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Abstract

In a graph G, a set D ⊆ V (G) is called 2-dominating set if each vertex not in
D has at least two neighbors in D. The 2-domination number γ2(G) is the minimum
cardinality of such a set D. We give a method for the construction of 2-dominating sets,
which also yields upper bounds on the 2-domination number in terms of the number of
vertices, if the minimum degree δ(G) is fixed. These improve the best earlier bounds
for any 6 ≤ δ(G) ≤ 21. In particular, we prove that γ2(G) is strictly smaller than n/2,
if δ(G) ≥ 6. Our proof technique uses a weight-assignment to the vertices where the
weights are changed during the procedure.
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1 Introduction

We study the graph invariant γ2(G), called 2-domination number, which is in close con-
nection with the fault-tolerance of networks. Our main contributions are upper bounds on
γ2(G) in terms of the number of vertices, when the minimum degree δ(G) is fixed. The
earlier upper bounds of this type are tight for δ(G) ≤ 4, here we establish improvements for
the range of 6 ≤ δ(G) ≤ 21. Our approach is based on a weight-assignment to the vertices,
where the weights are changed according to some rules during a 2-domination procedure.

1.1 Basic terminology

Given a simple undirected graph G, we denote by V (G) and E(G) the set of its vertices and
edges, respectively. The open neighborhood of a vertex v ∈ V (G) is defined as N(v) = {u ∈
V (G) | uv ∈ E(G)}, while the closed neighborhood of v is N [v] = N(v) ∪ {v}. Then, the
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degree d(v) is equal to |N(v)| and the minimum degree of G is the smallest vertex degree
δ(G) = min{d(v) | v ∈ V (G)}. We say that a vertex v dominates itself and its neighbors,
that is exactly the vertices contained in N [v]. A set D ⊆ V (G) is a dominating set if
each vertex of G is dominated or equivalently, if the closed neighborhood of D, defined as
N [D] =

⋃

v∈D N [v], equals V (G). The domination number γ(G) is the minimum cardinality
of such a set D. Domination theory has a rich literature, for results and references see the
monograph [13].

There are two different natural ways to generalize the notion of (1-)domination to multiple
domination. As defined in [10], a k-dominating set is a set D ⊆ V (G) such that every vertex
not in D has at least k neighbors in D. Moreover, D is a k-tuple dominating set if the same
condition |N [v] ∩ D| ≥ k holds not only for all v ∈ V (G) \ D but for all v ∈ V (G). The
minimum cardinalities of such sets are the k-domination number γk(G) and the k-tuple
domination number of G, respectively.

1.2 2-domination and applications

A sensor network can be modeled as a graph such that the vertices represent the sensors
and two vertices are adjacent if and only if the corresponding devices can communicate with
each other. Then, a dominating set D of this graph G can be interpreted as a collection
of cluster-heads, as each sensor which does not belong to D has at least one head within
communication distance.

A k-dominating set D may represent a dominating set which is (k−1)-fault tolerant. That
is, in case of the failure of at most (k − 1) cluster-heads, each remaining vertex is either
a head or keeps in connection with at least one head. The price of this k-fault tolerance
might be very high. In the extremal case, when k is greater than the maximum degree in
the network, the only k-dominating set is the entire vertex set. But for the usual cases
arising in practice, 2-domination might be enough and it does not require extremely many
heads.

Note that k-tuple domination might need much more vertices (cluster-heads) than k-
domination. As proved in [11], for each real number α > 1 and each natural number n
large enough, there exists a graph G on n vertices such that its k-tuple domination number
is at least k

α
times larger than its k-domination number. There surely exist some practical

problems where k-tuple domination is needed, but for many problems arising k-domination
seems to be sufficient. Indeed, if a cluster-head fails and is deleted from the network, we
may not need further heads to supervise it. This motivates our work on the 2-domination
number γ2.

Another potential application of our results in sensor networks concerns the data col-
lection problem. Here, each sensor has two capabilities: either measures and reports, or
receives and collects data. Only one position from those two can be active at the same
time. After deploying, the organization process determines exactly which sensors supply
the measuring and the collector function in the given network. Since it is a natural con-
dition that every measurement should be saved in at least two different devices, the set of
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collector sensors should form a 2-dominating set in the network.

We mention shortly that many further kinds of application exist. For example a facility
location problem may require that each region is either served by its own facility or has at
least two neighboring regions with such a service [17]. In this context, facility location may
also mean allocation of a camera system, or that of ambulance service centers.

1.3 Upper bounds on the 2-domination number

Although this subject attracts much attention (see the recent survey [8] for results and
references) and it seems very natural to give upper bounds for γ2 in terms of the minimum
degree, there are not too many results of this type. The following general upper bounds are
known. (As usual, n denotes the order of the graph, that is the number of its vertices.)

• If the minimum degree δ(G) is 0 or 1, then γ2(G) can be equal to n.

• If δ(G) = 2 then γ2(G) ≤ 2
3 n. This statement follows from a general upper bound on

γk(G) proved in [9]. The bound is tight for graphs each component of which is a K3.

• If δ(G) ≥ 3 then γ2(G) ≤ 1
2 n. The general theorem, from which the bound follows,

was established in [7]. Note that a 2-dominating set of cardinality at most n/2 can
be constructed by a simple algorithm. We divide the vertex set into two parts and
then in each step, a vertex which has more neighbors in its own part than in the other
one, is moved into the other part. If the minimum degree is at least 3, this procedure
results in two disjoint 2-dominating sets. Note that for δ(G) = 3 and 4 the bound is
tight. For example, it is easy to check that γ2(K4) = 2 and γ2(K4✷K2) = 4.1

• For every graph G of minimum degree δ ≥ 0,

γ2(G) ≤
2 ln(δ + 1) + 1

δ + 1
n.

This upper bound was obtained in [12] using probabilistic method and it is a strong
result when δ is really high. On the other hand, it gives an upper bound better than
0.5 n only if δ(G) ≥ 11.

In this paper we present a method which can be used to improve the existing upper bounds
when the minimum degree is in the “middle” range. Particularly, we show that if δ(G) ≥ 6
then γ2(G) is strictly smaller than n/2; δ(G) = 7 implies γ2(G) < 0.467 n; δ(G) = 8 implies
γ2(G) < 0.441 n; and γ2(G) < 0.418 n holds for every graph whose minimum degree is at
least 9.

