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Abstract 1 

Introduction. Dysregulation of G1/S checkpoint of cell cycle has been reported in pituitary 2 

adenomas. In addition, our previous finding showing that deregulation of Wee1 kinase by microRNAs 3 

together with other studies demonstrating alteration of G2/M transition in nonfunctioning pituitary 4 

adenomas (NFPAs) suggest that G2/M transition may also be important in pituitary tumorigenesis. 5 

Objective. To systematically study the expression of members of the G2/M transition in NFPAs and 6 

to investigate potential microRNA (miRNA) involvement. 7 

Methods. Totally, 80 NFPA and 14 normal pituitary (NP) tissues were examined. Expression of 46 8 

genes encoding members of the G2/M transition was profiled on 34 NFPA and 10 NP samples on 9 

TaqMan Low Density Array. Expression of CDC25A and two miRNAs targeting CDC25A were 10 

validated by individual quantitative real time PCR using TaqMan assays. Protein expression of 11 

CDC25A, CDC25C, CDK1 and phospho-CDK1 (Tyr-15) was investigated on tissue microarray and 12 

immunohistochemistry. 13 

Results. Several genes’ expression alteration were observed in NFPA compared to normal tissues by 14 

transcription profiling. On protein level CDC25A and both the total and the phospho-CDK1 were 15 

overexpressed in adenoma tissues. CDC25A correlated with nuclear localized CDK1 (nCDK1) and 16 

with tumor size and nCDK1 with Ki-67 index. Comparing primary vs. recurrent adenomas we found 17 

that Ki-67 proliferation index was higher and phospho-CDK1 (inactive form) was downregulated in 18 

recurrent tumors compared to primary adenomas. 19 

Investigating the potential causes behind CDC25A overexpression we could not find copy number 20 

variation at the coding region nor expression alteration of CDC25A regulating transcription factors 21 

however CDC25A targeting miRNAs were downregulated in NFPA and negatively correlated with 22 

CDC25A expression. 23 

Conclusion. Our results suggest that among alterations of G2/M transition of the cell cycle, 24 

overexpression of the CDK1 and CDC25A may have a role in the pathogenesis of the NFPA and that 25 

CDC25A is potentially regulated by miRNAs. 26 

27 
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Introduction 1 

Pituitary adenomas represent the second most frequent (15.3%) central nervous system tumors 2 

following meningiomas [1]. Based on recent data their overall prevalence rates varies from 10 to 22%, 3 

but clinically relevant pituitary adenomas appear more rarely [2-5]. Also, in recent publications it is 4 

described that the prevalence is 3-5 times higher than previously reported [6-7]. 5 

Although the familial well-defined hereditary tumor syndromes are linked to a dysfunction of 6 

a single gene (MEN1, PRKAR1A, AIP), the molecular mechanisms leading to sporadic pituitary tumor 7 

development are still largely unknown particularly for hormonally inactive, nonfunctioning adenomas 8 

(NFPA) [8]. 9 

In the pituitary, dysregulation of cell cycle has been demonstrated mainly through alteration of 10 

genes regulating the G1/S checkpoint [9]. Underexpression of cyclin-dependent inhibitors (CDKIs) 11 

(p14, p15, p16, p18, p21, p27), retinoblastoma protein [10-11], and MEG3a (a strong cell growth 12 

suppressor that transactivates p53 thereby regulates cell cycle progression) have been found 13 

downregulated through hypermethylation in pituitary adenomas [12-13]. Cyclin D and Cyclin E which 14 

are involved in G0-G1 phases of cell cycle were overexpressed in 49% (Cyclin D1) and 37% (Cyclin 15 

E) of these adenomas as compared to normal tissues [14-16]. Cyclin A labeling index (LI) was also 16 

significantly higher in pituitary adenomas [16]. 17 

Our group previously identified that Wee1 kinase, a nuclear protein that delays mitosis was 18 

downregulated in growth hormone (GH) producing adenomas and NFPAs compared to normal 19 

pituitary [17]. Wee1 phosphorylates CDK1 and inhibits its kinase activity, thereby preventing entry 20 

into the mitosis at the G2/M checkpoint. Its tumor suppressor function and downregulation showed 21 

correlation with prognosis, recurrence and proliferation index in colon cancer and non-small-cell lung 22 

cancer [18-19]. Additionally, bioinformatics and network analysis of pituitary proteomic data [20] 23 

