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Supplementary Table S1 – Example electrophysiological studies listed in the order of the insertion speed 

used for probe implantation. 

  Study 

Insertion 

speed 

(mm/s) 

Insertion 

speed 

(reported) 

Animal 

species 

Acute/ 

Chronic 

Extracellular 

recording device 

1 Moxon et al., 2004 0.0002 10 µm/min rat C 

ceramic insulated, 

thin-film multisite 

electrodes 

2 Kisley and Gerstein, 1999 0.0002 ∼10 μm/min rat A / C 
single wire 

electrodes/tetrodes 

3 Ward et al., 2009 0.0002 ∼10 μm/min rat C 

thin-film ceramic-

based 

microelectrode 

array 

4 Bardy et al., 2006 
0.0003 - 

0.001 

20 - 60 

μm/min 
cat A 

stainless steel 

microelectrodes 

5 Huang et al., 2017 
0.0003 - 

0.001 

20 - 60 

μm/min 
cat A 

stainless steel 

microelectrodes 

6 Thimm and Funke, 2015 0.0003 ∼20 μm/min rat A 

bundle of three 

tungsten 

electrodes 

7 Wiebe and Staubli, 1999 0.0004 ∼25 μm/min rat C 

array of Teflon-

coated, stainless 

steel microwires 

8 Cardoso-Cruz et al., 2013 0.0008 50 μm/min rat C 

array of isonel-

coated tungsten 

microwires 

9 Devilbiss et al., 2006 0.0008 ~50 μm/min rat C 

bundles of Teflon-

coated stainless 

steel microwires 

10 Devilbiss and Waterhouse, 2011 0.0008 ∼50 μm/min rat C microwire bundle 

11 Lasztoczi and Klausberger, 2016 
0.0008 - 

0.0017 

50 - 100 

µm/min 
mouse A 

multi-shank 

silicon probes 

12 Chung et al., 2017 
0.0008 / 

0.0017 

50 / 100 

μm/min 
mouse A / C 

Buzsaki-type 

silicon probes 

13 Neto et al., 2016 0.001 1 μm/s rat A 
high-density 

silicon polytrodes 

14 Mechler et al., 2011 0.001 ~1 μm/s monkey,cat A tetrodes 

15 Kondabolu et al., 2016 
0.001 - 

0.002 
1 - 2 µm/s mouse A 

borosilicate glass 

electrode/laminar 

silicon probes 

16 Lim et al., 2016 
0.001 - 

0.002 
1 - 2 µm/s songbird A 

four-shank silicon 

probes 

17 Suyatin et al., 2013 
0.001 - 

0.01 
1 - 10 µm/s rat A 

nanowire-based 

electrode 

18 Han et al., 2009 0.0015 1.5 μm/s monkey A 
tungsten 

microelectrodes 

19 Maris et al., 2013 0.0015 1.5 µm/s monkey C 
tungsten 

microelectrodes 



  Study 

Insertion 

speed 

(mm/s) 

Insertion 

speed 

(reported) 

