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Abstract

In a graph G, a set D C V(G) is called 2-dominating set if each vertex not in
D has at least two neighbors in D. The 2-domination number 5 (G) is the minimum
cardinality of such a set D. We give a method for the construction of 2-dominating sets,
which also yields upper bounds on the 2-domination number in terms of the number of
vertices, if the minimum degree §(G) is fixed. These improve the best earlier bounds
for any 6 < §(G) < 21. In particular, we prove that v2(G) is strictly smaller than n/2,
if 6(G) > 6. Our proof technique uses a weight-assignment to the vertices where the
weights are changed during the procedure.
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1 Introduction

We study the graph invariant v2(G), called 2-domination number, which is in close con-
nection with the fault-tolerance of networks. Our main contributions are upper bounds on
v2(G) in terms of the number of vertices, when the minimum degree §(G) is fixed. The
earlier upper bounds of this type are tight for §(G) < 4, here we establish improvements for
the range of 6 < 0(G) < 21. Our approach is based on a weight-assignment to the vertices,
where the weights are changed according to some rules during a 2-domination procedure.

1.1 Basic terminology

Given a simple undirected graph G, we denote by V(G) and E(G) the set of its vertices and
edges, respectively. The open neighborhood of a vertex v € V(G) is defined as N (v) = {u €
V(G) | wwv € E(G)}, while the closed neighborhood of v is N[v] = N(v) U {v}. Then, the
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degree d(v) is equal to |N(v)| and the minimum degree of G is the smallest vertex degree
0(G) = min{d(v) | v € V(G)}. We say that a vertex v dominates itself and its neighbors,
that is exactly the vertices contained in N[v]. A set D C V(G) is a dominating set if
each vertex of G is dominated or equivalently, if the closed neighborhood of D, defined as
N[D] = U,ep Nv], equals V(G). The domination number ~(G) is the minimum cardinality
of such a set D. Domination theory has a rich literature, for results and references see the
monograph [13].

There are two different natural ways to generalize the notion of (1-)domination to multiple
domination. As defined in [10], a k-dominating set is a set D C V(G) such that every vertex
not in D has at least k neighbors in D. Moreover, D is a k-tuple dominating set if the same
condition |N[v] N D| > k holds not only for all v € V(G) \ D but for all v € V(G). The
minimum cardinalities of such sets are the k-domination number v;(G) and the k-tuple
domination number of G, respectively.

1.2 2-domination and applications

A sensor network can be modeled as a graph such that the vertices represent the sensors
and two vertices are adjacent if and only if the corresponding devices can communicate with
each other. Then, a dominating set D of this graph G can be interpreted as a collection
of cluster-heads, as each sensor which does not belong to D has at least one head within
communication distance.

A k-dominating set D may represent a dominating set which is (k—1)-fault tolerant. That
is, in case of the failure of at most (k — 1) cluster-heads, each remaining vertex is either
a head or keeps in connection with at least one head. The price of this k-fault tolerance
might be very high. In the extremal case, when k is greater than the maximum degree in
the network, the only k-dominating set is the entire vertex set. But for the usual cases
arising in practice, 2-domination might be enough and it does not require extremely many
heads.

Note that k-tuple domination might need much more vertices (cluster-heads) than k-
domination. As proved in [II], for each real number o > 1 and each natural number n
large enough, there exists a graph G on n vertices such that its k-tuple domination number
is at least g times larger than its k-domination number. There surely exist some practical
problems where k-tuple domination is needed, but for many problems arising k-domination
seems to be sufficient. Indeed, if a cluster-head fails and is deleted from the network, we
may not need further heads to supervise it. This motivates our work on the 2-domination
number .

Another potential application of our results in sensor networks concerns the data col-
lection problem. Here, each sensor has two capabilities: either measures and reports, or
receives and collects data. Only one position from those two can be active at the same
time. After deploying, the organization process determines exactly which sensors supply
the measuring and the collector function in the given network. Since it is a natural con-
dition that every measurement should be saved in at least two different devices, the set of



collector sensors should form a 2-dominating set in the network.

We mention shortly that many further kinds of application exist. For example a facility
location problem may require that each region is either served by its own facility or has at
least two neighboring regions with such a service [I7]. In this context, facility location may
also mean allocation of a camera system, or that of ambulance service centers.

1.3 Upper bounds on the 2-domination number

Although this subject attracts much attention (see the recent survey [8] for results and
references) and it seems very natural to give upper bounds for 72 in terms of the minimum
degree, there are not too many results of this type. The following general upper bounds are
known. (As usual, n denotes the order of the graph, that is the number of its vertices.)

e If the minimum degree 6(G) is 0 or 1, then v2(G) can be equal to n.

o If §(G) = 2 then 1»(G) < % n. This statement follows from a general upper bound on
vk(G) proved in [9]. The bound is tight for graphs each component of which is a Kj.

e If 5(G) > 3 then 72(G) < 3 n. The general theorem, from which the bound follows,
was established in [7]. Note that a 2-dominating set of cardinality at most n/2 can
be constructed by a simple algorithm. We divide the vertex set into two parts and
then in each step, a vertex which has more neighbors in its own part than in the other
one, is moved into the other part. If the minimum degree is at least 3, this procedure
results in two disjoint 2-dominating sets. Note that for §(G) = 3 and 4 the bound is
tight. For example, it is easy to check that v5(Ky4) = 2 and v (K4O0K>) = 4

e For every graph G of minimum degree § > 0,
2In(6+1)+1
o0+1
This upper bound was obtained in [12] using probabilistic method and it is a strong

result when § is really high. On the other hand, it gives an upper bound better than
0.5 n only if §(G) > 11.