identified dysregulation of cell cycle at the G2/M DNA damage checkpoint, signaling pathways 24 

significantly altered in pituitary adenomas. Other clues for involvement of G2/M transition and its 25 

promising targeting in pituitary tumors came from the study of Yu et al [21]. They showed that 26 

proteosome inhibitors induced apoptosis in pituitary adenoma but not in normal pituitary cells in rat 27 
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through blocking the cell cycle at G2/M transition [21]. Furthermore, it was observed that a 1 

bioflavonoid was able to inhibit growth through G2/M arrest and inducing apoptosis in lung cancer 2 

cell line [22]. 3 

Related to pituitary an evaluation of G2/M transition genes in nonfunctioning adenomas is still 4 

lacking, therefore our aim was to evaluate the expression of members of G2/M transition and to assess 5 

whether any correlation could exist between expression data and clinico-pathological findings. 6 

 7 

Materials and methods 8 

Patients 9 

Pituitary adenoma tissues were removed by transsphenoideal surgery at the Hungarian National 10 

Institute of Neurosurgery between 2007 and 2011. Totally, 80 NFPAs (36 females, 44 males, mean 11 

age±SD: 58.1±13.92 years) and 14 normal pituitary tissue specimens were used for analysis. Ten 12 

normal pituitary samples for mRNA expression analysis were obtained by autopsy within 6 h of death 13 

from patients with no evidence of any endocrine disease (University Clinical Centre, Belgrade, 14 

Serbia). All adenoma samples were consecutively gathered with the permission of the local committee 15 

on human research, after written informed consent of each patient. The research protocol was 16 

approved by the Scientific and Research Ethics Committee of the Medical Research Council (nr: 17 

ad.4457/20121/EKU). RNA extracted from 34 NFPAs and 10 NP fresh frozen specimens were used 18 

for initial screening performed with TaqMan Array, 46 NFPA and 4 normal pituitary tissues were used 19 

for Tissue microarray (TMA) and 23 NFPAs and 10 NP samples were used for RT-qPCR validation. 20 

For TMA adjacent normal pituitary tissues surrounding 4 adenomas (one NFPA and 3 hormone 21 

producing adenoma) were used as normal control. 22 

The clinical diagnosis of NFPAs was based on hormone levels measured in serum obtained from 23 

patients and on results of immunohistochemistry analysis for SF1 transcription factor specific for 24 

gonadotrope origin and six anterior lobe hormones following WHO classification [23]. 25 

Immunostaining of Ki-67 proliferation marker in each sample was also performed. All 26 
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immunohistochemical studies were carried out at the 1st Department of Pathology and Experimental 1 

Cancer Research, Semmelweis University, Budapest, Hungary.  2 

 3 

RNA isolation 4 

Removed specimens were stabilized in RNA later (Life Technologies, Grand Island, NY, USA) and 5 

then stored at -80 oC until use. Total RNA was extracted using miRNeasy Mini Kit (Qiagen Inc., 6 

Chatsworth, CA). RNA integrity and concentration were measured using Agilent Bioanalyzer 2100 7 

System (Agilent Tech Inc., Santa Clara, USA). 8 

 9 

Gene expression profiling using custom TaqMan Low Density Array microfluidic card 10 

Expression profile of 46 genes was analyzed in 34 NFPA and 10 normal pituitary samples using 11 

custom made TaqMan Low Density Array (TLDA) (Life Technologies, Grand Island, NY, USA) 12 

including assays for POU1F1 and members of the G2/M transition. All procedures were performed 13 

according to the manufacturer’s instructions. Briefly, reverse transcription of 1 μg of total RNA was 14 

performed using the Superscript III First Strand Synthesis Kit (Life Technologies). Then 5 μl 15 

undiluted RT product, 55 μl TaqMan Universal PCR Master Mix and 50 μl DEPC treated water were 16 

loaded into each channel of TLDA card in a 100 μl final volume. The mRNA expression was 17 

determined with RT-qPCR using the 7900 Fast Real-Time PCR System (Life Technologies). 18 

 19 

Real-time quantification of miRNAs and CDC25A and CDC25C 20 

RT-qPCR was executed as previously described (17;24). Reverse transcription was performed using 21 

Superscript III First Strand Synthesis Kit (Life Technologies) or miRNA specific stem-loop RT primer 22 

using TaqMan MicroRNA Reverse Transcription Kit (P/N: 4366596) according to protocols provided 23 

by the supplier. For the qPCR specific Taqman probes and TaqMan Universal PCR Master Mix were 24 

used (Life Technologies). Reactions were run in triplicates in 384-well plate on 7900 HT RealTime 25 