Animal 

species 

Acute/ 

Chronic 

Extracellular 

recording device 

20 Musall et al., 2017 0.0017 100 µm/min rat A / C 
linear silicon 

probes 

21 Wang et al., 2012 0.0017 100 µm/min rat C 

silicon-based 

multielectrode 

array 

22 Schoenfeld et al., 2014 0.0017 100 μm/min mouse C 
stainless steel 

electrodes 

23 Venkatachalam et al., 1999 0.0017 100 μm/min rat C 

parylene-coated 

tungsten 

microelectrodes 

24 Crist and Lebedev, 2008 0.0017 100 μm/min monkey C 
microelectrode 

arrays 

25 Fontanini and Katz, 2005 0.0017 100 μm/min rat C microwire bundles 

26 Wiest et al., 2008 0.0017 
≤100 

μm/min 
rat C 

array of tungsten 

microelectrodes 

27 Denman et al., 2017 0.0017 
∼100 

μm/min 
mouse A 

high-density 

planar silicon 

electrode arrays 

28 Nicolelis et al., 1997 0.0017 
∼100 

μm/min 
rat C 

array of Teflon-

coated, stainless 

steel microwires 

29 Nicolelis et al., 2003 0.0017 
~100 

μm/min 
monkey C 

insulated stainless 

steel/tungsten 

microwire arrays 

30 Prasad et al., 2014 0.0017 
~0.1 

mm/min 
rat C 

16-site floating 

microelectrode 

array 

31 Oliveira-Maia et al., 2008 
0.0017 - 

0.0033 

100 - 200 

µm/min 
mouse, rat C 

array of tungsten 

microelectrodes 

32 Li et al. 2018 0.002 2 µm/s mouse A 
32-channel silicon 

probes 

33 Stolzberg et al., 2012 0.002 2 μm/s rat A 
linear silicon 

probes 

34 McAlinden et al., 2015 0.002 ~2 μm/s mouse A 

32-channel linear 

silicon-based 

optrodes 

35 Raducanu et al., 2017 0.002 ~2 μm/s rat A 
silicon-based 

CMOS probes 

36 Scharf et al., 2016 0.002 ~2 μm/s mouse A 

32-channel linear 

silicon-based 

optrodes 

37 Kayser et al., 2015 0.002 <2 μm/s rat A 

multi-shank 

silicon-based 

tetrode probes 

38 Sakata, 2016 0.002 ≤2 μm/s rat A 
single-shank 

silicon probes 

39 Okun et al., 2016 
0.002 - 

0.004 
2 - 4 μm/s mouse C 

multi-shank 

silicon-based 

tetrode probes 



  Study 

Insertion 

speed 

(mm/s) 

Insertion 

speed 

(reported) 

Animal 

species 

Acute/ 

Chronic 

Extracellular 

recording device 

40 Chandrasekaran et al., 2017 
0.002 - 

0.005 
~2 - 5 μm/s monkey A 

linear multi-

contact electrodes 

(U-probe) 

41 Yamamoto and Wilson, 2008 
0.002 / 

0.05 

∼2 μm/s / 

∼50 μm/s 
rat C 

tetrodes made 

from polyimide-

coated nichrome 

wires 

42 O'Shea and Shenoy, 2018 0.003 3 µm/s monkey C 
linear electrode 

array (V-probe) 

43 Guo et al., 2014 0.003 ~3 µm/s mouse A 

single-shank or 

multi-shank 

silicon probes 

44 Scherberger et al., 2003 0.003 0.2 mm/min monkey C 

array of Parelene-

C insulated 

tungsten 

microwires 

45 Shiramatsu et al., 2016 
0.003 - 

0.004 
3 - 4 μm/s rat A 

multi-shank 

silicon probes 

46 Bray et al., 2016 0.005 5 μm/s rat A 

action potential-

oxygen (APOX) 

electrodes 

47 Scott et al., 2012 0.01 <10 μm/s mouse A 
multisite silicon 

probes 

48 Du et al., 2011 0.01 ≤10 μm/s mouse C 
multisite silicon 

probes 

49 Mols et al., 2017 0.01 10 µm/s mouse C 
multisite silicon 

probes 

50 Paralikar and Clement, 2008 0.01 10 µm/s rat A / C 

array of tungsten 

microwires 

insulated with 

polyimide 

51 Zhang et al., 2018 0.01 10 μm/s monkey A 

silicon-based 

dual-mode 

microelectrode 

array 

52 Zhao et al., 2016 0.01 10 μm/s rat A 

dual-sided silicon-

based 

microelectrode 

array 

53 Etemadi et al., 2016 0.01 / 0.1 
10 μm/s / 

100 μm/s 
rat C 

bundles of 

parylene C coated 

platinum 

electrodes 

54 Leiser and Moxon, 2006 0.01 / 0.1 
10 μm/s / 

~100 μm/s 
rat A 

epoxylite-

insulated tungsten 

microelectrodes 

55 Yang et al., 2016 
0.01 / 

0.05 - 0.1 

10 μm/s / 50 

- 100 μm/s 
mouse A 

tungsten 

microelectrodes 

56 Dryg et al., 2015 0.016 1 mm/min rat C 

stainless steel 

microwires 

(PlasticsOne) 



  Study 

Insertion 

speed 

(mm/s) 

Insertion 

speed 

(reported) 