72(G) <

In this paper we present a method which can be used to improve the existing upper bounds
when the minimum degree is in the “middle” range. Particularly, we show that if §(G) > 6
then 2 (QG) is strictly smaller than n/2; 6(G) = 7 implies ¥2(G) < 0.467 n; 6(G) = 8 implies
v2(G) < 0.441 n; and v2(G) < 0.418 n holds for every graph whose minimum degree is at
least 9.

The paper is organized as follows. In Section 2, we state our main theorem and its
corollaries which are the new upper bounds for specified minimum degrees. In Section
our main theorem is proved. Finally, we make some remarks on the algorithmic aspects of
our results.

IThe Cartesian product K4OK> is the graph of order 8 which consists of two copies of K4 with a matching
between them. Note that v3(K40K>) also equals 4.



2  Our results

To avoid the repetition of the analogous argumentations for different minimum degrees,
we will state our theorem in a general form which is quite technical. Then, the upper
bounds will follow as easy consequences. First, we introduce a set of conditions which will
be referred to in our main theorem. We assume that d > 4 holds.

5>a>Yqge1 > Yqd > > Yo =>bg =0 (1)

0<bgy1 —bg <bg—bg1<--<by—b <l (2)

0<¥d+1 —ba+1 <Ya—ba < -+ <y1 — b1 <o 3)
yd+1§a—2;; 4)

Ya < a— (Si—_FClL (5)

bdﬂga_ng_cSHClL (6)

bdga_fl+;_fl+61l (7)

bd_lga—zfl;‘i (8)

a+d(a—ys-1)>s 9)

a+dya —ba) > s (10)

Ya+1 + (d+1)(a —ya—2) > s (11)

Yar1 + (d+1)(yar1 — ba) > s (12)

+(d—1)(a — Yya—2) > s (13)

a+(d—1)(yd—bd 1) >s (14)

Ya +d(a —yi-3) > s (15)

Ya+ d(yq —bg—1) > s (16)

bgr1+ (d+1)(a —yg—2) > s (17)

bar1+ (d+1)(ya—1 —ba-1) > s (18)

a+ (d—1)(b3 —ba) + (y2 —b1) + (d = 3)(b3 — b2) > s (19)

ya + (d —3)(bg — b)) + 2(y2 — by + (d —3)(bg — b2)) > s (20)
a+0,5b3 + (d—1.5)(bg — b)) + (a —y1) > s (21)

a+0,5b3 + (d—1.5)(bg — ba) + (y1 — b1 + (d — 3)(bs — b2)) > s (22)
1.5a + 0.5b3 — 0.5y0 + (d — 2)(by — b1) > s (23)

a+ 0.5b3 + 0.5y; — 0.5b1 + (d — 2)(ba — b1) + 0.5(d — 3)(bg — b2) > s (24)
1.5a + b3 + 0.5(d — 3)(bg — by) + 0.5(d — 2)(bg — ba) > s (25)

a+ bz + 0.5y — 0.5b1 + 0.5(d — 3)(bs — b1) + 0.5(d — 4)(bs — b2) > s (26)



b3+ 3(a—yo) = s (27)
b3 +3(y1 — b1+ (d—3)(b3 — b2)) = s (28)
2y1 +2(d —2)(bz = b1) = s (29)
a+ 0,50 + (d —1.5)(by — b1) +0,5(a —y1) > s (30)
a+0,5by + (d — 1.5)(ba — b1) + 0,5(y1 — by + (d — 3)(ba — b1)) > s (31)
a+0.5(d—1)by > s (32)
by +2yo +2(d — 2)(ba — b1) = s (33)
ba+yo+ (d—2)(ba —b1)+ (a—1yo) > s (34)
Yo+ (d—1)by > s (35)
For every 2 <:<d—2:
a+ (d—1)(biy2 — bit1) +ila—yi—1) >s  (36)
a+(d—i)(bis2 = bix1) +i(yiv1 — bi + (d — 1 = 2)(biy2 — biy1)) =2 s (37)
Yir1 + (d =i = 2)(big2 = bip1) + (i +1)(a —yi—2) = s (38)
Yirr + (d =i = 2)(bit2 — biga) + (0 + D) (gir1 — bi + (d — 1 = 2)(biv2 — biy1)) =2 s (39)
biva + (i +2)(a—yi-1) >s  (40)
biva + (i +2)(yi —bi + (d — 1= 2)(big2 — bit1)) =25 (41)

Now we are in a position to state our main theorem. Its proof will be given in Section Bl

Theorem 1. Assume that G is a graph of order n and with minimum degree §(G) = d > 6.
Ifa, yo,...,Yd+1, bo,--.,bir1 are nonnegative numbers and s is a positive number such that
conditions (1)=(35), and also for every 2 < i < d—2 the inequalities (36)—(41) are satisfied,
then

72(G) <

%IQ

If we fix an integer d, set s = 1, and want to minimize a under the conditions given in
Theorem [Il we have a linear programming problem. The solution a* of this LP-problem
gives an upper bound on M which holds for every graph with 6(G) > d. In Table [ we
summarize these upper bounds for several values of d.

The following consequences for d = 6,7,8,9 can be directly obtained by using the integer
values given for the variables s, a,yo,...,Yd+1,b0,--.,b4+1 in Table Bl Substituting them
into the conditions (1)—(41) of Theorem [Il one can check that all inequalities are satisfied.
This yields the following upper bounds on the 2-domination number.

Corollary 1. Let G be a graph of order n.

(i) If 6(G) =6 then v2(G) < £ n < 0.498n.

(ii) If 6(G) =T then 2(G) < 39835093 1y < 0.467n.




