fourier part” of a functionf ∈ L2(A). Using that linear characters ofA are closed with respect to

multiplication we obtain that linear characters are forming a basis inL2(F(A)). This implies that if

f ∈ L2(A) thenf̂ = ĝ whereg = E(f |F(A)). Thus we have that‖f̂‖2 = ‖ĝ‖2 = ‖E(f |F(A))‖2.

In particular‖f‖2 = ‖f̂‖2 holds if and only iff is measurable inF(A).

The Fourierσ-algebra has an elegant description in terms of the second Gowers normU2. Recall

that theU2 norm [5],[6] of a functionf ∈ L∞(A) on a compact abelian groupA is defined by

‖f‖U2
=

(

Ex,a,b∈Af(x)f(x+ a)∗f(x+ b)∗f(x+ a+ b)
)1/4

. (2)

The next lemma gives a description of theU2-norm in terms of Fourier analysis.

Lemma 6.2 If f ∈ L∞(A) then‖f‖U2
= ‖f̂‖4 and thus‖f̂‖∞ ≤ ‖f‖U2

≤ (‖f‖2‖f̂‖∞)1/2.

One can define‖f‖U2
by the formula (2) for functions on ultraproduct groups. With this def-

inition we have that‖f‖U2
= limω ‖fi‖U2

wheneverf = limω fi. The main differnece from the

compact case is that‖.‖U2
is no longer a norm for functions inL∞(A). It is only a semi-norm.

However the next lemma shows that‖.‖U2
is a norm when restricted toL∞(F(A)) and thatF(A)

is the largestσ-algebra with this property.

Lemma 6.3 If g ∈ L∞(A) then‖g‖U2
= 0 if and only ifg is orthogonal toL2(F(A)). A function

f ∈ L∞(A) is measurable inF(A) if and only iff is orthogonal to every functiong ∈ L∞(A)

with ‖g‖U2
= 0. In particular we have that‖.‖U2

is a norm onL∞(F(A)).

Proof. We can assume thatg = limω gi for some sequence of functions{gi ∈ L∞(Ai)}∞i=1 such

that ‖gi‖∞ ≤ ‖g‖∞ holds for everyi. Assume first that‖g‖U2
= 0. Let χ = limω χi be an

ultralimit of linear characters. Using lemma 6.2 we have that |(gi, χi)| ≤ ‖ĝi‖∞ ≤ ‖gi‖U2
and thus

|(g, χ)| = lim
ω

|(gi, χi)| ≤ lim
ω

‖gi‖U2
= ‖g‖U2

= 0.

It follows thatg is orthogonal to the spaceL2(F(A)) spanned by linear characters ofA. For the

other direction assume thatg 6= 0 is orthogonalL2(F(A)). For everyi we choose a linear character

χi onAi such that|(gi, χi)| = ‖ĝi‖∞. We have by lemma 6.2 and by‖gi‖2 ≤ ‖gi‖∞ ≤ ‖g‖∞ that

|(gi, χi)| ≥ ‖gi‖2U2
‖g‖−1

∞ . Then we have forχ = limω χi that0 = |(g, χ)| ≥ (limω ‖gi‖2U2
)‖g‖−1

∞ .

It follows that‖g‖U2
= 0.

To complete the proof assume thatf ∈ L∞(A) is orthogonal to everyg ∈ L∞(A) with ‖g‖U2
=

0. Let g := f − E(f |F(A)) ∈ L∞(A). Note that sinceE is an orthogonal projection it follows

that (f, g) = ‖g‖22. We have thatg is orthogonal toL2(F(A)) and so‖g‖U2
= 0. It implies that

(f, g) = 0 but that is only possible ifg = 0 andf = E(f |F(A)).
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Let Q̂ : L2(A) → M be such that̂Q(f) is the isomorphism class of̂f in M. Let furthermore

Q(f) denote the isomorphism class inH representing the Fourier transform ofQ̂(f). Note that

Q(f) = Q(E(f |F(A))). We have thatQ(f) can be represented as a measurable function on some

second countable compact abalian group with‖Q(f)‖2 ≤ ‖f‖2 which in some sense imitatesf .

