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Alfréd Rényi Institute of Mathematics,

Hungarian Academy of Sciences
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Abstract

The problem whether every finite lattice is representable as the con-
gruence lattice of a finite algebra has been reduced to a group theoretic
question: whether every finite lattice occurs as an interval in the subgroup
lattice of a finite group. Based on works of R. Baddeley, A. Lucchini,
F. Börner, J. Shareshian, and M. Aschbacher the problem can be further
reduced to two particular cases: intervals in subgroup lattices of finite
groups where the group is either almost simple or a twisted wreath prod-
uct of a restricted type. So the group theoretic construction of twisted
wreath products introduced by B. H. Neumann in 1963 seems to play a
crucial role in dealing with the finite congruence lattice problem.

1 The Finite Congruence Lattice Problem

A famous unsolved problem in universal algebra asks whether every finite lat-
tice is isomorphic to the congruence lattice of a finite algebra. Since finite lat-
tices are obviously algebraic, it follows from the fundamental Grätzer–Schmidt
Theorem [7] that every finite lattice is the congruence lattice of some algebra.
However, all known proofs of the Grätzer–Schmidt Theorem construct infinite
algebras in almost all cases. P. Pudlák and the author [13] have shown that the
finiteness problem is equivalent to a group theoretic one:

Problem 1 Is every finite lattice isomorphic to an interval in the subgroup
lattice of a finite group?

For a group G and a subgroup H < G we write

Int(H,G) = {X | H ≤ X ≤ G }
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for the lattice of intermediate subgroups (in other words: overgroups of H), and
call it the interval between H and G in the subgroup lattice.

One direction of the equivalence is obvious. Let G act on the set of right
cosets of the subgroup H, and consider each permutation in G as an operation
with one variable. Then the congruences are exactly the partitions into cosets
of subgroups belonging to the interval Int(H,G), hence the congruence lattice of
this multi-unary algebra is isomorphic to this interval. Concerning the reverse
implication, it should be emphasized that we do not claim that the congruence
lattices of finite algebras are (up to isomorphism) the same as the intervals in
subgroup lattices of finite groups. What we proved is that if all finite lattices
can be represented as congruence lattices of finite algebras then all finite lattices
can be represented as intervals in subgroup lattices of finite groups. In fact, we
embed any finite lattice into a finite lattice with some useful properties, and
then we show that the smallest algebra with a congruence lattice having these
properties is a transitive permutation group considered as a multi-unary algebra.

It was shown by Jǐŕı Tůma [17] that every algebraic lattice is isomorphic to
an interval in the subgroup lattice of an infinite group. So it is the finiteness of
the group what seems to constitute a severe restriction. Therefore, it is generally
believed that the answer to the finite congruence lattice problem is negative.

2 Twisted Wreath Products

The notion of twisted wreath product was introduced by B. H. Neumann [10]
in 1963. At first glance his definition looks quite complicated. M. Suzuki [16,
Chapter 2, §10] presented a more elegant treatment of this construction. In [12]
we gave a natural explanation for the occurrence of twisted wreath products.
Although originally Neumann used twisted wreath products for constructing
infinite groups with peculiar properties, here in the present paper we will stick
to finite groups.

Twisted wreath products occur in the O’Nan–Scott–Aschbacher Theorem
on the classification of primitive finite permutation groups. They were erro-
neously omitted from the first version [14] of the theorem, and were only added
later to the list in the paper of Michael Aschbacher and Leonard Scott [2], and
independently by László Kovács [8]. (See also [9].)

The fundamental role of twisted wreath products in the problem of rep-
resenting finite lattices as intervals in subgroup lattices of finite groups was
explicitly or implicitly observed in the papers of Robert Baddeley and Andrea
Lucchini [4], Baddeley [3], Ferdinand Börner [5], John Shareshian [15], and
Michael Aschbacher [1].

The ingredients of the twisted wreath product are the following: (finite)
groups D (the domain) and T (the target), a subgroup D0 ≤ D and a ho-
momorphism ϕ : D0 → Aut(T ) into the automorphism group of T . Let us
decompose D = D0x1 ∪D0x2 ∪ · · · ∪D0xm into a disjoint union of right cosets.
Now let

Sdp(D0, ϕ) = {f : D → T | f(axi) = ϕa(ti), a ∈ D0, ti ∈ T (i = 1, . . . ,m)}.
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It is easy to check that Sdp(D0, ϕ) is a D-invariant subdirect product in TD,
where D acts on TD via the natural action fd(x) = f(xd−1) for f ∈ TD,
d, x ∈ D. The twisted wreath product of T and D with respect to the
subgroup D0 ≤ D and the homomorphism ϕ : D0 → Aut(T ) is defined as the
semidirect product

Twr(T,D,D0, ϕ) = Sdp(D0, ϕ) oD.

3 The Reduction Theorem

Slighly improving Börner’s result [5, Theorem 6.1] — by using a different lattice
embedding lemma — we gave a proof [12] of the following reduction theorem.

Theorem 1 Every finite lattice is isomorphic to an interval in the subgroup
lattice of a finite group if and only if one of the following is true:

(1) Every finite lattice consisting of more than one element is isomorphic to
an interval Int(H,G) in the subgroup lattice of an almost simple finite group
G with a core-free subgroup H (that is,

⋂
g∈G g−1Hg = 1).