1) 6 7 8 9 10 11
Our result 0.49754 | 0.46682 | 0.44016 | 0.41702 | 0.39679 | 0.37957
Earlier best bound 0.5 0.5 0.5 0.5 0.5 0.49749

1) 12 13 14 15 16 17
Our result 0.36459 | 0.35117 | 0.33914 | 0.33385 | 0.33052 | 0.32762
Earlier best bound | 0.47154 | 0.44844 | 0.42775 | 0.40908 | 0.39215 | 0.37671

1) 18 19 20 21 22 23
Our result 0.32505 | 0.32277 | 0.32074 | 0.31891 | 0.31726 | 0.31574
Earlier best bound | 0.36258 | 0.34958 | 0.33758 | 0.32646 | 0.31613 | 0.30651

1) 24 25 26 27 30 40
Our result 0.31436 | 0.31309 | 0.31192 | 0.31084 | 0.30803 | 0.30178
Earlier best bound | 0.29752 | 0.28909 | 0.28118 | 0.27373 | 0.25381 | 0.20555

1) 50 60 70 80 90 100
Our result 0.29806 | 0.29560 | 0.29385 | 0.29254 | 0.29152 | 0.29071
Earlier best bound | 0.17380 | 0.15118 | 0.13416 | 0.12086 | 0.11013 | 0.10129

Table 1: Comparison of our results and earlier best upper bounds on M, if the minimum

n

degree 9 is fixed.

(iid) If 5(G) = 8 then yo(G) < 22231298 n < 0.441n.

(iv) If 6(G) > 9 then v2(G) < LEOBLL < 0.418n.

3 Proof of Theorem [l

To prove Theorem [I] we apply an algorithmic approach, where weights are assigned to the
vertices and these weights change according to some rules during the greedy 2-domination
procedure. A similar proof technique was introduced in [2], later it was used in [3], [4] [18]
for obtaining upper bounds on the game domination number (see [I] for the definition) and
in [I5, 16] for proving bounds on the game total domination number [14]. Based on this
approach we also obtained improvements for the upper bounds on the domination number
[6], and in the conference paper [5] we presented a preliminary version of this algorithm to
estimate the 2-domination number of graphs of minimum degree 8.

3.1 Selection procedure with changing weights

Throughout, we assume that a graph G is given with 6(G) > d > 6. We will consider an
algorithm in which the vertices of the 2-dominating set are selected one-by-one. A step in
the algorithm means that one vertex is selected (or chosen) and put into the set D which was
empty at the beginning of the process. Hence, after any step of the procedure, D denotes
the set of vertices chosen up to this point. We make difference between the following four
main types of vertices:



=6 5 =17 5 —8 5 =9

@ | 502562162340 | 9858456650 | 215321625855 | 93641183816180
s | 1010109434040 | 21118330730 | 489195209055 | 224551068595700
m — — — 8747157548500
Yo — = 180637395519 | 78747157548500
vs - 8265018290 | 180637395519 | 78747157548500
yr | 422846061750 | 8265018290 | 180637395519 | 77277448218740
ys | 422846061750 | 8093880725 | 176196828255 | 75612599739380
ys | 409645123200 | 7981810970 | 170236790715 | 73000318746740
ys | 401052708000 | 7754608778 | 164408232975 | 69343125357044
ys | 337969820875 | 7321226150 | 153359038875 | 64634747985500
y2 | 357968691360 | 6598921770 | 138571857655 | 57524154844772
yi | 296456709780 | 5196793700 | 105895928425 | 43483590947181
yo | 254021681340 | 4492799990 | 87943795415 | 33987088151324
bio — — — 64166766443780
bo — — 146353194015 | 64166766443780
bs — 6656464350 | 146353194015 | 61811868322820
b; | 338254849300 | 6656464850 | 139847385195 | 59456970201860
b | 338254849300 | 6286147490 | 133341576375 | 57102072080900
bs | 313665896880 | 5915830130 | 126835767555 | 54125243789540
bi | 289076943960 | 5545512770 | 118110911835 | 5036544145324
b | 264487991040 | 5021360750 | 107061717735 | 45588781601132
b, | 226888474680 | 4278173340 | 89997559750 | 37861061453138
by | 151217550540 | 2770921790 | 57321630520 | 23820497555547

Table 2: Weights assigned to the vertices for graphs of minimum degree § = 6,7,8 and 9.

e A vertex v is white, if v is not dominated, that is if |[N[v] N D| = 0.

o A vertex v is yellow, if |[N(v) N D| =1and v ¢ D.

e A vertex v is blue, if [N(v) N D| > 2 and v ¢ D.

o A vertex v is red, if v € D.

The sets of the white, yellow, blue and red vertices are denoted by W, Y, B and R,
respectively. After any step of the algorithm, we consider the graph G together with the set
D. Hence, the current colors of the vertices, that is the partition V(G) = W UY UBUR,
are also determined. The graph G together with a D C V(G) will be called colored graph
and denoted by GP. We define the WY-degree of a vertex v in G to be degyy (v) =
IN(v)N(WUY)|. The sets W, Y and B are partitioned according to the WY-degrees of the
vertices. For every integer i« > 0 and for X = WY, B, let X; = {v € X | degyy(v) = i}.
Since R = D, we may assume that red vertices are not selected in any steps of the procedure.

We distinguish between two types of colored graphs. GP belongs to Type 1 if max{s |
W; UY;41 # 0} > d+ 1, otherwise GP is of Type 2. Hence, a colored graph is of Type 2 if



and only if degyy(v) < d for every white vertex v and degyy (u) < d+ 1 for every yellow
vertex u.