The paper is organized as follows. In Section 2, we state our main theorem and its
corollaries which are the new upper bounds for specified minimum degrees. In Section 3
our main theorem is proved. Finally, we make some remarks on the algorithmic aspects of
our results.

1The Cartesian product K4✷K2 is the graph of order 8 which consists of two copies of K4 with a matching
between them. Note that γ3(K4✷K2) also equals 4.
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2 Our results

To avoid the repetition of the analogous argumentations for different minimum degrees,
we will state our theorem in a general form which is quite technical. Then, the upper
bounds will follow as easy consequences. First, we introduce a set of conditions which will
be referred to in our main theorem. We assume that d ≥ 4 holds.

s > a ≥ yd+1 ≥ yd ≥ · · · ≥ y0 ≥ b0 = 0 (1)

0 ≤ bd+1 − bd ≤ bd − bd−1 ≤ · · · ≤ b2 − b1 ≤ b1 (2)

0 ≤ yd+1 − bd+1 ≤ yd − bd ≤ · · · ≤ y1 − b1 ≤ y0 (3)

yd+1 ≤ a−
s− a

d+ 2
(4)

yd ≤ a−
s− a

d+ 1
(5)

bd+1 ≤ a−
s− a

d+ 3
−

s− a

d+ 1
(6)

bd ≤ a−
s− a

d+ 2
−

s− a

d+ 1
(7)

bd−1 ≤ a− 2 ·
s− a

d+ 1
(8)

a+ d(a− yd−1) ≥ s (9)

a+ d(yd+1 − bd) ≥ s (10)

yd+1 + (d+ 1)(a − yd−2) ≥ s (11)

yd+1 + (d+ 1)(yd+1 − bd) ≥ s (12)

a+ (d− 1)(a − yd−2) ≥ s (13)

a+ (d− 1)(yd − bd−1) ≥ s (14)

yd + d(a− yd−3) ≥ s (15)

yd + d(yd − bd−1) ≥ s (16)

bd+1 + (d+ 1)(a − yd−2) ≥ s (17)

bd+1 + (d+ 1)(yd−1 − bd−1) ≥ s (18)

a+ (d− 1)(b3 − b2) + (y2 − b1) + (d− 3)(b3 − b2) ≥ s (19)

y2 + (d− 3)(b3 − b2) + 2(y2 − b1 + (d− 3)(b3 − b2)) ≥ s (20)

a+ 0, 5b3 + (d− 1.5)(b3 − b2) + (a− y1) ≥ s (21)

a+ 0, 5b3 + (d− 1.5)(b3 − b2) + (y1 − b1 + (d− 3)(b3 − b2)) ≥ s (22)

1.5a + 0.5b3 − 0.5y0 + (d− 2)(b2 − b1) ≥ s (23)

a+ 0.5b3 + 0.5y1 − 0.5b1 + (d− 2)(b2 − b1) + 0.5(d − 3)(b3 − b2) ≥ s (24)

1.5a+ b3 + 0.5(d − 3)(b3 − b1) + 0.5(d − 2)(b3 − b2) ≥ s (25)

a+ b3 + 0.5y1 − 0.5b1 + 0.5(d − 3)(b3 − b1) + 0.5(d − 4)(b3 − b2) ≥ s (26)
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b3 + 3(a− y0) ≥ s (27)

b3 + 3(y1 − b1 + (d− 3)(b3 − b2)) ≥ s (28)

2y1 + 2(d− 2)(b2 − b1) ≥ s (29)

a+ 0, 5b2 + (d− 1.5)(b2 − b1) + 0, 5(a − y1) ≥ s (30)

a+ 0, 5b2 + (d− 1.5)(b2 − b1) + 0, 5(y1 − b1 + (d− 3)(b2 − b1)) ≥ s (31)

a+ 0.5(d − 1)b2 ≥ s (32)

b2 + 2y0 + 2(d− 2)(b2 − b1) ≥ s (33)

b2 + y0 + (d− 2)(b2 − b1) + (a− y0) ≥ s (34)

y0 + (d− 1)b1 ≥ s (35)

For every 2 ≤ i ≤ d− 2:

a+ (d− i)(bi+2 − bi+1) + i(a− yi−1) ≥ s (36)

a+ (d− i)(bi+2 − bi+1) + i(yi+1 − bi + (d− i− 2)(bi+2 − bi+1)) ≥ s (37)

yi+1 + (d− i− 2)(bi+2 − bi+1) + (i+ 1)(a− yi−2) ≥ s (38)

yi+1 + (d− i− 2)(bi+2 − bi+1) + (i+ 1)(yi+1 − bi + (d− i− 2)(bi+2 − bi+1)) ≥ s (39)

bi+2 + (i+ 2)(a− yi−1) ≥ s (40)

bi+2 + (i+ 2)(yi − bi + (d− i− 2)(bi+2 − bi+1)) ≥ s (41)

Now we are in a position to state our main theorem. Its proof will be given in Section 3.

Theorem 1. Assume that G is a graph of order n and with minimum degree δ(G) = d ≥ 6.
If a, y0, . . . , yd+1, b0, . . . , bd+1 are nonnegative numbers and s is a positive number such that
conditions (1)–(35), and also for every 2 ≤ i ≤ d− 2 the inequalities (36)–(41) are satisfied,
then

γ2(G) ≤
a

s
n.

If we fix an integer d, set s = 1, and want to minimize a under the conditions given in
Theorem 1, we have a linear programming problem. The solution a∗ of this LP-problem
gives an upper bound on γ2(G)

n
which holds for every graph with δ(G) ≥ d. In Table 1, we

summarize these upper bounds for several values of d.

The following consequences for d = 6, 7, 8, 9 can be directly obtained by using the integer
values given for the variables s, a, y0, . . . , yd+1, b0, . . . , bd+1 in Table 2. Substituting them
into the conditions (1)–(41) of Theorem 1, one can check that all inequalities are satisfied.
This yields the following upper bounds on the 2-domination number.

Corollary 1. Let G be a graph of order n.