PCR System (Life Technologies). The following Gene Expression and Individual MicroRNA Assays 26 

from Applied Biosystems were used: CDC25C (Hs00156411_m1), CDC25A (Hs00947994_m1), 27 

CDK1 (Hs00938777_m1), ACTB (Hs99999903_m1), GAPDH (Hs99999905_m1); and hsa-miR-424 28 
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(Assay ID: 001149), hsa-miR-503 (Assay ID: 001048), U6 snRNA (Assay ID: 001973), RNU48 1 

(Assay ID: 001006), RNU44 (Assay ID: 001094). Gene expression data were normalized with the use 2 

of geometric mean of ACTB and GAPDH in the case of mRNA and geometric mean of RNU44, 3 

RNU48 and U6 snRNA in the case of miRNAs as previously those were identified to be stable 4 

endogenous controls in pituitary [24]. Expression level was calculated by the ddCt method, and fold 5 

changes were obtained using the formula 2-ddCt. 6 

 7 

Tissue microarray (TMA), immunohistochemistry, digital microscopy, scoring and image 8 

analysis 9 

Formalin-fixed, paraffin-embedded tissues from 46 pituitary samples were selected based on 10 

haematoxylin and eosin (H&E) staining and immunostaining for the six anterior lobe hormones. Two-11 

mm cores were collected into a 7x10-sample TMA recipient block. Excel files containing 12 

clinicopathological data of 46 samples from 46 patients were linked to recipient block positions using 13 

a computer-driven automated instrument TMA-Master (3DHistech Ltd, Budapest, Hungary).  14 

Following antigen retrieval by boiling (15 min, 0.1 mM pH 6 citrate-buffer) and endogenous 15 

peroxidase block (1% H2O2), tissues were stained with CDC25A mouse monoclonal (Santa Cruz 16 

Biotechnology, sc-56264; dilution: 1:100), CDC25C (C20) rabbit polyclonal (Santa Cruz 17 

Biotechnology, sc-327; dilution: 1:100 ), total CDC2 mouse monoclonal (Cell Signaling, Beverly, 18 

USA, #9116; dilution: 1:40) and phospho-CDC2 (p-Tyr15) rabbit polyclonal (NBP1-19966, Novus 19 

Biologicals, dilution: 1:40) primary antibodies overnight, and biotin conjugated goat anti-rabbit 20 

(DakoE0432) and anti-mouse (DakoE0433) secondary antibodies for 60 min. After the addition of 21 

ABC reagent for amplification (Vectastain Elute ABC Kit, PK-6101), diaminobenzidine (DAB) 22 

chromogen was used for detection. Optimization of each antibody was executed on individual positive 23 

and negative control slides. 24 

Immunostained TMA slides were analyzed following full-slide digitalization with the 25 

Panoramic Scan and the database-linked TMA Modul software (both 3DHISTECH Kft, Budapest, 26 

Hungary). Quantitation was performed using a 12-score system considering both intensity and 27 

frequency of stained cells. Briefly, weak staining was scored by 1-4, moderate staining was scored by 28 
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5-8 and strong staining by 9-12 according to the number of positive cells (<10%, 10-40%, 40-80% and 1 

>80%) using TMA Modul Software (3DHISTECH Kft, Budapest, Hungary). Scoring was performed 2 

by two independent assessors and average scores were used for statistical analysis. Each score was 3 

normalized for the average score of normal samples.  4 

 5 

Identification of miRNAs targeting CDC25A and CDC25C by in silico target prediction 6 

For target prediction we used four computational target prediction algorithms: microrna.org 7 

(http://www.microrna.org/microrna/home.do), Targetscan 4.0 (http://www.targetscan.org), 8 

MicroCosm (http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/) and miRWalk 9 

(http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/index.html) 10 

 11 

Statistical analysis  12 

After data normalization using geometric mean of endogenous controls, gene expression levels in 13 

NFPA were compared to those found in normal pituitary tissues using T-test or Mann-Whitney U test 14 

depending on the results of Shapiro-Wilks normality test. Statistical analysis was performed using 15 

