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Coexistence of shocks and rarefaction fans: complex phase

diagram of a simple hyperbolic particle system
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Abstract

This paper investigates the non-equilibrium hydrodynamic behavior of a simple totally asymmetric

interacting particle system of particles, antiparticles and holes on Z. Rigorous hydrodynamic results

apply to our model with a hydrodynamic flux that is exactly calculated and shown to change convexity

in some region of the model parameters. We then characterize the entropy solutions of the hydrody-

namic equation with step initial condition in this scenario which include various mixtures of rarefaction

fans and shock waves. We highlight how the phase diagram of the model changes by varying the model

parameters.
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1 Introduction

This paper focuses on a particular nearest-neighbor interacting particle system over Z with one conserved
quantity. The model consists of particles, antiparticles and holes with the following types of moves:

(1) Exclusion. (Anti)particles execute totally asymmetric exclusions to the (negative) positive direc-
tion, respectively.

(2) Annihilation. An adjacent particle-antiparticle pair can annihilate each other producing two holes.

(3) Pair creation. An antiparticle-particle pair can be created from two adjacent holes.

The evolution is a continuous time Markov jump process the jump rates of which are chosen such that
the model is attractive and possesses product-form stationary distributions. These choices greatly facilitate
the analysis of the macroscopic behavior of the system. By rescaling time and space with the same factor
(Eulerian scaling), we arrive to a hydrodynamic limit described by a nonlinear partial differential equation.
As usual in this area nonlinearity comes from the hydrodynamic flux which is roughly speaking the net
flux of (anti)particles across a bond in equilibrium.

Earlier results and result of this paper. In many well-known examples of particle systems, such as simple
exclusion or constant rate zero range processes, the hydrodynamic flux function is proved to be strictly
concave, sometimes strictly convex. Entropy solutions of the hydrodynamic equation in these cases are
well known: either shock wave or rarefaction fan emerges from step initial data (also called Riemann
problem). The first realistic model that exhibits non-convex nor-concave hydrodynamic flux appeared in
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the seminal paper by Katz, Lebowitz and Spohn [10] which in its one-dimensional form can be considered
as a generalization of simple exclusion. The KLS model, though it is non-attractive, has become popular
and it has been under extensive studies during the past decades, see [15, 7, 4, 14, 18], showing spectacular
properties in, e.g., its phase diagram.

We highlight another generalization of simple exclusion, PushASEP [3], which produces non-convex
nor-concave hydrodynamic flux. The nature of this model is slightly different from ours in that it requires
non-nearest neighbor interactions and jump rates that depend on the configuration over the whole interval
of jumps.

To the best of our knowledge the hydrodynamic behavior beyond the shock is not rigorously established
for either of the known examples with non-convex nor-concave flux. In contrary, the model we introduce
here is fully covered under the hydrodynamic results of the literature. It is an attractive hyperbolic nearest
neighbor particle system of just three possible states on a site which belongs to a more general family of
misanthrope processes [5]. One of the main conclusions is that, while hydrodynamics beyond the shock
is rigorously established for this very simple attractive model, it also exhibits a non-trivial flux of both
concave and convex pieces in some parameter range. We have combined recent results of PDE solution
theory (see [9, Ch. 2] and [8, 6]) with that of hydrodynamic limits established for general interacting
particle systems [1, 2] to obtain rigorous results for the phase diagram of our model. We characterize all
the possible cases of the Riemann problem which can consist of coexisting shock wave and rarefaction fan
regions in various orders depending on the density values we started off from. We also show how the whole
phase diagram evolves as one varies the underlying parameter values of the system. At some cumbersome
calculations we used the aid of the computer. Finally, we mention that most of the results of the present
paper originate from [20]. As a nice add-on, we have developed some stochastic simulation programs (see
[21]) for the evolution of our particle system.

Organization of the paper. We define our microscopic model in Section 2. We calculate some of its key
properties in Section 3. The detailed investigation of the Riemann problem is contained in Section 4.