(i) If δ(G) = 6 then γ2(G) ≤ 456883
918298 n < 0.498n.

(ii) If δ(G) = 7 then γ2(G) ≤ 140835095
301690439 n < 0.467n.
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δ 6 7 8 9 10 11

Our result 0.49754 0.46682 0.44016 0.41702 0.39679 0.37957

Earlier best bound 0.5 0.5 0.5 0.5 0.5 0.49749

δ 12 13 14 15 16 17

Our result 0.36459 0.35117 0.33914 0.33385 0.33052 0.32762

Earlier best bound 0.47154 0.44844 0.42775 0.40908 0.39215 0.37671

δ 18 19 20 21 22 23

Our result 0.32505 0.32277 0.32074 0.31891 0.31726 0.31574

Earlier best bound 0.36258 0.34958 0.33758 0.32646 0.31613 0.30651

δ 24 25 26 27 30 40

Our result 0.31436 0.31309 0.31192 0.31084 0.30803 0.30178

Earlier best bound 0.29752 0.28909 0.28118 0.27373 0.25381 0.20555

δ 50 60 70 80 90 100

Our result 0.29806 0.29560 0.29385 0.29254 0.29152 0.29071

Earlier best bound 0.17380 0.15118 0.13416 0.12086 0.11013 0.10129

Table 1: Comparison of our results and earlier best upper bounds on γ2(G)
n

, if the minimum
degree δ is fixed.

(iii) If δ(G) = 8 then γ2(G) ≤ 292954593
665571713 n < 0.441n.

(iv) If δ(G) ≥ 9 then γ2(G) ≤ 60805963517
145812382205 n < 0.418n.

3 Proof of Theorem 1

To prove Theorem 1 we apply an algorithmic approach, where weights are assigned to the
vertices and these weights change according to some rules during the greedy 2-domination
procedure. A similar proof technique was introduced in [2], later it was used in [3, 4, 18]
for obtaining upper bounds on the game domination number (see [1] for the definition) and
in [15, 16] for proving bounds on the game total domination number [14]. Based on this
approach we also obtained improvements for the upper bounds on the domination number
[6], and in the conference paper [5] we presented a preliminary version of this algorithm to
estimate the 2-domination number of graphs of minimum degree 8.

3.1 Selection procedure with changing weights

Throughout, we assume that a graph G is given with δ(G) ≥ d ≥ 6. We will consider an
algorithm in which the vertices of the 2-dominating set are selected one-by-one. A step in
the algorithm means that one vertex is selected (or chosen) and put into the set D which was
empty at the beginning of the process. Hence, after any step of the procedure, D denotes
the set of vertices chosen up to this point. We make difference between the following four
main types of vertices:
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δ = 6 δ = 7 δ = 8 δ = 9

a 502562162340 9858456650 215321625855 93641183816180

s 1010109434040 21118330730 489195209055 224551068595700

y10 − − − 78747157548500

y9 − − 180637395519 78747157548500

y8 − 8265018290 180637395519 78747157548500

y7 422846061750 8265018290 180637395519 77277448218740

y6 422846061750 8093880725 176196828255 75612599739380

y5 409645123200 7981810970 170236790715 73000318746740

y4 401052708000 7754608778 164408232975 69343125357044

y3 387969820875 7321226150 153359038875 64634747985500

y2 357968691360 6598921770 138571857655 57524154844772

y1 296456709780 5196793700 105895928425 43483590947181

y0 254021681340 4492799990 87943795415 33987088151324

b10 − − − 64166766443780

b9 − − 146353194015 64166766443780

b8 − 6656464850 146353194015 61811868322820

b7 338254849800 6656464850 139847385195 59456970201860

b6 338254849800 6286147490 133341576375 57102072080900

b5 313665896880 5915830130 126835767555 54125243789540

b4 289076943960 5545512770 118110911835 50365444145324

b3 264487991040 5021360750 107061717735 45588781601132

b2 226888474680 4278173340 89997559750 37861061453138

b1 151217550540 2770921790 57321630520 23820497555547

Table 2: Weights assigned to the vertices for graphs of minimum degree δ = 6, 7, 8 and 9.

• A vertex v is white, if v is not dominated, that is if |N [v] ∩D| = 0.

• A vertex v is yellow, if |N(v) ∩D| = 1 and v /∈ D.

• A vertex v is blue, if |N(v) ∩D| ≥ 2 and v /∈ D.

• A vertex v is red, if v ∈ D.

The sets of the white, yellow, blue and red vertices are denoted by W , Y , B and R,
respectively. After any step of the algorithm, we consider the graph G together with the set
D. Hence, the current colors of the vertices, that is the partition V (G) = W ∪ Y ∪B ∪R,
are also determined. The graph G together with a D ⊆ V (G) will be called colored graph
and denoted by GD. We define the WY-degree of a vertex v in GD to be degWY (v) =
|N(v)∩(W ∪Y )|. The sets W , Y and B are partitioned according to the WY-degrees of the
vertices. For every integer i ≥ 0 and for X = W,Y,B, let Xi = {v ∈ X | degWY (v) = i}.
Since R = D, we may assume that red vertices are not selected in any steps of the procedure.

We distinguish between two types of colored graphs. GD belongs to Type 1 if max{i |
Wi ∪ Yi+1 6= ∅} ≥ d+ 1, otherwise GD is of Type 2. Hence, a colored graph is of Type 2 if
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and only if degWY (v) ≤ d for every white vertex v and degWY (u) ≤ d+ 1 for every yellow
vertex u.

During the 2-domination algorithm, weights are assigned to the vertices. The weight
w(v) of vertex v is defined with respect to the current type of the colored graph and to the
current color and WY-degree of v.

w(v) if GD is of Type 1 w(v) if GD is of Type 2

v ∈ W a a

v ∈ Yi

a− s−a
i+1 , if i ≥ d

yi
a− s−a

d+1 , if i < d

v ∈ Bi

a− s−a
i+2 − s−a

i
, if i > d bd+1 if i > d

a− s−a
d+2 − s−a

d+1 , if i = d
bi if i ≤ d

a− 2 s−a
d+1 , if i < d

v ∈ R 0 0

The weight of the colored graph GD is just the sum of the weights assigned to its vertices.
Formally, w(GD) =

∑

v∈V (G)w(v).