Statistica 7.0 software (StatSoft Inc., Tulsa, USA). For correlation analysis between gene expressions 16 

and expression of miRNAs and CDC25A and CDC25C or tumor size Pearson’s or Spearman rank 17 

correlation tests were used. Nonparametric Kruskal-Wallis ANOVA and Spearman rank correlation 18 

were used as statistical methods for analyzing TMA results regarding the discrete variables. A value of 19 

p<0.05 was considered to be significant. Tumor size was calculated using the formula: tumor width x 20 

length x height in mm using three direction MRI scans. 21 

 22 

Results 23 

1. Expression of genes encoding members of G2/M transition in NFPAs 24 

By analyzing the expression of GH, PRL, FSH, LH, POMC and POU1F1 (Pit-1) genes adenomas 25 

expressing POU1F1 transcription factor mRNA were excluded indicating contamination by 26 

nontumorous elements [23, 25-26]. Using GAPDH and ACTB as endogenous controls all adenomas 27 

http://www.microrna.org/microrna/home.do
http://www.targetscan.org/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/index.html
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showed decreased expression of GH, PRL and POMC on mRNA level compared to control samples 1 

(Suppl. Figure 1A-1B). 2 

Expression of CDC25A, CDC25C, Cyclin B, CDCA8, AURKB, BIRC5, YWHAB, BRCA2 and 3 

FANCD2 were significantly overexpressed while CDK7, p21, TP53, CHEK2, AURC, GADD45B 4 

were underexpressed in NFPA tissue specimens compared to normal pituitary (Table 1). We also 5 

identified several correlations among the measured genes which are illustrated on Suppl. Figure 2, 6 

and showed that CDC25A mRNA expression level correlated with Cyclin B as well as expression of 7 

CDC25C with CDK1 in NFPAs but not in normal pituitary tissue.  8 

For validation of the TLDA results expression of CDC25A and CDC25C using individual 9 

TaqMan assays was measured on 23 pituitary samples, and the results were similar to those obtained 10 

with the TLDA card experiment (Figure 1).  11 

 12 

2. Increased expression of CDC25A and CDK1 at protein level in NFPAs  13 

After gene expression study we assessed the expression of CDC25A, CDC25C and their target total 14 

CDK1 and p-CDK1 on protein level using TMA. CDC25A, total CDK1 and phospho-CDK1 (pCDK1: 15 

inactive form) were significantly overexpressed in NFPA samples compared to normal tissues (Figure 16 

2). However, the ratio of pCDK1/CDK1 was similar in the two groups of samples suggesting no 17 

change in the activity rate only in total amount of protein. In summary, CDC25A was overexpressed in 18 

76% (35/46) of NFPAs (the expression level of CDC25A was higher in all of these adenomas than the 19 

highest expression detected in normal tissues). CDC25C was overexpressed in 45.6% (21/46) of 20 

NFPAs, but globally the expression of CDC25C at protein level did not differ significantly between 21 

NFPA and normal tissues. Elevated level of total CDK1 and pCDK1 were detected in 82.6% (38/46) 22 

and 63% (29/46) of NFPAs, respectively. The nuclear CDK1 (nCDK1), staining score did not differ 23 

significantly between NFPA and normal tissue. 24 

Correlation between the expression of CDC25A and CDC25C proteins was observed in NFPAs 25 

(p=0.001) (Figure 3A). CDC25A at protein level correlated with tumor size (Figure 3B) and with 26 

nCDK1 (Figure 3C). Nuclear CDK1 the active form of the kinase, showed a positive correlation with 27 
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the Ki-67 proliferation index (p=0.0003). Expressions of CDC25C failed to correlate with the nCDK1 1 

scores or tumor size. Neither CDC25A nor CDC25C staining correlated with Ki67 (data not shown). 2 

Comparing primary vs. recurrent adenomas we found that Ki67 proliferation index was higher in 3 

recurrent tumours (p=0.001). Also, the inactive form of the CDK1 protein (pCDK1) showed higher 4 

expression in primary vs. recurrent adenomas (p=0.008). 5 

 6 

3. Potential causes of CDC25 overexpression  7 

In order to reveal potential causes behind CDC25A overexpression we tested copy number 8 

variations of chromosomal localizations of CDC25A, expressions of transcription factors regulating 9 

CDC25A and miRNAs targeting 3’UTR of CDC25A. 10 

Copy number variation of chromosomal localizations of CDC25A and 3p21 were evaluated in 11 

datasets of five independent comparative genome hybridization (CGH) studies performed on pituitary 12 

adenoma samples but chromosomal gain for these loci was detected only in a small proportion of 13 