2 The microscopic model

The Markov process we consider consists of particles, antiparticles and holes interacting with each other
on the one-dimensional integer lattice Z. At lattice point i ∈ Z, ωi will denote the presence of a particle
(ωi = 1), that of an antiparticle (ωi = −1) or the absence of them (ωi = 0). Thus our configuration space
is Ω := {−1, 0, +1}Z an element of which is denoted by ω = (ωi)i∈Z. The continuous time Markovian
jump dynamics we attach on top of Ω is then made up of the moves

ω −→ ω − δj + δj+1 ∈ Ω,

which happens at rate p(ωj , ωj+1) for every j ∈ Z, where δ denotes the Kronecker symbol, i.e. δj(i) is 1
if i = j and zero otherwise. These changes take place independently conditioned on a given configuration
ω ∈ Ω. This process can easily be constructed in the usual way (see [13]) and has infinitesimal generator
G acting on a cylinder function (i.e., one that only depends on a finite number of coordinates) ϕ : Ω → R

as
(

G ϕ
)

(ω) =
∑

j∈Z

p(ωj , ωj+1) ·
(

ϕ(ω − δj + δj+1) − ϕ(ω)
)

(ω ∈ Ω). (2.1)

With a slight abuse of notation the state of the process at time t ≥ 0 is also denoted by ω(t) =
(

ωi(t)
)

i∈Z
.

We now specify p to be of the following special form. For x, y ∈ {−1, 0, +1} let

p(x, y) =























c, x = 0, y = 0;
a, x = +1, y = −1;
a · 1−d

2 , x = 0, y = −1;
a · 1+d

2 , x = +1, y = 0;
0, otherwise,

(2.2)

where a, c > 0 are (distinct) model parameters denoting the rates of annihilation and pair creation,
respectively. With parameter d ∈ (−1, 1) we can adjust the symmetry of (anti)particles’ jumping rate. In
plain words, the above dynamics boils down to the following simple rules: two adjacent holes can produce
an antiparticle-particle pair (in that order) with rate c, antiparticles and particles can only hop to the
negative and positive directions with rates a · 1−d

2 and a · 1+d
2 , respectively, and when a particle meets an

antiparticle they annihilate each other with rate a. All other moves are suppressed.
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By rescaling time by a, without loss of generality, we can assume that the annihilation rate is set to
be 1. Next, we invoke the definition of attractivity from [13, pp. 71–72]. Formally speaking we require the
relation E f(ω(t)) ≤ E f(η(t)) to hold for all monotone functions f : Ω → R and for all t ≥ 0 whenever
the initial configuration η(0) of η dominates that of ω in the coordinate-wise order. Along the lines of [13,
III., Thm. 2.2], attractivity is equivalent to p being monotone non-decreasing (non-increasing) in its first

(second) variable, respectively. This means that our dynamics is attractive if and only if c ≤ 1−|d|
2 which

we assume throughout the paper. (We do not expect different behavior in the non-attractive regime either
but hydrodynamics beyond the shock is not rigorously established there and the interesting phenomena
of this paper happens in the attractive parameter domain anyway.)

The model outlined above is the simplest member, after simple exclusion, of the family of misanthrope
processes [5]. In the above particular form, it first appeared in [19, pp. 179–180].

3 Properties of the model

First, we introduce the one-parameter family of product-form extremal stationary distributions of the
above model. Then in Subsections 3.1 and 3.2 we establish some hydrodynamic properties of the model.
These are then used in Section 4 to determine the entropy solution of the Riemann problem.

Due to attractivity a very convenient feature of our model with rates (2.2) is that it possesses product-
form stationary distributions. We define

b : =
1

2 + 1√
c

, (3.1)

which is a bijection between the parameters c ∈ (0, 1
2 ] and b ∈ (0, 1

2+
√

2
]. Now, let θ ∈ R be a generic real

that is also referred to as the chemical potential. Then define the one-site marginal measure by

Γθ : =
(

Γθ(−1), Γθ(0), Γθ(1)
)

=

(

b exp(−θ)

Z(θ)
,

1 − 2b

Z(θ)
,

b exp(θ)

Z(θ)

)

, (3.2)

with partition sum Z(θ) : = 1+2b·(cosh(θ)−1). The product measure Γθ on Ω is built from these marginals:
Γθ : =

⊗

j∈Z
Γθ. We denote the expectation with respect to this measure by Eθ. The stationarity of the

above measure was carried out in [5]. For the ergodicity part we refer to [1, pp. 1350–1352, Sec. 3 and
further references therein].