Assume that a vertex v ∈ W ∪Y is selected from GD in a step of our algorithm. Hence, v
is recolored red in GD∪{v}. By definition, if a neighbor u of v belongs to Wi in GD, then u is
recolored yellow. Moreover, the WY-degree of u decreases by at least one, as its neighbor,
v, was white or yellow and now it is recolored red. Similarly, if the neighbor u belongs to
Yi in GD, then u ∈ Bj for a j ≤ i − 1 in GD∪{v}. In the other case, if a blue vertex v is
selected, v is also recolored red. For any neighbor u of v, if u ∈ Wi in GD then u ∈ Yj with
j ≤ i in GD∪{v}, and if u ∈ Yi in GD then u ∈ Bj with j ≤ i in GD∪{v}. No further vertices
are recolored, but the WY-degree of vertices from N [N(v)] might decrease.

Hence, assuming that the weights are nonnegative and inequalities (1)-(8) are satisfied,
we can observe that the weight of the colored graph and that of any vertex does not increase
in any step of the algorithm. By conditions (1), (2), (4)-(8), the weights yi, bi, used in a
colored graph of Type 2, are not greater than the corresponding weights in a graph of
Type 1. Thus, the following statement is also valid if GD belongs to Type 1 while GD∪{v}

belongs to Type 2.

Lemma 2. If the conditions (1)-(8) are satisfied, for any colored graph GD and for any
vertex v ∈ V (G) \D, the inequality w(GD) ≥ w(GD∪{v}) holds. Moreover, no vertex u has
greater weight in GD∪{v} than in GD.
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3.2 The s-property

For a positive number s, we will say that a colored graph GD satisfies the s-property, if
either D is a 2-dominating set of G or there exists a positive integer k and a set D∗ of k
vertices2 such that

w(GD)−w(GD∪D∗

) ≥ ks.

Assume that a 2-domination procedure is applied for a graph G which is of order n. At
the beginning, we have weight a on every vertex and w(G∅) = an. At the end, when D is
a 2-dominating set, all vertices are associated with weight 0, as they all are contained in
R ∪ B0. Consequently, if we show that for every D ⊆ V (G) the colored graph GD satisfies
the s-property, a 2-dominating set of cardinality at most an/s can be obtained, from which
γ2(G) ≤ a

s
n follows.

Lemma 3. Assume that G is a graph of order n and with a minimum degree of δ(G) =
d ≥ 6. If a, y0, . . . , yd+1, b0, . . . , bd+1 are nonnegative numbers and s is a positive number
such that conditions (1)–(35), and for every 2 ≤ i ≤ d−2 the inequalities (36)–(41) are also
satisfied, then for every D ⊆ V (G), the colored graph GD satisfies the s-property.

Proof. We prove the lemma via a series of claims. Lemma 2 will be used in nearly all
argumentations here (but in most of the cases we do not mention it explicitly). The only
exception is Claim A, which immediately follows from the definition of s-property.

Claim A If D is a 2-dominating set of G then GD satisfies the s-property.

Claim B If GD belongs to Type 1, it satisfies the s-property.

Proof. Let k = max{i | Wi ∪ Yi+1 6= ∅}. As GD is of Type 1, k ≥ d + 1. We assume
in the next argumentations that GD∪{v} (or GD∪{v′}) also is of Type 1. If this is not the
case, then, by conditions (1), (2), (4)-(8) and by the definition of the weight assignment,
the decrease in w(GD) may be even larger than counted.

If Wk 6= ∅, select a vertex v ∈ Wk. Each white neighbor u of v is from a class Wi with
i ≤ k. After the selection of v, this neighbor u is recolored yellow and its WY-degree
decreases by at least 1.3 Thus, the decrease in w(u) is not smaller than

a−

(

a−
s− a

(k − 1) + 1

)

=
s− a

k
.

On the other hand, each yellow neighbor u′ of v is from a class Yi′ with i′ ≤ k + 1. After
putting v into D, u′ will be a blue vertex with a WY-degree of at most i′ − 1. Hence, w(u′)
is decreased by at least

s− a

i′ − 1
≥

s− a

k
.

2Note that in most of the cases we will prove that the s-property holds with |D∗| = 1. That is, we simply
show that there exists a vertex v such that the choice of v decreases w(GD) by at least s.

3It might happen that the decrease is larger than 1. For example, if we have a complete graph Kn (n ≥ 3)
with one white vertex and n− 1 yellow vertices, and select the white vertex.
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Since v has k neighbors from W ∪ Y in GD, and the selection of v results in a decrease of
a in the weight of v, we have

w(GD)− w(GD∪{v}) ≥ a+ k
s− a

k
= s.

This shows that the colored graph GD with Wk 6= ∅ satisfies the s-property.

Now, assume that Wk = ∅. This implies Yk+1 6= ∅ and we can select a vertex v′ ∈ Yk+1

in the next step of the procedure. As v′ becomes red, its weight decreases by a− s−a
k+2 . Each

white neighbor u of v′ has a WY-degree of at most k−1. Hence, when u is recolored yellow
and loses at least one yellow neighbor, namely v′, w(u) decreases by at least

s− a

(k − 2) + 1
>

s− a

k
.

On the other hand, if u′ is a yellow neighbor of v′, we have the same situation as before,
when a white vertex v was put into the set D. That is, the decrease in w(u′) is at least s−a

k
.

These imply

w(GD)− w(GD∪{v′}) ≥ a−
s− a

k + 2
+ (k + 1)

s − a

k
> s

and again, GD satisfies the s-property. (✷)

From now on, we consider colored graphs of Type 2. Note that the inequalities

0 ≤ yd+1 − bd ≤ yd − bd−1 ≤ · · · ≤ y2 − b1 ≤ y1, (∗)

easily follow from conditions (2) and (3). Hence, if a vertex v is moved from Yi into Bi−1

in a step of the procedure, and i ≤ j is assumed, the decrease in w(v) is at least yj − bj−1.
Inequalities (1), (2) and (3) ensure similar estimations if v is moved from W into Yi, from
Yi into Bi, or from Bi into Bi−1, and i ≤ j is assumed.