During the 2-domination algorithm, weights are assigned to the vertices. The weight
w(v) of vertex v is defined with respect to the current type of the colored graph and to the
current color and WY-degree of v.

w(v) if GP is of Type 1 | w(v) if GP is of Type 2
veW a a

a— 2, ifi>d
’UGY; Z—'rl yz

a— 71 ifi<d

a—img— 5%, ifix>d bai1 ifi>d
veB la—332% -2 ifi=d

i a2~ di1 b, ifi<d

a— 2574, ifi<d

vER 0 0

The weight of the colored graph GP is just the sum of the weights assigned to its vertices.
Formally, w(GP) = > vevic) W(v).

Assume that a vertex v € WUY is selected from GP in a step of our algorithm. Hence, v
is recolored red in GPY{}. By definition, if a neighbor u of v belongs to W; in GP, then w is
recolored yellow. Moreover, the WY-degree of u decreases by at least one, as its neighbor,
v, was white or yellow and now it is recolored red. Similarly, if the neighbor u belongs to
Y; in GP, then u € Bjforaj<i—1in GPU} | In the other case, if a blue vertex v is
selected, v is also recolored red. For any neighbor u of v, if u € W; in GP then u € Y; with
j <iin GPYYY and if u € V; in GP then u € B; with j <4 in GPY{¥}. No further vertices
are recolored, but the WY-degree of vertices from N[N (v)] might decrease.

Hence, assuming that the weights are nonnegative and inequalities (1)-(8) are satisfied,
we can observe that the weight of the colored graph and that of any vertex does not increase
in any step of the algorithm. By conditions (1), (2), (4)-(8), the weights y;, b;, used in a
colored graph of Type 2, are not greater than the corresponding weights in a graph of
Type 1. Thus, the following statement is also valid if GP belongs to Type 1 while GPY{v}
belongs to Type 2.

Lemma 2. If the conditions (1)-(8) are satisfied, for any colored graph GP and for any
vertex v € V(G) \ D, the inequality w(GP) > w(GPUI}) holds. Moreover, no vertex u has
greater weight in GPUY than in GP.



3.2 The s-property

For a positive number s, we will say that a colored graph G satisfies the s-property, if
either D is a 2-dominating set of G or there exists a positive integer k£ and a set D* of k
verticedd such that

w(GP) — w(GPYP") > ks.

Assume that a 2-domination procedure is applied for a graph G which is of order n. At
the beginning, we have weight a on every vertex and W(G@) = an. At the end, when D is
a 2-dominating set, all vertices are associated with weight 0, as they all are contained in
RU By. Consequently, if we show that for every D C V(G) the colored graph G satisfies
the s-property, a 2-dominating set of cardinality at most an/s can be obtained, from which
12(G) < & n follows.

Lemma 3. Assume that G is a graph of order n and with a minimum degree of §(G) =
d>6. Ifa, yo,...,Y4s1, bo,--.,bqr1 are nonnegative numbers and s is a positive number
such that conditions (1)—(35), and for every 2 < i < d—2 the inequalities (36)—(41) are also
satisfied, then for every D C V(G), the colored graph GP satisfies the s-property.

Proof. We prove the lemma via a series of claims. Lemma 2] will be used in nearly all
argumentations here (but in most of the cases we do not mention it explicitly). The only
exception is Claim A, which immediately follows from the definition of s-property.

Claim A If D is a 2-dominating set of G then GP satisfies the s-property.
Claim B If GP belongs to Type 1, it satisfies the s-property.

Proof. Let k = max{i | W; UYjy1 # 0}. As GP is of Type 1, k > d + 1. We assume
in the next argumentations that GPY{"} (or GP{¥'}) also is of Type 1. If this is not the
case, then, by conditions (1), (2), (4)-(8) and by the definition of the weight assignment,
the decrease in w(G"”) may be even larger than counted.

If W), # 0, select a vertex v € Wj. Each white neighbor u of v is from a class W; with
i < k. After the selection of v, this neighbor w is recolored yellow and its WY-degree
decreases by at least 18 Thus, the decrease in w(u) is not smaller than

On the other hand, each yellow neighbor «’ of v is from a class Y;; with i/ < k + 1. After
putting v into D, u/ will be a blue vertex with a WY-degree of at most ¢/ — 1. Hence, w(u')

is decreased by at least
s—a s—a

>
r—1 k

2Note that in most of the cases we will prove that the s-property holds with |D*| = 1. That is, we simply
show that there exists a vertex v such that the choice of v decreases w(G”) by at least s.

31t might happen that the decrease is larger than 1. For example, if we have a complete graph K, (n>3)
with one white vertex and n — 1 yellow vertices, and select the white vertex.

~.




Since v has k neighbors from W UY in GP, and the selection of v results in a decrease of
a in the weight of v, we have

Ss—a

= S.

w(GP) — w(GPYUH > a4+ k

This shows that the colored graph GP with W}, # () satisfies the s-property.

Now, assume that Wy = (). This implies Y11 # 0 and we can select a vertex v’ € Yiyq
in the next step of the procedure. As v’ becomes red, its weight decreases by a — 7Ts- Bach
white neighbor u of v' has a WY-degree of at most k — 1. Hence, when u is recolored yellow

and loses at least one yellow neighbor, namely v/, w(u) decreases by at least

S—a >S—(1
k—-2)+1 &k

On the other hand, if u’ is a yellow neighbor of v/, we have the same situation as before,
when a white vertex v was put into the set D. That is, the decrease in w(u') is at least 2.
These imply

w(GP) — w(GPIH > o — % +(k+ 1)% >s

and again, GP satisfies the s-property. (o)
From now on, we consider colored graphs of Type 2. Note that the inequalities

0<9Ygy1 —bg <yqg—bg—1 < <ya— b1 <y, ()

easily follow from conditions (2) and (3). Hence, if a vertex v is moved from Y; into B;_;
in a step of the procedure, and i < j is assumed, the decrease in w(v) is at least y; — bj_1.
Inequalities (1), (2) and (3) ensure similar estimations if v is moved from W into Y;, from
Y; into B;, or from B; into B;_1, and i < j is assumed.