3.1 Hydrodynamics

Eulerian hydrodynamic limits are well established for a large class of attractive asymmetric particle systems
[16, 12, 11] or more generally [1, 2] that also includes our model. Below we recall some elements of this
theory following the latter articles. Let N be the rescaling factor and define

αN (dx, t) : =
1

N

∑

j∈Z

ωj(t · N) · δj/N (dx)

as the rescaled empirical measure of ω(t) at macroscopic space and time x ∈ R and t ≥ 0, respectively.
Now, the sequence of initial probability distributions (πN )N∈Z+ can be chosen arbitrarily such that the

empirical measure αN of ω
N (0), distributed as πN , converges in probability to u0( · ) dx, where u0 is some

deterministic bounded measurable profile on R (see [1, pp. 1346–1348, Sec. 2.3]). Then for each t > 0:
the αN of ω

N (t) converges to u( · , t) dx in probability, where the density profile u( · , t) : R → [−1, 1] is
one of the weak solutions of the conservation law

∂tu + ∂xG(u) = 0;

u( · , 0) = u0(·).
(3.3)

In this PDE, the hydrodynamic flux G : [−1, 1] → R
+
0 is

G(̺) = Eν̺
p(ω0, ω1) (̺ ∈ [−1, 1]),

where the measure ν̺ is a translation-invariant extremal stationary distribution of the process (ω(t))t≥0

corresponding to density ̺. In our case, as we discussed in the beginning of Section 3, these measures can
be expressed in product form. In plain words G explains the net flux across a bond in equilibrium (recall
the dynamics of ω being totally asymmetric) and it will be determined in Section 3.2.
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Subsequently, we will only consider the Riemann problem (step initial datum) in view of the initial
value problem 3.3, that is

u0(x) =

{

u− if x ≤ 0;
u+ if x > 0,

(3.4)

where u− 6= u+ ∈ [−1, 1] are the (initial) densities on the left and the right-hand side of the origin. In
case of the microscopic process for sake of simplicity we set the density values (u−, u+) by picking the
appropriate site-dependent parameters θj of the product measure Γθ:

Eθj (ωj) =

{

u− if j ≤ 0;
u+ if j > 0.

As we discussed above the initial measure can be chosen from a more general set of measures. Indeed this
choice of initial measures will not play any role in the present article.

It is more convenient to reparametrize the marginal Γθ by the (signed) density of particles instead of
the chemical potential θ. Let v(θ) be the expected number of particles occupying an arbitrary lattice point
under the measure Γθ:

v(θ) : = Eθ ω0 =
2b sinh(θ)

1 + 2b · (cosh(θ) − 1)
(θ ∈ R).

It is not hard to see that the assignment θ 7→ v(θ) ∈ [−1, 1] is strictly monotone hence bijective. Its inverse
v 7→ θ(v) can explicitly be calculated:

θ(v) = log

(

(1 − 2b) · v +
√

4b2 + (1 − 4b) · v2

2b · (1 − v)

)

(v ∈ [−1, 1]). (3.5)

With a slight abuse of notation we will freely switch between these two parametrizations of the stationary
measure.

To close this section, we mention a well-known strategy for solving (3.3). When G has continuous
derivative and u is smooth, one can rewrite (3.3) as ∂tu + G′(u) · ∂xu = 0. The characteristic curves are
then defined as lines of the x-t space along which the solution is constant. To find these curves one solves
d
dt u(x(t), t) = 0 which translates to dx(t)

dt = G′(u) after comparison to the original equation. The curve
then can be traced back to the initial condition and takes the form x = x0 + t · G′(u0(x0)). The quantity
G′(u0(x0))) is known as the characteristic velocity. Finally, to look up the value of the solution u at an
arbitrary point (x, t) ∈ R × R

+
0 one just follows the characteristic curve back to the initial time and reads

the value of u0 there.
The previous program relies on u being smooth which sometimes just fails to happen. That is there

can exist points of R × R
+ which more than one characteristic lines hit carrying different initial values.