Animal 

species 

Acute/ 

Chronic 

Extracellular 

recording device 

57 Hampson et al., 2004 0.016 
1 - 2 

mm/min 
monkey A 

tungsten 

microwires 

58 McGinty and Grace, 2008 0.016 ≤1 mm/min rat A 
borosilicate glass 

electrodes 

59 Godlove et al., 2014 0.025 25 μm/s monkey A 

Teflon-coated 

tungsten 

microelectrodes 

60 Agorelius et al., 2015 0.05 50 μm/s rat C 
3D flexible 

electrode array 

61 Deku et al., 2018 0.05 50 µm/s rat A 

amorphous silicon 

carbide 

microelectrode 

array 

62 Sawahata et al., 2016 0.05 ~50 μm/s mouse A 
fine silicon wire 

electrodes 

63 Zhang et al., 2015 0.08 - 0.1 
80 - 100 

μm/s 
rat A silicon probe 

64 Lee et al., 2012 0.1 100 μm/s rat A 

flexible liquid 

crystal polymer 

(LCP) neural 

probes 

65 Ramrath et al., 2009 0.1 0.1 mm/s rat A 
bipolar 

microelectrodes 

66 Seidl et al., 2012 0.1 0.1 mm/s rat A 

CMOS-based 

silicon 

microprobe arrays 

67 Raducanu et al., 2017 0.1 ~0.1 mm/s rat A 
silicon-based 

CMOS probes 

68 Felix et al., 2013 0.13 - 0.5 
0.13 - 0.5 

mm/s 
rat C 

thin-film polymer 

probes 

69 Shen et al., 2015 0.5 500 µm/s rat C 

extracellular 

matrix-based 

intracortical 

microelectrodes 

70 Johnson et al., 2008 0.5 - 1.5 
0.5 - 1.5 

mm/s 
rat A 

linear silicon 

probes 

71 Han et al., 2012 1 1 mm/s cat C 

silicon-based 

multisite 

microelectrode 

arrays 

72 Jackson and Fetz, 2007 1 ~1 mm/s monkey C 

Teflon-insulated 

tungsten  

microwire array 

73 Kozai et al., 2015a 1 ~1 mm/s mouse C 

single-shank 

planar silicon 

probes 

74 Rohatgi et al., 2009 1.2 1.2 mm/s rat A 
Michigen-type 

silicon probes 

75 Escamilla-Mackert et al., 2009 1.2 1.2 mm/s rat A 

single- and multi-

shank silicon 

probes 



  Study 

Insertion 

speed 

(mm/s) 

Insertion 

speed 

(reported) 

Animal 

species 

Acute/ 

Chronic 

Extracellular 

recording device 

76 Zeitler et al., 2006 1.5 1.5 mm/s monkey A 
tungsten 

microelectrodes 

77 Kozai et al., 2015b 2 2 mm/s mouse C 

single-shank 

Michigan-type 

silicon probes 

78 Kozai et al., 2016 2 ~2 mm/s mouse C 
double-shank 

silicon probes 

79 Lee et al., 2014 20 20 mm/s rat C 

silicon-based 

planar 

microelectrode 

arrays 

80 Lee et al., 2017 20 20 mm/s rat C 

silicon-based 

planar 

microelectrode 

arrays 

81 Bai et al., 2000 
200 - 

1000 

20 - 100 

cm/s 
guinea pig A 

three-dimensional 

silicon 

microelectrode 

arrays 

82 Han et al., 2012 1000 1 m/s cat C 

silicon-based 

multisite 

microelectrode 

arrays 

83 Rennaker et al., 2005 1490 1.49 m/s rat C 
array of tungsten 

microelectrodes 

84 Barrese et al., 2013 
8000 - 

10000 
8 - 10 m/s monkey C 

silicon-based 

microelectrode 

array (Utah) 

85 Barrese et al., 2016 
8000 - 

10000 
8 - 10 m/s monkey C 

silicon-based 

microelectrode 

array (Utah) 

86 Ward et al., 2009 8300 ≥8.3 m/s rat C 

silicon-based 

microelectrode 

array (Utah) 

87 Ward et al., 2009 8300 ≥8.3 m/s rat C 

iridium oxide 

microelectrode 

array (Utah) 

88 Dryg et al., 2015 27800 ~27,8 m/s rat C Pt-Fe microwires 
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Supplementary Table S2 – Results of the single unit yield, peak-to-peak amplitude of single units and 

isolation distance of unit clusters after analyzing shortened (30-min-long) recordings. In the case of data 

obtained after the fastest (1 mm/s) insertion speed, the first 15 minutes were removed, which is the time period 

needed to insert the probe with the slowest (0.002 mm/s) insertion speed. In the case of recordings acquired 

after the slowest insertions, we removed the last 15 minutes to obtain recordings of equal lengths (30 minutes). 