Claim C If GP is a colored graph with d—1 < max{i | W; UY;.1 # 0} < d, it satisfies the
s-property.

Proof. Our condition in Claim C implies that each white vertex has a WY-degree of at
most d and each yellow vertex has a WY-degree of at most d + 1. In particular, G is of
Type 2. In the proof we consider four cases.

First, assume that Wy # 0 and choose a vertex v € Wy. When v is put into D, it
is recolored red and w(v) decreases by a. Any white neighbor u of v is recolored yellow
and degyyy (u) decreases by at least 1. Together with condition (1), this implies that w(u)
decreases by at least a — yq—1. A yellow neighbor u’ of v is recolored blue and degyy ('),
decreases by at least 1. By (*), the weight w(u') is lowered by at least ygi1 — bg. By
conditions (9) and (10), a — y4—1 > (s —a)/d and yg41 — by > (s — a)/d. Hence, we obtain
s—a

w(GP) — w(GPU > a4+ d

237
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and GP satisfies the s-property.

Second, assume that Wy = (), but there exists a vertex v € Yy,1. Let us select v in the
next step of the algorithm. Then, v is recolored red and w(v) decreases by y4+1. Each white
neighbor u of v has a WY-degree of at most d — 1 in G, and the weight w(u) decreases
by at least a — yq_o. Similarly, if «’ is a yellow neighbor of v, the decrease in w(u’) is not
smaller than ygz11 — bg. These facts together with conditions (11) and (12) imply

w(GP) = w(G ) > yapy + (d+ 1) %ﬁdfl _ s,

which proves that GP has the s-property.

In the third case, W UYy1 = 0, but there exists a white vertex v with degyy (v) = d—1.
Similarly to the previous cases, but referring to conditions (13)—(14), one can show that

sS—a

d—1

= S.

w(GP) = w(GPU) > a4 (d - 1)
In the last case, we assume that for each white vertex degyy < d—2, for each yellow vertex

degyy < d, and also that we may select a vertex v € Y. By (15) and (16), we obtain

w(GP) = w(@PU) > gy a TP =

S.

This completes the proof of Claim C. (o)

Claim D If GP is a colored graph with max{i | W; UY;_1 # 0} < d — 2, and there exists a
blue vertex v with degyyy (v) > d + 1, then GP satisfies the s-property.

Proof. Assume that v is selected in the next step of the 2-domination procedure. Then, v
is recolored red and w(v) is lowered by bg11. Each white neighbor has a WY-degree of at
most d — 2 and becomes yellow, while each yellow neighbor of v has a WY-degree of at most
d — 1 and becomes blue. By conditions (1) and (2), the decrease in the weight of a white
or in that of a yellow neighbor is at least a — yq_9 or yq_1 — bg_1, respectively. Conditions
(17) and (18) imply w(GP) — w(GPY}) > 5. (o)

In the next proofs, we will use the following facts. A white vertex does not have any red
neighbors and every yellow vertex has exactly one red neighbor. Hence, under the condition
d(G) > d, each white vertex v € W, has at least d — z blue neighbors, and each v’ € Y}, has
at least d — y — 1 blue neighbors. Moreover, when this white or yellow vertex is recolored
red or blue, the WY-degrees of its d — x or d — y — 1 blue neighbors are decreased. More
precisely, if a vertex v is chosen in a step of the algorithm and v is white, the sum of the
WY-degrees of vertices which are blue in G is decreased by at least

d — degyy (v) + Z (d—1—degyy(w)).
weY NN (v)
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Similarly, if v € Y U B, this decrease is at least

if v is yellow, and at least

degyy(v) + Y (d—2— degyy(w))
weY NN (v)

if v is blue. Now, let us assume that for every blue vertex degy y(u) < j and for a set
B' C B the sum ), _p degyy (u) decreases by z. Then, by (2), 3,5 w(u) decreases by
at least z(b; — bj—1). This remains valid, if for a vertex u € B, degyy(u) is reduced by
more than 1.

Claim E If G is a colored graph with d —2 > max{i | W; UY;41 U Bj,o # 0} > 2, it
satisfies the s-property.

Proof. Let k = max{i | W; UY;41 U B;jy2 # (0}. This implies degyy(v) < k for every white
vertex, degyry (v) < k + 1 for every yellow vertex, and degyy(v) < k + 2 for every blue
vertex. We consider three cases.

If there exists a white vertex v of degyy (v) = k, assume that v is selected in the next
step. Then, w(v) decreases by a. Further, since v is recolored red, the sum of the WY-
degrees of its blue neighbors decreases by at least (d — k). This results in a further change
of at least (d — k)(bg1o — br+1) in w(GP). If u € W; (j < k) is a white neighbor of v, in
GPYUY} 4 is recolored yellow and has a WY-degree of at most j — 1. Hence, the decrease in
w(u) is at least
s —a—(d—k)(bgy2 — bry1)

A )
where the last inequality follows from (36) substituting ¢ = k. Consider now a yellow
neighbor «’ of v. After the choice of v, u’ is recolored blue and w(u’) decreases by at least
Yr+1 — bx. Taking into account the decreases in the weights of vertices from N (u') N B, the
recoloring of each such u’ contributes to the decrease of w(GP) with at least

s —a—(d—k)(bgra — bry1)
k )

a—Yg—1 =

Ykt — bp + (d — (kK +1) = 1)(bpyo — bpy1) >

where the lower bound follows from (37) substituting ¢ = k. Therefore, if v € Wy,

W(GP) —w(GP) >t (d = )by — begr) + b ST Zhe)

Consequently, GP has the s-property if W}, # 0.