In these cases classical (differentiable) solutions of (3.3) cease to exist and more general, so-called weak
solutions, need to be defined. By a careful selection of the weak solutions one can uniquely identify the
physically relevant one which is also referred to as the entropy solution. For more details and properties
of the entropy solutions we refer to the monographs [17, 9].

In our case the initial condition u0 is the step function (3.4) hence the characteristic velocities can
only attain two values: G′(u−) and G′(u+). Depending on the relation between the densities u−, u+ and
on the monotonicity of G′ in [min(u−, u+), max(u−, u+)] several possibilities can emerge. In the simplest
case when G is strictly concave one can essentially distinguish two cases: (1) if G′(u−) > G′(u+) then the
characteristic lines meet in some finite time hence a shock wave, that is a moving discontinuity appears
in the entropy solution; (2) if G′(u−) < G′(u+) then the characteristic lines are moving away from each
other giving rise to a rarefaction fan in which the initial sharp discontinuity smears out in time.

In the general case, based on [9, pp. 30–34 of Sec. 2.2], the unique entropy solution of (3.3) with initial
condition (3.4) can explicitly be given as

u(x, t) =















u− if x ≤ (G⌢)′(u−) · t;
[

(G⌢)′]−1
(x/t) if (G⌢)′(u−) · t < x ≤ (G⌢)′(u+) · t;

u+ if x > (G⌢)′(u+) · t,

(3.6)

where u− > u+ and G⌢ is the upper concave envelope of G defined to be the smallest concave function
which is greater than or equal to G above the interval [u+, u−]. The derivative of G⌢ is denoted by
(G⌢)′, while its inverse by [(G⌢)′]−1. Analogously, in the opposite case when u+ > u− the solution can
be obtained by the help of the lower convex envelope of G.
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3.2 Flux

We explicitly calculate the hydrodynamic flux G of (3.3) corresponding to our microscopic model. As we
noted in the previous Subsection 3.1 the hydrodynamic flux is the expected current rate across a bond
under the translation-invariant extremal stationary distribution Γθ (see the beginning of Section 3). That
is

G(v) = Eθ(v) p(ω0, ω1) =
1 − d

2
· Γθ(v)(0) · Γθ(v)(−1) +

1 + d

2
· Γθ(v)(1) · Γθ(v)(0)

+ c · Γθ(v)(0) · Γθ(v)(0) + 1 · Γθ(v)(1) · Γθ(v)(−1),

where v ∈ [−1, 1]. We remark that even the last term of the annihilation step counts as one towards the
flux as only a unit signed charge is transferred over the bond in question.

Now, substituting the measure Γθ(v) of (3.2) into the previous display we get

G(v) =
b · (1 − 2b) · (cosh(θ(v)) + d · sinh(θ(v))) + 2b2

(1 + 2b · (cosh(θ(v)) − 1))2
.

Note that G is even (i.e. symmetric to the origin) if and only if d = 0. This case is shown in Figure 1. In
the upcoming sections we will only investigate the case when d = 0.

Now, taking into consideration (3.5) we can realize the density parametrization of the flux. Elementary
calculus in combination with hydrodynamic results as described in Section 3.1 then yield

Figure 1. The hydrodynamic flux G in the case d = 0. A vertical slice of the surface gives a particular
density-flux assignment for a b value.

Theorem 1. The hydrodynamic limit as described in Section 3.1 applies to our model (2.1) with rates

(2.2) in the attractive range c ≤ 1−|d|
2 with hydrodynamic flux H : [−1, 1] → [0, +∞) given by

H(v) =
v · (d − v)

2
+

(1 − d · v) · (4b2 + (1 − 2b)2 · v2)

2
(

4b2 + (1 − 2b) ·
√

4b2 + (1 − 4b) · v2
) (v ∈ [−1, 1]),

where b = 1
2+c−1/2 and c, d > 0 (see (3.1)). In the case d = 0, we simply denote the flux by G:

G(v) = −
v2

2
+

4b2 + (1 − 2b)2 · v2

2
(

4b2 + (1 − 2b) ·
√

4b2 + (1 − 4b) · v2
) (v ∈ [−1, 1]). (3.7)
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For G the following hold: if b ∈
(

1
6 , 1

2+
√

2

]

⇐⇒ c ∈
(

1
16 , 1

2

]

(b = 1
6 ⇐⇒ c = 1

16 ), then it is strictly

(non-strictly) concave in [−1, 1]. Otherwise when b ∈
(

0, 1
6

)

⇐⇒ c ∈
(

0, 1
16

)

it is neither concave nor
convex having two inflection points

± vinfl = ±

√

(2b2(1 − 2b))2/3 − 4b2

1 − 4b
, (3.8)

which separate a concave-convex (−vinfl) and a convex-concave (vinfl) region, respectively.