Claim C If GD is a colored graph with d− 1 ≤ max{i | Wi ∪Yi+1 6= ∅} ≤ d, it satisfies the
s-property.

Proof. Our condition in Claim C implies that each white vertex has a WY-degree of at
most d and each yellow vertex has a WY-degree of at most d + 1. In particular, GD is of
Type 2. In the proof we consider four cases.

First, assume that Wd 6= ∅ and choose a vertex v ∈ Wd. When v is put into D, it
is recolored red and w(v) decreases by a. Any white neighbor u of v is recolored yellow
and degWY (u) decreases by at least 1. Together with condition (1), this implies that w(u)
decreases by at least a− yd−1. A yellow neighbor u′ of v is recolored blue and degWY (u

′),
decreases by at least 1. By (∗), the weight w(u′) is lowered by at least yd+1 − bd. By
conditions (9) and (10), a− yd−1 ≥ (s− a)/d and yd+1 − bd ≥ (s− a)/d. Hence, we obtain

w(GD)− w(GD∪{v}) ≥ a+ d
s− a

d
= s,
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and GD satisfies the s-property.

Second, assume that Wd = ∅, but there exists a vertex v ∈ Yd+1. Let us select v in the
next step of the algorithm. Then, v is recolored red and w(v) decreases by yd+1. Each white
neighbor u of v has a WY-degree of at most d − 1 in GD, and the weight w(u) decreases
by at least a − yd−2. Similarly, if u′ is a yellow neighbor of v, the decrease in w(u′) is not
smaller than yd+1 − bd. These facts together with conditions (11) and (12) imply

w(GD)− w(GD∪{v}) ≥ yd+1 + (d+ 1)
s− yd+1

d+ 1
= s,

which proves that GD has the s-property.

In the third case, Wd∪Yd+1 = ∅, but there exists a white vertex v with degWY (v) = d−1.
Similarly to the previous cases, but referring to conditions (13)–(14), one can show that

w(GD)− w(GD∪{v}) ≥ a+ (d− 1)
s− a

d− 1
= s.

In the last case, we assume that for each white vertex degWY ≤ d−2, for each yellow vertex
degWY ≤ d, and also that we may select a vertex v ∈ Yd. By (15) and (16), we obtain

w(GD)− w(GD∪{v}) ≥ yd + d
s− yd

d
= s.

This completes the proof of Claim C. (✷)

Claim D If GD is a colored graph with max{i | Wi ∪ Yi−1 6= ∅} ≤ d− 2, and there exists a
blue vertex v with degWY (v) ≥ d+ 1, then GD satisfies the s-property.

Proof. Assume that v is selected in the next step of the 2-domination procedure. Then, v
is recolored red and w(v) is lowered by bd+1. Each white neighbor has a WY-degree of at
most d−2 and becomes yellow, while each yellow neighbor of v has a WY-degree of at most
d − 1 and becomes blue. By conditions (1) and (2), the decrease in the weight of a white
or in that of a yellow neighbor is at least a− yd−2 or yd−1 − bd−1, respectively. Conditions
(17) and (18) imply w(GD)− w(GD∪{v}) ≥ s. (✷)

In the next proofs, we will use the following facts. A white vertex does not have any red
neighbors and every yellow vertex has exactly one red neighbor. Hence, under the condition
δ(G) ≥ d, each white vertex v ∈ Wx has at least d− x blue neighbors, and each v′ ∈ Yy has
at least d − y − 1 blue neighbors. Moreover, when this white or yellow vertex is recolored
red or blue, the WY-degrees of its d − x or d − y − 1 blue neighbors are decreased. More
precisely, if a vertex v is chosen in a step of the algorithm and v is white, the sum of the
WY-degrees of vertices which are blue in GD is decreased by at least

d− degWY (v) +
∑

w∈Y ∩N(v)

(d− 1− degWY (w)).

11



Similarly, if v ∈ Y ∪B, this decrease is at least

d− degWY (v) − 1 +
∑

w∈Y ∩N(v)

(d− 1− degWY (w))

if v is yellow, and at least

degWY (v) +
∑

w∈Y ∩N(v)

(d− 2− degWY (w))

if v is blue. Now, let us assume that for every blue vertex degWY (u) ≤ j and for a set
B′ ⊆ B the sum

∑

u∈B′ degWY (u) decreases by z. Then, by (2),
∑

u∈B′ w(u) decreases by
at least z(bj − bj−1). This remains valid, if for a vertex u ∈ B′, degWY (u) is reduced by
more than 1.

Claim E If GD is a colored graph with d − 2 ≥ max{i | Wi ∪ Yi+1 ∪ Bi+2 6= ∅} ≥ 2, it
satisfies the s-property.

Proof. Let k = max{i | Wi ∪ Yi+1 ∪Bi+2 6= ∅}. This implies degWY (v) ≤ k for every white
vertex, degWY (v) ≤ k + 1 for every yellow vertex, and degWY (v) ≤ k + 2 for every blue
vertex. We consider three cases.

If there exists a white vertex v of degWY (v) = k, assume that v is selected in the next
step. Then, w(v) decreases by a. Further, since v is recolored red, the sum of the WY-
degrees of its blue neighbors decreases by at least (d− k). This results in a further change
of at least (d − k)(bk+2 − bk+1) in w(GD). If u ∈ Wj (j ≤ k) is a white neighbor of v, in
GD∪{v} u is recolored yellow and has a WY-degree of at most j − 1. Hence, the decrease in
w(u) is at least

a− yk−1 ≥
s− a− (d− k)(bk+2 − bk+1)

k
,

where the last inequality follows from (36) substituting i = k. Consider now a yellow
neighbor u′ of v. After the choice of v, u′ is recolored blue and w(u′) decreases by at least
yk+1 − bk. Taking into account the decreases in the weights of vertices from N(u′)∩B, the
recoloring of each such u′ contributes to the decrease of w(GD) with at least

yk+1 − bk + (d− (k + 1)− 1)(bk+2 − bk+1) ≥
s− a− (d− k)(bk+2 − bk+1)

k
,

where the lower bound follows from (37) substituting i = k. Therefore, if v ∈ Wk,

w(GD)− w(GD∪{v}) ≥ a+ (d− k)(bk+2 − bk+1) + k
s− a− (d− k)(bk+2 − bk+1)

k
= s.