After that, we performed spike sorting on the shortened data and calculated the single unit yield, the isolation 

distance and the peak-to-peak amplitudes the same way as we did for the original, 45-min-long recordings. 

 

 

  0.002 mm/s 1 mm/s 

Total number of separated single units 376 148 

Number of separated single units per penetration 37.6 ± 13.9 16.4 ± 8.2 

Peak-to-peak amplitude (µV) 197.5 ± 102.6 142.7 ± 64.7 

Isolation distance 47.0 ± 54.8 27.1 ± 25.3 

  



 

Supplementary Table S3 – Comparison of the properties of single units obtained from the whole electrode 

array of the 128-channel probe and units located in layer V. A single units was considered a layer V neuron if 

it had its largest amplitude spike waveform on a recording site located in layer V. The position of the recording 

sites relative to layer V was estimated by examining the coronal brain sections. The single unit yield in layer 

V was still inversely proportional to the insertion speed and still significantly different between the fastest and 

the slowest speed (p = 0.049; Kruskal-Wallis test). Furthermore, for the same speed, both the peak-to-peak 

amplitude of the spike waveforms and the first spike latency were similar between the two conditions. Average 

and standard deviation is presented. 

 

Properties 0.002 mm/s 0.02 mm/s 0.1 mm/s 1 mm/s 

Total number of separated single units 341 242 159 128 

Number of layer V units 199 150 112 93 

          

Number of separated single units per experiment 34.1 ± 12.2 24.2 ± 4.9 15.9 ± 7.9 14.2 ± 4.4 

Number of layer V units per experiment 19.9 ± 8.2 15.0 ± 7.0 11.2 ± 8.0 10.3 ± 4.2 

          

Peak-to-peak amplitude of all units (µV) 182.1 ± 99.4 142.1 ± 71.6 127.1 ± 59.6 137.3 ± 63.0 

Peak-to-peak amplitude of layer V units (µV) 177.5 ± 96.6 146.2 ± 69.9 135.5 ± 66.4 139.3 ± 64.2 

          

First spike latency of all units (s) 110.9 ± 246.0 209.5 ± 325.5 210.8 ± 329.9 294.4 ± 284.4 

First spike latency of layer V units (s) 139.5 ± 290.7 185.3 ± 279.3 235.2 ± 358.3 290.7 ± 290.7 

  



 

Supplementary Table S4 - Sequence of the insertion speeds used during each experiment carried out with 

the 128-channel silicon probe. 

 

Animal 

Left craniotomy Right craniotomy 

Speed of 1st 
insertion (mm/s) 

Speed of 2nd 
insertion (mm/s) 

Speed of 1st 
insertion (mm/s) 

Speed of 2nd 
insertion (mm/s) 

1 1 0.02 0.1 0.002 

2 0.1 0.02 0.002 1 

3 0.02 0.1 1 0.002 

4 0.02 1 0.1 0.002 

5 1 0.1 0.002 0.02 

6 0.1 0.02 0.002 1 

7 0.02 1 0.002 0.1 

8 0.002 0.02 0.1 1 

9 1 0.002 0.02 0.1 

10 1 0.1 0.02 0.002 

 

  



 

Supplementary Table S5 - Sequence of the insertion speeds used during the experiments with the 32-channel 

silicon probe. 

 

 

Animal 

Left craniotomy Right craniotomy 

Speed of 1st 
insertion (mm/s) 

Speed of 2nd 
insertion (mm/s) 

Speed of 1st 
insertion (mm/s) 

Speed of 2nd 
insertion (mm/s) 

1 1 0.002 0.002 1 

2 0.002 1 1 0.002 

3 1 0.002 0.002 1 

4 0.002 0.002 1 1 

5 1 1 0.002 0.002 

 

  



 

Supplementary Table S6 – The number and ratio of single units recorded with the 128-channel probe which 

were excluded from the analysis. 