However it is not even clear from this definition that iff is a bounded function thenQ(f) is also

bounded. The next theorem provides a structure theorem for functions inL∞(F(A)) and describes

Q(f).

Theorem 5 A functionf ∈ L∞(A) is measurable inF(A) if and only if there is a continuous,

surjective, measure preserving homomorphismφ : A → A to some second countable compact

abelian groupA and a functionh ∈ L∞(A) such thatf = h ◦ φ (up to 0 measure change).

Furthermored(h,Q(f)) = 0 implying that the isomorphism class ofh isQ(f).

Proof. Assume first thatf = h ◦ φ for some homomorphismφ and functionh as in the statement.

Leth =
∑∞

i=1 λiχi be the Fourier decomposition ofh converging inL2(A) whereχi is a sequence

of linear characters ofA. We have thatχi ◦ φ is a linear character ofA for everyi. The measure

preserving property ofφ implies thatf =
∑∞

i=1 λi(χi ◦ φ) and thusf is measurable inF(A).

For the other direction assume thatf ∈ L∞(F(A)). Thenf =
∑∞

i=1 aiχi for some (distinct)

linear characters{χi}∞i=1 of A where the convergence is inL2 and‖f‖22 =
∑∞

i=1 |ai|2. Let us

consider the homomorphismφ : A → C∞ such that thei-th coordinate ofφ(x) = χi(x). Using the

continuity ofφ we have that the imageA of φ is a closed subgroup inC∞. Let ν denote the Borel

measure onA satisfyingν(S) = µ(φ−1(S)) whereµ is the ultralimit measure onA. The fact that

φ is a homomorphism implies thatν is a group invariant Borel probability measure onA and thusν

is equal to the normalized Haar measure. In other wordsφ is measure preserving with respect to the

Haar measure onA.

Let us denote byαi thei-th coordinate function onA. It is clear that{αi}∞i=1 is a system of linear

characters ofA. Sinceφ is surjective it induces an injective homomorphismφ̂ : Â → Â defined by

φ̂(χ) = χ ◦ φ with the property that̂φ(αi) = χi holds for everyi. We have thath =
∑∞

i=1 aiαi

(which is defined up to a0 measure set onA) is convergent inL2 and has the property thatf = h◦φ
(up to a0 measure set). The fact thatφ̂ is an injective homomorphism implies thatd̂(ĥ, f̂) = 0 and

thusd(h,Q(f)) = 0.

If L is a system of linear forms andf ∈ L∞(A) then we can definet(L, f) by the formula (1)

using the ultralimit measure onA.

Proposition 6.2 Let f ∈ L∞(F(A)) and letL be a system of linear forms. Thent(L, f) =

t(L,Q(f)). Furthermore ifL has complexity1 in a familyA of compact abelian groups,A is an

ultraproduct of groups inA andf ∈ L∞(A) thent(L, f) = t(L,Q(f)).
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Proof. For the first part we use theorem 5. We get thatf = h ◦ φ for some measure preserving

homomorphsimφ : A → A. It follows that t(L, f) = t(L, h) = t(L,Q(f)). For the sencond

part letf = limω fi andg = E(f |F(A)) = limω gi for some functions with‖fi‖∞ ≤ ‖f‖∞ and

‖gi‖∞ ≤ ‖g‖∞. We have thatlimω ‖fi−gi‖U2
= ‖f−g‖U2

= 0. Then using thatL has complexity

1 we obtaint(L,Q(f)) = t(L,Q(g)) = t(L, g) = limω t(L, gi) = limω t(L, fi) = t(L, f).

7 The ultraproduct descriptions of d̂ and d convergence

We give a simple and useful description ofd̂-convergenceusing ultrafilters. The price that we pay for

the simplicity is that we don’t get an explicit metric onM, we only get the concept of convergence.