In the following two cases, we count w(GP) — w(GPU1"}) in a similar way. Assume that
Wi = 0 but Yz # (0, and choose a vertex v from Yj.1. Vertex v is recolored red and
the WY-degrees of its blue neighbors decrease. This contributes to the difference w(GP) —

12



w(GPUY) with at least g1 + (d—k —2) (g2 — bpr1). Further, if u is a white neighbor of v
then degyy (u) < k—1in GP. Once v is recolored red, w(u) decreases by at least a — yx_o.
By condition (38), it is not smaller than (s — yg+1 — (d — k — 2)(bpr2 — bg+1))/(k+ 1). If o/
is a yellow neighbor of v, then v’ will be blue in GPY{*} and the WY-degrees in BN N (u')
are decreased. Consequently, and also referring to (39), each yellow neighbor u' contributes
to the decrease of w(G”) with at least

5= Yrp1 — (d =k —2)(bgpy2 — bry1)
kE+1

Yk+1 — bk + (d — k — 2) (kg2 — bpg1) >

In total, v has k + 1 neighbors from W UY, and we have

W(EP) (V) > gy (A k) (g by )+ (k1) S Yt — (@R = ur2 Zbi)
(G7) ( ) > Yrr1+( ) (bry2—bpey1)+( ) E+ 1 )

which proves that GP satisfies the s-property.

In the third case, Wi U Y;41 = (0 and we have a blue vertex v with degy y (v) = k + 2.
Selecting v in the next step of the procedure, v will be recolored red and w(v) becomes 0.
Each white neighbor u of v is recolored yellow and has a decrease of at least a — y_1 in
w(u) (in this case, degyry (u) might be unchanged). Moreover, each yellow neighbor «’ of v
is recolored blue and the weights of the vertices from N(u') N B are also decreased. Then,
the recoloring of u’ contributes to the decrease of w(GP) by at least

s — by

) d—k—2)(b —b >
Yk — bi + ( ) (D42 — brt1) > EGRE

where the inequality follows from (40). On the other hand, by (41), we have a — yp_1 >
(s — brr2)/(k +2). We may conclude that

5—0b
w(G) = w(GPH) > b+ (h+2) —— == +k2+2 =

Thus, in the third case G also satisfies the s-property. (o)

Claim F Let GP be a colored graph with max{i | W;UY; 1UB; 2 # 0} = 1 such that there
exists an edge between W and Y. Then, GP satisfies the s-property.

Proof. Choose a white vertex v whose only neighbor from W UY is a yellow vertex u in
GP. By our condition, degyy (u) < 2. In GPY{¥} | the vertex v is recolored red and u € B.
Moreover, in GP, v and u has at least d — 1 and d — 3 blue neighbors, respectively. By
condition (19),

w(GP) = w(GPUh) > a+ (d = 1)(bs — by) + (y2 — b1) + (d — 3)(bs — bo) > 5,
and GP has the s-property. (@)

Henceforth, we may assume that there are no edges between W and Y.
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Claim G If GP is a colored graph with max{i | W; UY; 1 U Bjy2 # 0} = 1 and Yy # 0,
then GP has the s-property.

Proof. Consider a vertex v € Y5 in GP. As supposed, it has no white neighbors. Hence,
v is adjacent to two vertices, say uy; and us, which are from Y5 UY;. Then, in GP U{”},
v is recolored red, u; and us are recolored blue and belong to B; U By. The decrease in

ZwEBﬂ(N(v)UN(ul)UN(vz)) degyy (w) is at least 3(d — 3). Then, also using (20),

w(GP) — w(GPUH) > gy + 2(yo — b1) + 3(d — 3) (b3 — ba) > s.

This proves the claim. (o)

Claim H If G is a colored graph with max{i | W; UY; U B; o # 0} = 1, it satisfies the
s-property.

Proof. Suppose for a contradiction that there exits a colored graph GP which satisfies the
condition of our claim but does not have the s-property. First, let us assume Wj # () and
recall that each white vertex with degyy-(v) = 1 has a white neighbor of the same type.
We consider the following cases:

(4)

If there exists a vertex v; € W7 with a white neighbor vy, and with a blue neighbor
u from Bj such that u is not adjacent to vy, we assume that in two consecutive steps
of the procedure vo and u are chosen. Then, vy and u are recolored red, and v
becomes blue with a WY-degree of 0. This contributes to the decrease of w(G®) with
2a + bs. The total weight of the further blue neighbors of v; and ve decreases by at
least ((d —2) + (d — 1))(bs — ba). If u has a white neighbor w in G”, w becomes
yellow and contributes to the decrease of w(GP) with at least a — y;. By (21), it is
not smaller than (2s — 2a — bg — (2d — 3)(bs — by)) /2. If w' is a yellow neighbor of u in
GP, then it is recolored blue and deg WY (w') is either 1 or 0 in GPY{¥2:4}, Further,
the weights of the at least d — 3 blue neighbors of w’ which are different from u are
also decreased. In total, w’ contributes to the decrease of w(G?) with at least

2s — 2a — bg - (2d — 3)(1)3 — b2)
2 )

y1 — b1+ (d—3)(bs — be) >

where the last inequality is equivalent to (22). Therefore, we have

2s — 2a — b3 — (2d — 3)(b3 — bg)
2

w(GP)—w(GPH21Y > 204 b3+ (2d—3) (b3 —bg) +2

and the s-property would be satisfied by GP. This contradicts our assumption.