4 Entropy solutions

We find the entropy solutions of the Riemann problem (3.3) with step initial datum (3.4) for all possible
pairs of initial densities u−, u+ ∈ [−1, 1]. Recalling Section 3.1, for purely concave flux two valid scenarios
can only happen: the discontinuity at zero is preserved over time (shock wave) or it immediately smears
out (rarefaction fan). As we have seen the flux G can be non-concave in some parameter region and this
results in plenty of qualitatively different solutions for (3.3) to be discussed in more details below.

Auxiliary calculations. Based on Theorem 1, we introduce some further notations being valid only in
the range b ∈ (0, 1

6 ). The positive global maximum point of (3.7) is given by

vmax =
1

2

√

(1 + 2b)(1 − 6b)

1 − 4b
,

while the negative one is at −vmax. The maximum value is then G(vmax) = G(−vmax) = (1−2b)2/(8−32b).
At 0 the tangent line is horizontal and G has a local minimum with G(0) = b. This tangent intersects the
curve in two points symmetrically to the origin. The positive one is at

v0 =

√

(1 − 2b)(1 − 6b)

1 − 4b
,

while the negative one is at −v0. See Figure 2.

0 1−1
v

v+ev−e
vev−m v+mvmax−vmax −vinfl vinfl−v0 v0

density (v)

0

b

(1−2b)2

8−32b

 

 

flux (G)
tangent at 0
tangent at ve
tangent at v−e
tangent at v+e

Figure 2. Hydrodynamic flux G in the non-concave case and its tangents, where b = 0.08 and d = 0.
From a general point v ∈ [−1, 1] one can possibly draw at most two lines that are tangential to G (see v−

e

and v+
e ). On the other hand a tangent line at ve can have two intersections with the graph of G (see v−

m

and v+
m). ±vmax are the maximum points while ±v0 are the intersections of G with the constant (dashed)

line at b.

To determine the lower convex and upper concave envelopes of G for different densities (recalling
(3.6)) and to finally obtain the phase diagram we need to address some further special points of the flux
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G. Below we essentially define the tangential points which will be denoted by ve’s whereas vm’s will
indicate the intersection points of G with a tangent line. In more details the tangent line drawn from the
point (ve, G(ve)) intersects the graph G at (another) point (v, G(v)) if and only if it satisfies

G(v) = G(ve) + G′(ve)(v − ve). (4.1)

We can look at (4.1) in two different ways.

• One can look for an intersection (vm, G(vm)) of the graph and the tangent line touching at a given
(ve, G(ve)). The intersection that lies on the left (right) of ve is denoted by v−

m(ve) [v+
m(ve)]. If v−

m(ve)
[v+

m(ve)] did not exist then v−
m(ve) : = −∞ [v+

m(ve) : = +∞]. See Figure 2.

• From a fixed (v, G(v)) one can solve (4.1) for a tangent point (ve, G(ve)) of G. If there exist more
than one solutions then let v−

e (v) be the closer while let v+
e (v) be the farther one from v. By default

ve(v) : = v−
e (v). If only one solution exits then ve(v) = v−

e (v) = v+
e (v). See Figure 2.

In the following the previously defined points, illustrated by Figure 2, are heavily used to determine those
regions where the dynamics follows a shock wave or a rarefaction fan.

Phase diagram. Notice that if G′′ does not change sign in [min(u−, u+), max(u−, u+)], furthermore the
secant of G connecting (u−, G(u−)) with (u+, G(u+)) is located below (above) its graph and

• u− < u+ (u− > u+), then the characteristic lines ‘converge’ and collide resulting in the formation of a
shock wave.