Consequently, GD has the s-property if Wk 6= ∅.

In the following two cases, we count w(GD)− w(GD∪{v}) in a similar way. Assume that
Wk = ∅ but Yk+1 6= ∅, and choose a vertex v from Yk+1. Vertex v is recolored red and
the WY-degrees of its blue neighbors decrease. This contributes to the difference w(GD)−
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w(GD∪{v}) with at least yk+1+(d−k−2)(bk+2−bk+1). Further, if u is a white neighbor of v
then degWY (u) ≤ k− 1 in GD. Once v is recolored red, w(u) decreases by at least a− yk−2.
By condition (38), it is not smaller than (s− yk+1 − (d− k− 2)(bk+2 − bk+1))/(k+1). If u′

is a yellow neighbor of v, then u′ will be blue in GD∪{v} and the WY-degrees in B ∩N(u′)
are decreased. Consequently, and also referring to (39), each yellow neighbor u′ contributes
to the decrease of w(GD) with at least

yk+1 − bk + (d− k − 2)(bk+2 − bk+1) ≥
s− yk+1 − (d− k − 2)(bk+2 − bk+1)

k + 1
.

In total, v has k + 1 neighbors from W ∪ Y , and we have

w(GD)−w(GD∪{v}) ≥ yk+1+(d−k−2)(bk+2−bk+1)+(k+1)
s− yk+1 − (d− k − 2)(bk+2 − bk+1)

k + 1
= s,

which proves that GD satisfies the s-property.

In the third case, Wk ∪ Yk+1 = ∅ and we have a blue vertex v with degWY (v) = k + 2.
Selecting v in the next step of the procedure, v will be recolored red and w(v) becomes 0.
Each white neighbor u of v is recolored yellow and has a decrease of at least a − yk−1 in
w(u) (in this case, degWY (u) might be unchanged). Moreover, each yellow neighbor u′ of v
is recolored blue and the weights of the vertices from N(u′) ∩B are also decreased. Then,
the recoloring of u′ contributes to the decrease of w(GD) by at least

yk − bk + (d− k − 2)(bk+2 − bk+1) ≥
s− bk+2

k + 2
,

where the inequality follows from (40). On the other hand, by (41), we have a − yk−1 ≥
(s− bk+2)/(k + 2). We may conclude that

w(GD)− w(GD∪{v}) ≥ bk+2 + (k + 2)
s− bk+2

k + 2
= s.

Thus, in the third case GD also satisfies the s-property. (✷)

Claim F Let GD be a colored graph with max{i | Wi∪Yi+1∪Bi+2 6= ∅} = 1 such that there
exists an edge between W and Y . Then, GD satisfies the s-property.

Proof. Choose a white vertex v whose only neighbor from W ∪ Y is a yellow vertex u in
GD. By our condition, degWY (u) ≤ 2. In GD∪{v}, the vertex v is recolored red and u ∈ B1.
Moreover, in GD, v and u has at least d − 1 and d − 3 blue neighbors, respectively. By
condition (19),

w(GD)− w(GD∪{v}) ≥ a+ (d− 1)(b3 − b2) + (y2 − b1) + (d− 3)(b3 − b2) ≥ s,

and GD has the s-property. (✷)

Henceforth, we may assume that there are no edges between W and Y .

13



Claim G If GD is a colored graph with max{i | Wi ∪ Yi+1 ∪ Bi+2 6= ∅} = 1 and Y2 6= ∅,
then GD has the s-property.

Proof. Consider a vertex v ∈ Y2 in GD. As supposed, it has no white neighbors. Hence,
v is adjacent to two vertices, say u1 and u2, which are from Y2 ∪ Y1. Then, in GD∪{v},
v is recolored red, u1 and u2 are recolored blue and belong to B1 ∪ B0. The decrease in
∑

w∈B∩(N(v)∪N(u1)∪N(v2))
degWY (w) is at least 3(d− 3). Then, also using (20),

w(GD)− w(GD∪{v}) ≥ y2 + 2(y2 − b1) + 3(d − 3)(b3 − b2) ≥ s.

This proves the claim. (✷)

Claim H If GD is a colored graph with max{i | Wi ∪ Yi ∪ Bi+2 6= ∅} = 1, it satisfies the
s-property.

Proof. Suppose for a contradiction that there exits a colored graph GD which satisfies the
condition of our claim but does not have the s-property. First, let us assume W1 6= ∅ and
recall that each white vertex with degWY (v) = 1 has a white neighbor of the same type.
We consider the following cases:

(i) If there exists a vertex v1 ∈ W1 with a white neighbor v2, and with a blue neighbor
u from B3 such that u is not adjacent to v2, we assume that in two consecutive steps
of the procedure v2 and u are chosen. Then, v2 and u are recolored red, and v1
becomes blue with a WY-degree of 0. This contributes to the decrease of w(GD) with
2a + b3. The total weight of the further blue neighbors of v1 and v2 decreases by at
least ((d − 2) + (d − 1))(b3 − b2). If u has a white neighbor w in GD, w becomes
yellow and contributes to the decrease of w(GD) with at least a − y1. By (21), it is
not smaller than (2s− 2a− b3− (2d− 3)(b3 − b2))/2. If w

′ is a yellow neighbor of u in
GD, then it is recolored blue and degWY (w′) is either 1 or 0 in GD∪{v2,u}. Further,
the weights of the at least d − 3 blue neighbors of w′ which are different from u are
also decreased. In total, w′ contributes to the decrease of w(GD) with at least

y1 − b1 + (d− 3)(b3 − b2) ≥
2s− 2a− b3 − (2d− 3)(b3 − b2)

2
,

where the last inequality is equivalent to (22). Therefore, we have

w(GD)−w(GD∪{v2,u}) ≥ 2a+b3+(2d−3)(b3−b2)+2
2s− 2a− b3 − (2d− 3)(b3 − b2)

2
= 2s,

and the s-property would be satisfied by GD. This contradicts our assumption.