(2) Every finite lattice consisting of more than one element is isomorphic
to an interval Int(D,G) in the subgroup lattice of a twisted wreath product
G = Twr(T,D,D0, ϕ) of a non-abelian finite simple group T and a finite group
D with respect to a subgroup D0 < D and a homomorphism ϕ : D0 → Aut(T )
satisfying ϕ(D0) ≥ Inn(T ), the group of inner automorphisms of T .

With some extra work one can show also (as it was done by Börner [5]) that
in case (2) we can force D0 to be core-free in D.

We should note that the proof uses the classification of finite simple groups
via one of its well-known consequences, Schreier’s Hypothesis, claiming that
the outer automorphism group Out(T ) = Aut(T )/Inn(T ) of every finite non-
abelian simple group T is solvable.

As for many questions in finite group theory it would be desirable to reduce
the problem to case (1) of almost simple groups (groups G with a simple
normal subgroup T with CG(T ) = 1). However, it seems inevitable to consider
also certain twisted wreath products.

On the lattice theoretical side the proof does not use any deep considerations.
If there is a lattice L1 not representable with an almost simple group as in case
(1) of the theorem, and another lattice L2 that cannot be represented as an
interval as in case (2), then one constructs a lattice that cannot be represented
as an interval in the subgroup lattice of any finite group, see Figure 1. (Here
Ld denotes the dual of the lattice L and L̂ refers to a suitable extension of L
that is generated by its coatoms and contains L as a filter.)
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Figure 1: A possibly non-representable lattice

4 Intervals in the Subgroup Lattice of a Twisted
Wreath Product

In case (2) of Theorem 1 one can describe the interval Int(D,G) in the following
way. If D < X ≤ G = Twr(T,D,D0, ϕ), then X = Sdp(D1, ϕ1) oD for some
subgroup D0 ≤ D1 ≤ D and homomorphism ϕ1 : D1 → Aut(T ) extending ϕ.
Moreover, Sdp(D1, ϕ1) o D ≤ Sdp(D2, ϕ2) o D iff D1 ≥ D2 and ϕ1

∣∣
D2

= ϕ2.
Hence we obtain:

Theorem 2 Let G = Twr(T,D,D0, ϕ) be the twisted wreath product of a non-
abelian finite simple group T and a finite group D with respect to a subgroup
D0 < D and a homomorphism ϕ : D0 → Aut(T ) satisfying ϕ(D0) ≥ Inn(T ).
Then the interval Int(D,G) in the subgroup lattice of G is dually isomorphic
to the lattice formed by all extensions of ϕ to subgroups of D together with a
largest element added.

The largest element on the top of all extensions corresponds to D ∈ Int(D,G)
by the dual isomorphism.

For example, let A5 and S5 denote the alternating and the symmetric group
of degree 5, and let T = A5, D = S5×A5, D0 = diag(A5) = {(a, a) | a ∈ A5} <
D, and fix an embedding ϕ : D0

∼= A5 → Aut(T ) ∼= S5. It is easy to see that the
subgroups of D containing D0 are D0 = diag(A5), A5 × A5, and D = S5 × A5.
Now ϕ has two extensions to A5×A5, corresponding to the first and the second
projection. Likewise, there are two extensions to S5 × A5. Together with the
additional top element this gives a hexagon lattice, see Figure 2 (where a, b ∈ A5,
s ∈ S5).
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Figure 2: A representation for the hexagon lattice

Hence by Theorem 2 the interval Int(D,G) in the subgroup lattice of G =
Twr(A5, S5 ×A5,diag(A5), ϕ) is the hexagon lattice.

Actually, Aschbacher was motivated by a paper Yasuo Watatani [18], where
it was proved that whenever a lattice can be represented as an interval in a
subgroup lattice of a finite group, then it also occurs as a lattice of intermedi-
ate subfactors of a von Neumann algebra. With the exception of two lattices,
Watatani was able to find intervals isomorphic to every lattice with at most
six elements. One of the missing cases was the hexagon lattice. Aschbacher [1]
gave a general construction whose particular cases provided examples for the
hexagon and for the other six-element lattice Watatani was not able to handle.
Aschbacher’s example was slighly different from ours, he used D = A6 × A6

instead of S5×A5 (but the same T , D0, and ϕ). The hexagon also occurs in the
subgroup lattice of a simple group, for example, as the interval of overgroups of
a solvable subgroup of order 55 in the alternating group A11, see [11, p. 477].1

5 Open Cases

William DeMeo [6] found representations of all lattices consisting of at most 7
elements, with two exceptions shown in Figure 3.
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Figure 3: Open cases

So currently these are the smallest lattices for which no representation as

1I am very grateful to the referee for calling my attention to this example from my own
old paper that I have forgotten.
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an interval in the subgroup lattice of a finite group is known. (However, he
showed that the lattice on the left hand side is the congruence lattice of a finite
algebra.)

John Shareshian [15] suggested some candidates for lattices that may not
be representable as intervals in subgroup lattices of finite groups. The smallest
among these lattices is shown in Figure 4.
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Figure 4: A lattice conjectured not to be representable
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