Theorem 6 Let a > 0. Assume that{fi}∞i=1 is a sequence inMa that converges tof in d̂ thenf

is isomorhic tolimω fi for every (non-principal) ultrafilterω. Consequently a sequence{fi}∞i=1 in

Ma is convergent in̂d if and only if the isomorphism class oflimω fi-limit doesn’t depend on the

choice of the ultra filterω.

Proof. For everyi let αi : Ti → Si be anǫi-isomorphism betweenfi andf with Ti ⊆ Gi, Si ⊆ G

such thatlimi→∞ ǫi = 0. Assume that{hi}∞i=1 represents an elementh in
∏

ω Gi that is insupp(g)

whereg = limω fi. We have for some setS ∈ ω thatfi(hi) > g(h)/2 andǫi ≤ g(h)/4 for i ∈ S.

It follows thatαi(hi) ∈ suppg(h)/4(f) holds for everyi ∈ S. Sincesuppg(h)/4 is finite we have

that limω αi(hi) exists and it is an element inG that we denote byβ(h). The mapβ : supp(g) →
supp(f) is a partial isomorphis of arbitrary high weight and so it extends to an isomorphism from

〈g〉 to 〈f〉. It is clear thatβ is also an isomorphism betweenf andg.

Corollary 7.1 Let a > 0. Assume that{fi}∞i=1 is a sequence of functions withfi ∈ L∞(Ai) and

‖fi‖∞ ≤ a for some sequence{Ai}∞i=1 of compact abelian groups. If{fi}∞i=1 converges tof ∈ Ha

in the metricd thenf = Q(limω fi) for an arbitrary (non-principal) ultrafilterω.

Proof. Since the Fourier transform off ′ = limω fi is the ultra limit of the Fourier transforms offi

we have by theorem 6 that̂d(f̂ ′, f̂) = 0. It follows thatQ(f ′) = f .

Corollary 7.2 Let a > 0. Assume that{fi}∞i=1 is a convergent sequence of functions withfi ∈
L∞(Ai) and ‖fi‖∞ ≤ a for some sequence{Ai}∞i=1 of compact abelian groups. Then the limit

f of {fi}∞i=1 can be represented as a functionf : A ∈ L∞(A) where the dual group ofA is a

subgroup in
∏

ω Âi.

Proof. We have by corollary 7.1 thatf = Q(limω fi). This means that̂f has an injective embedding

into Â whereA =
∏

ω Ai. By Â =
∏

ω Âi the proof is complete.
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Corollary 7.2 gives a useful restriction on the structure ofthe group on which the limit function

of a convergent seqence is defined. For example ifAi are growing groups of prime order then the

limit function is defined on a compact group whose dual group is torsion-free. On the other hand if

p is a fix prime andfi is defined onZi
p then the limit function is defined on the compact groupZ∞

p .

8 Proofs of theorems 2, 3, 4

For the proofs of theorem 2 and theorem 3 assume that{fi}∞i=1 is a convergent sequence inH(K) for

some convex compact setK ⊆ C. Corollary 7.1 implies that the limit isQ(f) wheref = limω fi.

Note thatf takes its values inK. We have thatQ(f) = Q(g) whereg = E(f |F(A)). It follows

by theorem 5 thatg = h ◦ φ for some measure preserving homomorphismφ : A → A and the

isomorphism class ofh isQ(g). Sinceg is a projection off to aσ-algebra we have thatg (and thus

h) takes its values inK. This completes the proof of theorem 2.

For the proof of theorem 3 assume thatfi is tightly convergent andK = {x : x ∈ C, ‖x‖ ≤ a}.

Then, using the above notation we have that‖g‖2 = ‖h‖2 = limi→∞ ‖fi‖2 = limω ‖fi‖2 = ‖f‖2
where we use tightness in the second equality. This is only possibel iff = g and thusµh = µf =

limω µfi holds. Since this is true for every ultrafilterω we obtain thatlimi→∞ µfi = µh holds with

respect to weak convergence of measures.

To prove theorem 4 assume thatL has complexity1 andfi is ad convergent sequence as above.