(ii) Since GD is supposed to be a counterexample, if a blue vertex u ∈ B3 is adjacent to
a white vertex then it is also adjacent to the white neighbor of it. If we have two
adjacent white vertices v1 and v2 which have only one (common) neighbor u from B3,
choose v1 and u in the next two steps of the procedure. Then, v1 and u are recolored
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red, while v2 is recolored blue and has a WY-degree of 0. Their weights are decreased
by 2a+ b3. All the further blue neighbors of v1 and v2 belong to B2 ∪B1 in GD. The
WY-degrees of these blue vertices are reduced, which contributes to the difference
w(GD)−w(GD∪{v1,u}) with at least 2(d−2)(b2−b1). The blue vertex u has one white
or yellow neighbor w which is different from v1 and v2. If w is white, it is from W0,
as otherwise w, its white neighbor, and u would satisfy the assumption in case (i).
Hence, when w is recolored yellow, w(w) decreases by a− y0, and

w(GD)− w(GD∪{v1,u}) ≥ 2a+ b3 + 2(d− 2)(b2 − b1) + a− y0,

which is at least 2s by condition (23). If w is yellow then w ∈ Y1 ∪ Y0. When
w is recolored blue, the WY-degrees of its blue neighbors are also reduced. These
contribute to the difference w(GD)−w(GD∪{v1,u}) with at least y1−b1+(d−3)(b3−b2).
Therefore, referring to (24),

w(GD)−w(GD∪{v1,u}) ≥ 2a+ b3 +2(d− 2)(b2 − b1) + y1 − b1 + (d− 3)(b3 − b2) ≥ 2s.

We infer that in the counterexample GD we cannot have a white vertex in W1 that
has exactly one neighbor from B3.

(iii) Now assume that v1, v2 ∈ W1 and their neighbors u1 and u2 are from B3 in GD.
Choose u1 and u2 and consider GD∪{u1,u2}. Here, v1 and v2 are blue vertices of WY-
degree 0, while u1 and u2 are red. In GD, each blue neighbor of v1 and v2 which
is different from u1 and u2 is either from B2 or it is a further common neighbor of
v1 and v2 from B3. In the worst case, the decrease in their weights contributes to
w(GD)−w(GD∪{u1,u2}) with (d− 3)(b3 − b1). Finally, u1 and u2 have neighbors from
W0 ∪ Y1 ∪ Y0. It is enough to consider the following cases.

– u1 and u2 have a common neighbor w ∈ W0. Then, w is recolored blue. The
weight of w and that of its blue neighbors (different from u1 and u2) decrease by
at least a+ (d− 2)(b3 − b2). Then, by (25) and by our earlier observations

w(GD)−w(GD∪{u1,u2}) ≥ 2a+2b3 + (d− 3)(b3 − b1) + a+ (d− 2)(b3 − b2) ≥ 2s.

Hence, in a counterexample we cannot have this case.

– u1 and u2 have a common neighbor w ∈ Y1. Then, w is recolored blue and
moved to B1 in GD∪{u1,u2}. Also, the weights of its blue neighbors decrease.
These contribute to the difference w(GD)−w(GD∪{u1,u2}) with at least y1− b1+
(d− 4)(b3 − b2), and we have

w(GD)−w(GD∪{u1,u2}) ≥ 2a+2b3+(d−3)(b3−b1)+y1−b1+(d−4)(b3−b2) ≥ 2s,

where the last inequality follows from (26). Again, this case is not possible in a
counterexample.

– u1 and u2 have two different neighbors, namely w1 and w2, from W0. Then, w1

and w2 are recolored yellow and we have

w(GD)− w(GD∪{u1,u2}) ≥ 2a+ 2b3 + (d− 3)(b3 − b1) + 2(a − y0)

≥ 2a+ b3 + 3(b3 − b2) + 2(d− 3)(b3 − b2) + 2(a− y1) ≥ 2s.
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Here, we used (21) and the inequalities b3 ≥ 3(b3 − b2) and b3 − b1 ≥ 2(b3 − b2)
which follow from (2).

We have shown that there are no edges between W1 and B3 if GD is a counterexample to
Claim F. In what follows we prove that B3 = ∅ and Y1 = ∅.

Suppose that B3 6= ∅ and choose a vertex v from B3. As it has been shown, all white
and yellow neighbors of v belong to W0 ∪ Y1 ∪ Y0. If u is a white neighbor, w(u) decreases
by a − y0, and if u′ is yellow, its recoloring contributes to the decrease of GD by at least
y1 − b1 + (d− 3)(b3 − b2). By conditions (27) and (28),

w(GD)− w(GD∪{v}) ≥ b3 + 3
s− b3

3
= s.

Hence, in the counterexample each blue vertex is of a WY-degree of at most 2.

Suppose now that Y1 6= ∅ and choose a vertex v from it. Since v cannot have a neighbor
from W , it must have a neighbor u from Y1. In GD∪{v}, v is recolored red, u is recolored
blue with a WY-degree 0, and each of their at least 2(d− 2) blue neighbors has a decrease
of at least b2 − b1 in its weight. Hence, we have

w(GD)−w(GD∪{v}) ≥ 2y1 + 2(d − 2)(b2 − b1),

which is at least s by (29). We may conclude that Y1 = ∅ holds in our counterexample.

Assume that W1 is not empty. Then, W1 consists of pairs of adjacent vertices, we refer
to which as “white pairs”.

First, suppose that there exits a white pair v1, v2 and a vertex u ∈ B2 such that u is
adjacent to v1 and nonadjacent to v2. In the next two steps of the procedure we choose
v2 and u. Then, v2 and u are recolored red, v1 becomes a blue vertex of WY-degree 0.
The WY-degrees of blue neighbors of v1 and v2 are also reduced. In total, these result in
a decrease of at least 2a + b2 + (2d − 3)(b2 − b1) in w(GD). Moreover, u has a white or a
yellow neighbor w different from v1. For the cases w ∈ W1 and w ∈ Y1 ∪ Y0 we have the
following inequalities by (30) and (31), respectively.

w(GD)− w(GD∪{v2,u}) ≥ 2a+ b2 + (2d− 3)(b2 − b1) + (a− y1) ≥ 2s

w(GD)−w(GD∪{v2,u}) ≥ 2a+ b2 + (2d− 3)(b2 − b1) + (y1 − b1 + (d− 3)(b2 − b1)) ≥ 2s

We may infer that GD has the s-property, which is a contradiction. Hence, if a blue vertex
from B2 is adjacent to a vertex from W1, then it is also adjacent to the other vertex from
that white pair.