NFPAs [27-31] suggesting that no gene amplification occurs in the majority of samples.  14 

For investigating transcription factors regulating CDC25A expression we searched potential 15 

binding sites in the CDC25A promoter region (2000 bp from start codon 5’upstream) using TFblast 16 

(http://www.gene-regulation.com/cgi-bin/pub/programs/tfblast/tfblast.cgi). We identified 7 human 17 

transcription factors (data not shown) potentially having binding sites. By reviewing the data obtained 18 

in six different high throughput mRNA and/or protein screening studies published earlier (4 mRNA 19 

microarray studies [32-35], one study evaluated mRNA microarray parallel with protein array [36] and 20 

1 protein array [37]) we found that none of these transcription factors were differentially expressed in 21 

any of the studies (data not shown). 22 

In addition, it has been demonstrated that behind the discordant expression of CDC25 on mRNA 23 

and protein level posttranscriptional or posttranslational mechanisms could also stand [38]. Moreover, 24 

CDC25A has been described as an experimentally validated target of 8 miRNAs [39-44]. Therefore, 25 

we investigated the expression of those 8 miRNAs expression in NFPAs and NPs. We found that miR-26 

449a, -449b, 424 and -503 were significantly downregulated in adenomas compared to NPs and two of 27 

http://www.gene-regulation.com/cgi-bin/pub/programs/tfblast/tfblast.cgi


11 

 

them correlated with tumor size (Figure 4A). Of these four miRNAs miR-424 and miR-503 1 

negatively correlated with CDC25A expression (Figure 4B-C). 2 

 3 

Discussion 4 

Vast literature data suggest the involvement of dysregulation of cell cycle in the pathogenesis of 5 

pituitary adenomas but the complex regulation of the G2/M transition has not been comprehensively 6 

evaluated. In our current study after evaluation of the expression of members of G2/M transition we 7 

further focused on CDC25 family. The CDC25 family members CDC25A, CDC25B and CDC25C 8 

have been identified in mammals and each isoform possesses different role in regulation of cell cycle. 9 

CDC25A is implicated in the G1/S transition and it is also able to dephosphorylate (activate) the 10 

CDK1-Cyclin B complex and, thereby, to promote G2/M transition, while CDC25B and CDC25C 11 

were considered as mitotic regulators [45-50]. CDC25A and CDC25B have been considered as 12 

oncogenes, their overexpression has been frequently demonstrated in several types of cancer [51]. 13 

We found that CDC25A was overexpressed in NFPAs both at mRNA and protein levels, and 14 

CDC25C showed overexpression only at mRNA. This finding is in line with other observations 15 

showing a discordant expression of CDC25 phosphatases at mRNA transcript and protein levels [38]. 16 

By reviewing data of five different CGH studies performed on pituitary adenoma samples and all 17 

available published mRNA microarray datasets no chromosomal gain or overexpression of CDC25A 18 

regulating transcription factors have been revealed. These results suggested that behind of 19 

overexpression of CDC25A posttranscriptional or posttranslational mechanisms stand. 20 

Our results showed that the whole G2/M transition was over-activated in NFPA compared to 21 

normal tissues. Overexpression of genes promoting mitosis (chromosomal passenger complex (CPC) 22 

members CDC8A (Borealin), BIRC5 and AURKB) further supports this observation. AURKB was 23 

also reported to be expressed in 80% (8/10) of benign prolactiomas and showed higher expression in 24 

aggressive prolactinomas versus non-aggressive ones and it was also associated with recurrence or 25 

progression [52-53].  26 
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CDC25A and CDC25C dephosphorylate CDK1 on Tyrosine-15 (Tyr-15). CDK1 forms a 1 

complex with Cyclin B. In NFPAs, we found elevated CDK1 at protein level but not at mRNA level 2 

suggesting that posttranscriptional regulation of the CDK1 expression occurred. Among miRNAs 3 

targeting CDK1 [54-56] miR-410 and miR-24 were underexpressed in NFPAs compared to NPs [24]. 4 

CDC25A targeting miR-424 and miR-503 were downregulated in nonfunctioning and gonadotrope 5 

adenomas but not in GH-producing tumors, and their expression correlated with pituitary adenoma 6 

size [24, 57-61]. These two miRNAs are encoded at Xq26.3 in a miRNA cluster together with hsa-7 

miR-450a, miR-450b and hsa-miR-542. Importantly, the latter three miRNAs of the cluster were also 8 

found to be underexpressed in our previous analysis in NFPA samples compared to normal pituitary 9 