Using the above notation and proposition 6.2 we have thatlimω t(L, fi) = t(L, f) = t(L,Q(f))

where (using corollary 7.1)Q(f) is equal to thed-limit of the sequence{fi}∞i=1. Since this is true

for every ultrafilterω the proof is complete.

9 Proof of theorem 1

For the proof of theorem 1 we will need the next proposition which is interesting on its own right.

Proposition 9.1 LetB be a compact abelian group with torsion-free dual group and let f : B →
[0, 1] be an arbitrary measurable function. Then there are subsetsSp ⊆ Zp for every prime number

p such that the functions1Sp
converge tof .

Lemma 9.1 For everyǫ there isN(ǫ) such that ifA is a finite abelian group with|A| ≥ N(ǫ) and

f : A → [0, 1] is a function then there is a functionh : A → {0, 1} such that‖f − h‖U2
≤ ǫ.

Proof. Let us fix ǫ > 0. Let f : A → [0, 1] be a function on a finite abelian group. Leth be

the random function onA whose distribution is uniquely determined by the followingproperties:

1.) h is {0, 1}-valued, 2.){h(a) | a ∈ A} is an independent system of random variables and 3.)

E(h(a)) = f(a) holds for everya ∈ A. We claim that with a large probability the functionh − f
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hasU2 norm at mostǫ if |A| is big enough. Obsereve thatXa := h(a) − f(a) is a random variable

for eacha ∈ A with 0 expectation and‖Xa‖∞ ≤ 1. The random variablesXa are all independent.

Let χ : A → C be a linear character. Then we have that(h − f, χ) = |A|−1
∑

a∈AXaχ(a). By

Chernoff’s bound we have thatP(|(h− f, χ)| ≥ ǫ2) is exponentially small in|A|. This implies that

if |A| is large enough then with probability close to1 we have that‖ĥ − ĝ‖∞ ≤ ǫ2 and thus by

lemma 6.2 we get‖h− g‖U2
≤ ǫ holds in these cases.

Proof of proposition 9.1. For a numbern let a(n) denote the minimum ofd(1S , f) whereS is a

subset inZn. The statement of the proposition is equivalent withlimp→∞ a(n) = 0 wherep runs

through the prime numbers. Assume by contradiction that there is ǫ > 0 and a growing infinite

sequence{pi}∞i=1 of prime numbers witha(pi) > ǫ. LetAi = Zpi
andA =

∏

ω Ai. We have that

Â =
∏

ω Âi ≃
∏

ω Ai = A. SinceA is not only an abelian group but a field of0 characteristic

with uncountable many elements we have thatA (and thusÂ) as an abelian group is isomorphic to

an infinite direct sum ofQ+. It follows that the torsion-free group̂B has an embeddinĝφ : B̂ → Â

into Â. This embedding induces a continuous homomorphsimφ : A → B in the way thatφ(x)

denotes the unique element inB such thatχ(φ(x)) = φ̂(χ)(x) holds for everyχ ∈ B̂.

Let g = f ◦ φ. We have thatg : A → [0, 1] is a measurable function and thusg = limω gi

for a system of functions{gi : Ai → [0, 1]}∞i=1. By lemma 9.1 for everyi we can find a0 − 1

valued functiong′i such thatlimi→∞ ‖g′i − gi‖U2
= 0. By choosing a subsequence we can assume

that both{g′i}∞i=1 and{gi}∞i=1 ared-convergent. Letg′ = limω g′i. We have that‖g − g′‖U2
= 0

and thus sinceg is measurable inF(A) we have thatg = E(g′|F(A)). By corollary 7.1 we obtain

that thed limit of {g′i}∞i=1 is f . This implies that0 = lim d(g′i, f) ≥ lim inf a(pi) ≥ ǫ which is a

contradiction.