• u− > u+ (u− < u+), then the characteristic lines ‘diverge’ and the initial discontinuity smoothens out
according to the physically relevant entropy solution, i.e. a rarefaction fan forms.

Our first task is to explore these simple regions. Then in the general case we find the lower convex as well
as upper concave envelopes of G which will give shock and rarefaction parts of the solution via formula
(3.6). These functions can be expressed in a rather simple way by using the previously defined ve’s and
vm’s.

Figure 3. Rarefaction fan – Shock wave – Rarefaction fan (left) and Shock wave – Rarefaction fan – Shock
wave (right) profiles evolving in space-time when u− = 1 = −u+ and u− = −vmax = −u+, respectively,
where b = 0.08 and d = 0.

The general case is as follows. Observe that if b ≥ 1
6 then shock wave (rarefaction fan) forms when

u− < u+ (u− > u+). Henceforth we can assume that b belongs to (0, 1
6 ). For the simpler parts of the

phase diagram we can apply the above rule. Recall the inflection points of (3.8).

Shock wave (S) regions. If u− < u+, then −1 ≤ u− ≤ v−
m(ve(1)) and u+ ≥ v+

m(ve(u−)); v+
m(ve(−1)) ≤

u+ ≤ 1 and u− ≤ v−
m(ve(u+)); −1 ≤ u− ≤ −vinfl and u+ ≤ ve(u−); vinfl ≤ u+ ≤ 1 and u− ≥ ve(u+).

If u− > u+, then u−, u+ ∈ [−vinfl, vinfl]; furthermore vinfl ≤ u− ≤ vmax (−vmax ≤ u+ ≤ −vinfl) and
v+

e (u−) ≤ u+ ≤ v−
m(u−) (v+

m(u+) ≤ u− ≤ v+
e (u+)).
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Rarefaction fan (R) regions. If u− < u+, then u−, u+ ∈ [−vinfl, vinfl]. On the other hand, if u− > u+,
then u−, u+ ∈ [−1, −vinfl] or u−, u+ ∈ [vinfl, 1].

Now, it becomes a much more complex situation if the secant crosses the graph of G above the interval
(min(u−, u+), max(u−, u+)). We will discuss these in the following.

Rarefaction fan – Shock wave (RS) regions. If u− < u+, then vinfl < u+ ≤ 1 and −vinfl ≤ u− <
ve(u+). On the other hand if u− > u+, then −vmax ≤ u+ < vinfl and v+

e (u+) < u− ≤ 1.

Shock wave – Rarefaction fan (SR) regions. If u− < u+, then −1 ≤ u− < −vinfl and ve(u−) <
u+ ≤ vinfl. On the other hand if u− > u+, then −vinfl < u− ≤ vmax and −1 ≤ u+ < v+

e (u−).

Rarefaction fan – Shock wave – Rarefaction fan (RSR) region: u− > vmax and u+ < −vmax.
The shock wave in the middle has zero speed and limx→0+ u(x, t) − limx→0− u(x, t) = −2vmax for all
t > 0. See Figure 3.

Shock wave – Rarefaction fan – Shock wave (SRS) region: −1 ≤ u− < −vinfl and vinfl < u+ <
v+

m(ve(u−)). The shocks are connected by a rarefaction fan and they are moving away from each other.
See Figure 3.

Figure 4. Phase diagram of the model with varying values of b, where d = 0. The x and y axes represent
the initial density on the left (u−) and the right (u+), respectively. S (R) denotes a shock wave (rarefaction
fan).

The whole phase diagram can be seen in Figure 4 for four different b values. The horizontal and
vertical axes correspond to the initial density on the left (u−) and the right (u+), respectively. S denotes
the formation of a shock wave, while R corresponds to a rarefaction fan. The model in the assumed d = 0
case has a symmetry of swapping particles and antiparticles and flipping direction of the jumps at the
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same time. This results in the transformation (u−, u+) → (−u+, −u−) which shows as a symmetry on the
diagrams (including reversing the order of R’s and S’s due to reflection of space). The other diagonal,
(u−, u+) → (u+, u−) is not a symmetry of the particle system due to positive particles jumping to the
right, negatives to the left which fundamentally influences the hydrodynamic behavior.
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