[24] and their expression level also showed a strong negative correlation with tumor size [24]. Because 10 

CDC25A protein but not mRNA expression positively correlated with adenoma size, we conclude that 11 

miR-424 and miR-503 may have a role in the regulation of CDC25A expression in NFPAs and they 12 

function as tumor suppressor miRNAs. Our study revealed an inverse correlation between miR-424, 13 

miR-503 and tumor size further supporting their role in the pathogenesis of NFPA. 14 

In summary, to our best knowledge this is the first report systematically investigating G2/M 15 

transition and reporting CDC25 alteration in NFPA using a relative large sample size. Our results 16 

suggest that overexpression of CDK1 and CDC25A have a role in tumor growth of NFPA via 17 

dysregulating G2/M transition of cell cycle. We assume that the CDC25A-CDK1 pathway is a 18 

potential therapeutic target in NFPA. Our results presented that the overexpression of CDC25A is at 19 

least partly related to the decreased expression of tumor suppressor miRNAs (miR-424 and miR-503). 20 

21 
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Tables 1 

Table 1. Expression of genes involved in the G2/M transition in NFPA tumors compared to 2 

normal tissue 3 

 4 

Gene fold change p value 

GADD45B 0.11 0.0001 

CDKN1A 0.17 0.0000 

AURKC 0.49 0.0029 

CDK7 0.61 0.0005 

CHEK2 0.64 0.0082 

TP53 0.68 0.0026 

YWHAB 1.47 0.0233 

CCNB1 1.67 0.0167 

FANCD2 1.89 0.0075 

CDC25A 2.16 0.0039 

CDCA8 2.52 0.0002 

CDC25C 2.75 0.0106 

BRCA2 2.80 0.0002 

BIRC5 5.30 0.0011 

AURKB 6.09 0.0000 

 5 

 6 

 7 

 8 

 9 
10 
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Figure Legends 1 

Figure 1. Overexpression of CDC25A and CDC25C was validated by individual Taqman assays on 2 

real time-quantitative PCR. CDC25A: fold change: 2.8, p=0.001; CDC25C: fold change: 7.0, 3 

p<0.001). (Y axis represents log2RQ). 4 

 5 

Figure 2. Expression of CDC25A, CDC25C, CDK1 and p-CDK1 in normal pituitary and NFPA. 6 

Mean and SE of semi-quantitative immunohistochemistry scores are indicated by the ranges. *, 7 

p<0.05; **, p=0.05.  8 

 9 
Figure 3. Correlation between the expression of CDC25A, CDC25C proteins, nuclear CDK1, Ki67 10 

and tumor size represented by immunostaining scores. Significant correlation was observed between 11 

CDC25A and CDC25C (R=0.45, p=0.001; (A)), CDC25A and tumour size (R=0.66, p=0.01; (B)), 12 

CDC25A and nCDK1 (R=0.34 and p= 0.01; ((C)). Spearman correlation analysis was performed and p 13 

<0.05 was accepted as statistically significant. 14 

 15 
Figure 4. (A) Expression of CDC25A targeting miRNAs. All miRNAs were downregulated in NFPA 16 

samples compared to normal pituitary (Y axis represents log2RQ). miR-424: fold change: -24.89, 17 

p=0.0021; miR449a: fold change:-3.92, p=0.0014; miR-449b: fold change:-15.46, p<0.0001; miR-18 

503: fold change:-53.22, p=0.0016. (B-C) Correlation between the expression of CDC25A gene and 19 

miR-424 miRNA and CDC25A gene and miR-503 miRNA measured by individual quantitative real-20 

time PCR. Significant correlation was observed between The expression of CDC25A gene and miR-21 

424 miRNA (R=-0.51, p=0.02), and CDC25 A gene and miR-503 miRNA (R=-0.55, p=0.01). 22 

Spearman correlation analysis was performed and p<0.05 was accepted as statistically significant. 23 

 24 

SF1 Supplementary Figure 1. (A) Expression of anterior pituitary hormones’ transcripts and 25 

POU1F1 transcription factor. (B) Endogenous controls in normal (NP) and nonfunctioning pituitary 26 

adenoma (NFPA) tissues. 27 

 28 
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SF2 Supplementary Figure 2. Correlations among the G2/M mRNA expression levels. Red indicates 1 

positive, green indicates negative correlations (in all cases p<0.05). Black represents no correlation. 2 