Now we are ready to prove theorem 1. First observe that in Proposition 9.1 we can assume

with no additional cost that the setsSp have density at leastE(f). This follows from the fact that

their densities converge toE(f) and so it is enough to set a few values to1 (with density tending

to 0). This observation together with Proposition 9.1 and theorem 1 imply that iff : A → [0, 1]

is a measurable function withE(f) = δ on an abelian group with torsion-free dual thenρ(δ,L) ≤
t(L, f). It remains to find a function where equality holds. For everyp prime letSp ⊆ Zp be such

that|Sp|/p ≥ δ and thatt(L, 1Sp
) is minimal possible. We can choose ad-convergent subsequence

{fi}∞i=1 from 1Sp
such thatlimi→∞ t(L, fi) = ρ(δ,L). Let f be the limit of{fi}∞i=1. By theorem

1 we have thatt(L, f) = limi→∞ t(L, fi) = ρ(δ,L). Corollary 7.2 guarantess thatf is defined on

a group whose dual is torsion-free.
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10 Connection to dense graph limit theory and concluding re-

marks

Let H andG be finite graphs. The density ofH in G is the probability that a random map from

V (H) to V (G) takes edges to edges. We denote this quantity byt(H,G). One can generalize this

notion of density for the case whenG is replaced by a symmetric bounded measurable function

W : Ω2 → C where(Ω, µ) is a probability space. Thent(H,W ) is defined by

t(H,W ) :=

∫

x1,x2,...,xn∈Ω

∏

(i,j)∈E(H)

W (xi, xj) dµn

where the verices ofH are indexed by{1, 2, . . . , n}. It is easy to check that ifΩ = V (G) , µ is

the uniform distribution onV (G) andW : V (G)2 → {0, 1} is the adjacency matrix ofG then

t(H,G) = t(H,W ).

In the framework of dense graph limit theory, a sequence of graphs{Gi}∞i=1 is called conver-

gent if for every fixed graphH the sequence{t(H,Gi)}∞i=1 is convergent. It was proved in [10]

that for a convergent graph sequence{Gi}∞i=1 there is a limit object of the form of a symmetric

measurable functionW : Ω2 → [0, 1] (called agraphon) such that for every graphH we have

limi→∞ t(H,Gi) = t(H,W ).

In the above theoremΩ can be chosen to be[0, 1] with the uniform measure however in many

cases it is more natural to use other probability spaces. We investigate the case when(Ω, µ) is

a compact abelian groupA with the normalized Haar measure. Letf : A → C be a bounded

measurable function and letWf : A2 → C be defined byWf (x, y) := f(x + y). As it was

pointed out in the introduction, for a finite graphH the densityt(H,Wf ) is equal tot(L, f) where

LH := {xi + xj : (i, j) ∈ E(H)}. Using this correspondence and our results in this paper we get

the following theorem on graph limits.

Theorem 7 Let {fi : Ai → K}∞i=1 be a sequence of measurable functions on compact abelian

groups with values in a compact convex setK ⊆ C. Assume thatlimi→∞ t(H,Wfi) exists for every

graphH . Then there is a measurable functionf : A → K on a compact abelian groupA such that

limi→∞ t(H,Wfi) = t(H,Wf ) holds for every graphH .

Proof. By chosing a subsequence we can assume by theorem 2 that{fi}∞i=1 is convergent ind with

limit f : A → K. Then by theorem 1 we obtain thatlimi→∞ t(LH , fi) = t(LH , f) holds for every

graphH . This completes the proof.

Theorem 7 is closely related to the results in [12]. Letf : G → [0, 1] be a mesurable function

on a compact but not necessarily commutative group. Assume that the technical conditionf(g) =

f(g−1) holds for everyg ∈ G. Then the functionW : G2 → [0, 1] defined byW (x, y) = f(xy−1)

is symmetric. We call graphons of this type Cayley grphons. It was proved in [12] that limits of
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Cayley graphons are also Cayley graphons. This theorem implies that one can talk about limits

of functions on compact topological groups and the limit object are also functions on compact

topological groups. More complicated limit objects come into picture if in the commutative setting

when we wish for the continuity of densities of linear configurations of higher complexity. As it was

showed in [13], this refinement of the limit concept requiresmore complicated limit objects. There

are examples for functions on abelian groups converging to functions on nilmanifolds.
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