 

  0.002 mm/s 0.02 mm/s 0.1 mm/s 1 mm/s Sum/Ratio 

Number of single units included in the analysis 341 242 159 128 ∑ 870 

Number of units excluded by the amplitude criterion 7 25 36 24 ∑ 92 

Ratio of units excluded by the amplitude criterion (%) 2,01 9,36 18,46 15,79 9,56% 

Units excluded by the violation rate criterion 0 2 1 0  ∑ 3 

Ratio of units excluded by the violation rate criterion (%) 0 0,82 0,63 0 0,34% 

 

  



 

Supplementary Table S7 – The number and ratio of single units recorded with the 32-channel probe which 

were excluded from the analysis. 

 

 

  0.002 mm/s 1 mm/s Sum/Ratio 

Number of single units included in the analysis 220 157 ∑ 377 

Number of units excluded by the amplitude criterion 6 26 ∑ 32 

Ratio of units excluded by the amplitude criterion (%) 2,65 14,21 7,82% 

Units excluded by the violation rate criterion 1 0  ∑ 1 

Ratio of units excluded by the violation rate criterion (%) 0,45 0 0,26% 

 

  



 

 

 

 

 
 

 

Supplementary Figure S1 – Change in the average SNR of the recorded spiking activity over time after 

inserting the 128-channel probe with slow (0.002 mm/s) speed for four hours (data of a single experiment). 

The SNR values were calculated from consecutive, 60-second-long segments of the recording, during the 

entire 240-minute-long recording period, then averaged across channels. The SNR stayed between 8.8 and 9.6 

dB during the four-hour recording period. 

 

 

 

 

 

  



 

 

 
 

 

Supplementary Figure S2 – Properties of the single-unit activity recorded with the 128-channel silicon probe 

in experiments performed for histological investigation. (a) Box-and-whisker plot showing the distribution of 

the number of well-separated single unit clusters. (b) Box-and-whisker plot of the signal-to-noise ratio (SNR) 

values for each insertion speed. SNR values were calculated from consecutive, 30-second-long segments of 

the recordings, during the entire 45-minute-long recording period, then averaged across channels (number of 

computed SNR values after data cleansing for each speed: 0.002 mm/s, n = 358; 1 mm/s, n = 358). (c) Change 

in the average SNR of the recorded spiking activity over time for each insertion speed. Colored bands 

correspond to the standard error of mean. (d-f) Box-and-whisker plot showing the distribution of the peak-to-

peak amplitude of spike waveforms (d), the distribution of the first spike latencies (e), and the distribution of 

the isolation distances (f) for each insertion speed (total number of well-separated neurons for each speed: 

0.002 mm/s, n = 181; 1 mm/s, n = 72). On the box-and-whisker plots, the middle line indicates the median, 

while the boxes correspond to the 25th and 75th percentile. Whiskers mark the minimum and maximum 

values. The average is depicted with a black dot. Gray dots on panel (a) correspond to single unit yields 

obtained for individual penetrations. Data on panels (d-f) are plotted on a logarithmic scale. * p < 0.05; *** p 

< 0.001; Mann-Whitney U test. Number of units excluded from analysis based on the amplitude and violation 

rate criteria: 25 (0.002 mm/s) and 36 (1 mm/s). 

 



 

 

 

 
 

 

Supplementary Figure S3 – Coronal brain section showing the probe track after one of insertions carried out 

with the slowest (0.002 mm/s) speed (left side: track stained by DiI fluorescent dye; right side: brain section 

after Nissl-staining). The acquired electrophysiological recording was the only one among the recordings 

obtained after the slowest insertions where only a very low number of single units (n = 4) were detected after 

probe insertion (average single unit yield after the slowest insertions: 34.1 units). On this brain section, signs 

of blood were identified next to the probe track (indicated by arrows). The traces of blood were located mostly 

in layer V, from where most of the electrodes of the probe recorded the neuronal activity (see the probe 

schematic next to the track). Dashed lines mark cortical layer boundaries. 

 