Since G is supposed to be a counterexample, if a blue vertex u € Bs is adjacent to
a white vertex then it is also adjacent to the white neighbor of it. If we have two
adjacent white vertices v; and ve which have only one (common) neighbor u from Bs,
choose v and u in the next two steps of the procedure. Then, v; and u are recolored

14
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red, while vy is recolored blue and has a WY-degree of 0. Their weights are decreased
by 2a + b3. All the further blue neighbors of v; and vy belong to Bo U By in GP. The
WY-degrees of these blue vertices are reduced, which contributes to the difference
w(GP) —w(GPYU1ud) with at least 2(d —2)(by — by ). The blue vertex u has one white
or yellow neighbor w which is different from v; and vo. If w is white, it is from Wy,
as otherwise w, its white neighbor, and u would satisfy the assumption in case (7).
Hence, when w is recolored yellow, w(w) decreases by a — yg, and

w(GP) — w(GPYULul) > 24 + by + 2(d — 2)(by — b1) + a — yo,

which is at least 2s by condition (23). If w is yellow then w € Y; U Y. When
w is recolored blue, the WY-degrees of its blue neighbors are also reduced. These
contribute to the difference w(GP?)—w(GPY{v1:4}) with at least y1 —by +(d—3) (b3 —ba).
Therefore, referring to (24),

w(GP) — w(GPU ) > 90 4 by + 2(d — 2)(ba — by) +y1 — by + (d — 3)(bs — ba) > 2s.

We infer that in the counterexample GP we cannot have a white vertex in W; that
has exactly one neighbor from Bs.

(7i1) Now assume that v;,vy € W; and their neighbors u; and ug are from Bs in GP.
Choose uy and uy and consider GPY{u1,uz2} Here, v1 and vy are blue vertices of WY-
degree 0, while u; and uy are red. In GP, each blue neighbor of v; and vs which
is different from u; and wus is either from Bs or it is a further common neighbor of
v1 and vy from Bj3. In the worst case, the decrease in their weights contributes to
w(GP) — w(GPYwu2by with (d — 3)(b3 — by). Finally, u; and ug have neighbors from
Wy U Y1 UY). It is enough to consider the following cases.

— u; and ug have a common neighbor w € Wy. Then, w is recolored blue. The
weight of w and that of its blue neighbors (different from w; and ug) decrease by
at least a + (d — 2)(bs — b2). Then, by (25) and by our earlier observations

w(GP) = w(GPYHmu2hy > 94 4 9bg + (d — 3)(bg — by) + a+ (d — 2)(bg — bg) > 2s.

Hence, in a counterexample we cannot have this case.

— u1 and ug have a common neighbor w € Y;. Then, w is recolored blue and
moved to By in GPY{uu2}t  Also, the weights of its blue neighbors decrease.
These contribute to the difference w(GP) — w(GPY{u1:42}) with at least y; — by +
(d —4)(bs — bs), and we have

W(GD)—W(GDU{“““Q}) > 2a+2b3+(d—3)(bz—b1)+y1 —b1+(d—4)(bs—b2) > 2s,

where the last inequality follows from (26). Again, this case is not possible in a
counterexample.

— u1 and ug have two different neighbors, namely wq and ws, from Wy. Then, wq
and wsy are recolored yellow and we have

w(GP) — w(GPUtuu2ly > 94 4 9by + (d — 3)(bs — b1) + 2(a — yo)
> 2a + b3z + 3(bs — ba) + 2(d — 3)(b3 —by) + 2(& —y1) > 2s.
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Here, we used (21) and the inequalities b3 > 3(bs — b2) and b3 — by > 2(bs — ba)
which follow from (2).

We have shown that there are no edges between W and Bs if GP is a counterexample to
Claim F. In what follows we prove that B3 = () and Y; = 0.

Suppose that Bs # () and choose a vertex v from Bs. As it has been shown, all white
and yellow neighbors of v belong to Wy UY; UYy. If u is a white neighbor, w(u) decreases
by a — o, and if u’ is yellow, its recoloring contributes to the decrease of GP by at least
y1 — b1 + (d — 3)(bs — b2). By conditions (27) and (28),

S—bg

= S.

w(GP) — w(GPU) > by + 3

Hence, in the counterexample each blue vertex is of a WY-degree of at most 2.

Suppose now that Y7 # () and choose a vertex v from it. Since v cannot have a neighbor
from W, it must have a neighbor u from Y;. In GP v} v is recolored red, u is recolored
blue with a WY-degree 0, and each of their at least 2(d — 2) blue neighbors has a decrease
of at least by — by in its weight. Hence, we have

w(GP) = w(GP) > 291 +2(d —2)(b2 — b),
which is at least s by (29). We may conclude that ¥; = ) holds in our counterexample.

Assume that Wi is not empty. Then, W7 consists of pairs of adjacent vertices, we refer
to which as “white pairs”.

First, suppose that there exits a white pair vy,vo and a vertex u € Bs such that w is
adjacent to v; and nonadjacent to vo. In the next two steps of the procedure we choose
v and u. Then, vy and u are recolored red, v; becomes a blue vertex of WY-degree 0.
The WY-degrees of blue neighbors of v; and v9 are also reduced. In total, these result in
a decrease of at least 2a + by + (2d — 3)(by — b1) in w(GP). Moreover, u has a white or a
yellow neighbor w different from v;. For the cases w € Wi and w € Y] U Yy we have the
following inequalities by (30) and (31), respectively.