Now, consider any white pair v1, v2 and choose these two vertices in two consecutive steps
of the procedure. As a result, v1 and v2 are recolored red and all their blue neighbors are
of WY-degree 0. Since b2 − b1 ≤ b1 − b0 = b1, the worst case is when v1 and v2 share d− 1
blue neighbors from B2 in GD. By (32), we have

w(GD)− w(GD∪{v1,v2}) ≥ 2a+ (d− 1)b2 ≥ 2s,
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contradicting our assumption that GD is counterexample.

Consequently, if max{i | Wi ∪ Yi ∪Bi+2 6= ∅} = 1 then GD has the s-property, as stated
in Claim H. (✷)

What remains to consider after Claims A-H is the case when D is not a 2-dominating set
that is W ∪Y 6= ∅ but all white and yellow vertices are of WY-degree 0 and all blue vertices
have a WY-degree of at most 2.

First, suppose that we have an edge between B2 and Y0. Then, choose a blue vertex
v ∈ B2 which has a yellow neighbor u. Vertex v has a further neighbor u′ from W0 ∪ Y0.
Depending on the color of u′, we can use either (33) or (34) and obtain the following
inequalities. If u′ is yellow,

w(GD)− w(GD∪{v}) ≥ b2 + 2y0 + 2(d − 2)(b2 − b1) ≥ s.

If u′ is white

w(GD)− w(GD∪{v}) ≥ b2 + y0 + (d− 2)(b2 − b1) + a− y0 ≥ s.

Thus, in these cases GD has the s-property.

Now assume that Y0 6= ∅ and choose a vertex v from Y0. We have just shown that v has
no neighbors from B2. Hence, v has at least d − 1 blue neighbors from B1. Together with
(35), these imply

w(GD)− w(GD∪{v}) ≥ y0 + (d− 1)b1 ≥ s,

and GD has the s-property.

Finally, we assume that Y = ∅, but we have x vertices in W0, z2 vertices in B2 and z1
vertices in B1, Thus, w(G

D) = xa+ z2b2 + z1b1. On the other hand, counting the number
of edges between W0 and B2 ∪ B1 in two different ways, dx ≤ 2z2 + z1. Consider GD∪Y0 ,
that is assume that in x consecutive steps we select all white vertices. Clearly, in GD∪Y0

every vertex has a weight of 0. Hence,

w(GD)− w(GD∪Y0) = xa+ z2b2 + z1b1 ≥ xa+ (2z2 + z1)min

{

b2
2
, b1

}

≥ xa+ dx
b2
2

≥ xs.

The last inequality is a consequence of (32), and b2/2 ≤ b1 follows from b2 − b1 ≤ b1.

The cases discussed in our proof together cover all possibilities, hence every colored graph
GD satisfies the s-property under the conditions of Lemma 3.

As we discussed it at the beginning of this section, Theorem 1 is an immediate consequence
of Lemma 3.
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4 Concluding remarks

Finally, we make some remarks on the algorithmic aspects of our proof. In Table 1, we
compared the upper bounds obtained by our Theorem 1 and those proved in [12] with
probabilistic method. Our upper bounds on γ2(G) improve the earlier best results if the
minimum degree δ is between 6 and 21. Nevertheless the algorithm, which is behind our
proof, can also be useful for δ ≥ 22, as we can guarantee the determination of a 2-dominating
set of bounded size for each input graph.

We can identify two different algorithms based on the proof in Section 3. For the first
version, we do not need to count the weights assigned to the vertices. We just consider the
list of instructions below and in each step of the algorithm we follow the first one which is
applicable.

1. If k = max{i | Wi ∪ Yi+1 6= ∅} ≥ d− 1 and Wk 6= ∅, choose a vertex from Wk.

2. If k = max{i | Wi ∪ Yi+1 6= ∅} ≥ d− 1, choose a vertex from Yk+1.

3. If k = max{i | Bi 6= ∅} ≥ d+ 1, choose a vertex from Bk.

4. If 2 ≤ k = max{i | Wi ∪ Yi+1 ∪ Bi+2 6= ∅} ≤ d− 2 and Wk 6= ∅, choose a vertex from
Wk.

5. If 2 ≤ k = max{i | Wi ∪ Yi+1 ∪Bi+2 6= ∅} ≤ d− 2 and Yk+1 6= ∅, choose a vertex from
Yk+1.

6. If 2 ≤ k = max{i | Wi ∪ Yi+1 ∪Bi+2 6= ∅} ≤ d− 2, choose a vertex from Bk+2.

7. If there exists a white vertex v with a yellow neighbor, choose v.

8. If Y2 6= ∅, choose a vertex from it.

9. If there exist two adjacent white vertices v1 and v2 such that v1 has a neighbor u from
B3 which is not adjacent to v2, choose v2 and u.

10. If there exists a vertex v in W1, which has exactly one neighbor, say u, in B3, choose
v and u.

11. If there exists a vertex v in W1, which has at least two neighbors in B3, choose two
vertices from N(v) ∩B3.

12. If B3 6= ∅, choose a vertex from it.

13. If Y1 6= ∅, choose a vertex from it.

14. If there exist two adjacent white vertices v1 and v2 such that v1 has a neighbor u from
B2 which is not adjacent to v2, choose v2 and u.

15. If there exist two adjacent white vertices, choose such two vertices.
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16. If there exists a blue vertex v ∈ B2 which has at least one yellow neighbor, choose v.

17. If Y 6= ∅, choose a yellow vertex.

18. Choose all the white vertices.

By a slightly different interpretation, we can define a 2-domination algorithm based on
the weight assignment introduced in Section 3. Then, in each step, we choose a vertex v
such that the decrease w(GD)−w(GD∪{v}) is the possible largest. The exceptions are those
steps where GD would be treated by instructions 9, 10, 11, 14, 15 or 18 of the previous
algorithm. In these cases, the greedy choice concerns the maximum decrease of w(GD) in
two (or more) consecutive steps.
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