W(GD) — W(GDU{”2’“}) >2a+by+ (2d —3)(ba —b1) + (a —y1) > 2s

W(GD) — W(GDU{UZ’U}) > 2a + by + (2d — 3)(b2 — bl) + (y1 — b+ (d — 3)(b2 — bl)) > 2s

We may infer that GP has the s-property, which is a contradiction. Hence, if a blue vertex
from B» is adjacent to a vertex from W7, then it is also adjacent to the other vertex from
that white pair.

Now, consider any white pair vy, vo and choose these two vertices in two consecutive steps
of the procedure. As a result, v; and vy are recolored red and all their blue neighbors are
of WY-degree 0. Since by — by < by — by = by, the worst case is when vy and vy share d — 1
blue neighbors from By in GP. By (32), we have

w(GP) — w(GPYUIvvzhy > 24 4 (d — 1)by > 2s,
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contradicting our assumption that GP is counterexample.

Consequently, if max{i | W; UY; U B;y2 # (0} = 1 then GP has the s-property, as stated
in Claim H. (o)

What remains to consider after Claims A-H is the case when D is not a 2-dominating set
that is WUY # () but all white and yellow vertices are of WY-degree 0 and all blue vertices
have a WY-degree of at most 2.

First, suppose that we have an edge between Bs and Y. Then, choose a blue vertex
v € By which has a yellow neighbor u. Vertex v has a further neighbor ' from Wy U Yj.
Depending on the color of u/, we can use either (33) or (34) and obtain the following
inequalities. If v/ is yellow,

w(GP) = w(GPH) > by + 20 +2(d — 2)(by — 1) > 5.
If o' is white
w(GP) = w(G@PU) 2 by o+ (d = 2)(b2 — b1) +a—yo = 5.
Thus, in these cases GP has the s-property.

Now assume that Y # () and choose a vertex v from Yy. We have just shown that v has
no neighbors from By. Hence, v has at least d — 1 blue neighbors from B;. Together with
(35), these imply

w(GP) = w(GP) = o+ (4~ 1)br > s,

and GP has the s-property.

Finally, we assume that Y = (), but we have x vertices in W, 29 vertices in By and 27
vertices in By, Thus, W(GD) = xa + z2bs + z1b1. On the other hand, counting the number
of edges between Wy and By U By in two different ways, dz < 229 + z;. Consider GPYYo,
that is assume that in z consecutive steps we select all white vertices. Clearly, in GPYYo
every vertex has a weight of 0. Hence,

b
W(GD) . W(GDUYO) = xa + 29by + 2101 > za + (222 + 2’1) min {52, bl}

b
zxa—l—dx;zxs.

The last inequality is a consequence of (32), and by/2 < by follows from by — by < by.

The cases discussed in our proof together cover all possibilities, hence every colored graph
GP satisfies the s-property under the conditions of Lemma [Bl O

As we discussed it at the beginning of this section, Theorem[Ilis an immediate consequence
of Lemma [3l
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4 Concluding remarks

Finally, we make some remarks on the algorithmic aspects of our proof. In Table [I, we
compared the upper bounds obtained by our Theorem [I] and those proved in [12] with
probabilistic method. Our upper bounds on y2(G) improve the earlier best results if the
minimum degree ¢ is between 6 and 21. Nevertheless the algorithm, which is behind our
proof, can also be useful for § > 22, as we can guarantee the determination of a 2-dominating
set of bounded size for each input graph.

We can identify two different algorithms based on the proof in Section Bl For the first
version, we do not need to count the weights assigned to the vertices. We just consider the
list of instructions below and in each step of the algorithm we follow the first one which is
applicable.

10.

11.

12.

13.

14.

15.

Itk =max{i | W; UY;41 #0} >d—1 and Wy, # 0, choose a vertex from Wj.
Ik =max{i | W; UY;41 # 0} > d— 1, choose a vertex from Yy 1.
. If k= max{i | B; # 0} > d+ 1, choose a vertex from By,

I 2 <k =max{i| W;UY;11UB;y2 # 0} <d—2and Wy # (), choose a vertex from

Wi

L2 <k =max{i | W; UY;;1UB;y2 # 0} <d—2 and Yy, # (), choose a vertex from

Yii1-

L2 <k =max{i| W; UY;31 U B # 0} < d— 2, choose a vertex from By o.

If there exists a white vertex v with a yellow neighbor, choose v.

. If Yy # 0, choose a vertex from it.

. If there exist two adjacent white vertices v; and v such that v; has a neighbor u from

Bs which is not adjacent to ve, choose vy and wu.

If there exists a vertex v in Wy, which has exactly one neighbor, say u, in B3, choose
v and wu.

If there exists a vertex v in W7, which has at least two neighbors in Bs, choose two
vertices from N (v) N Bs.

If B3 # 0, choose a vertex from it.
If Y7 # (), choose a vertex from it.

If there exist two adjacent white vertices v1 and vy such that v; has a neighbor u from
B> which is not adjacent to ve, choose vy and wu.

If there exist two adjacent white vertices, choose such two vertices.
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16. If there exists a blue vertex v € By which has at least one yellow neighbor, choose v.

17. If Y # (), choose a yellow vertex.

18. Choose all the white vertices.

By a slightly different interpretation, we can define a 2-domination algorithm based on
the weight assignment introduced in Section [Bl Then, in each step, we choose a vertex v
such that the decrease w(GP) — w(GPY{"}) is the possible largest. The exceptions are those
steps where GP would be treated by instructions 9, 10, 11, 14, 15 or 18 of the previous
algorithm. In these cases, the greedy choice concerns the maximum decrease of w(GP”) in
two (or more) consecutive steps.
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