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Abstract: A vehicle shimmy model using the Delayed Tyre Model to estimate the lateral
tyre force is introduced. Stability charts are obtained for the linearized system. With reduced
damping and stiffness parameters, a new vibration mode shows up at high speed range when
the front wheels oscillate in opposite directions. Furthermore, the kinetic energy distributed on
each generalized coordinate is calculated at the critical frequencies, and some suggestions are
given on how to reduce shimmy in specific cases.
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1. INTRODUCTION

Vehicle shimmy, also known as ”death wobble”, is a
self-excited vibration of the front wheels around their
kingpins. It increases tyre wear, and deteriorates vehicle
manoeuvrability.

A series of single wheel shimmy models corresponding to
the aircraft landing gear or the trailer problems, have
been studied by many researchers. Pacejka (2002) and Ran
et al. (2014) use these shimmy models of different levels of
complexity, determine the energy flow in the motion with
the energy flow method, and compare different tyre models
on shimmy. Much analytical and experimental work has
been done on the shimmy of a trailer by using the Delayed
Tyre Model in Takacs et al. (2009) and Takacs and Stepan
(2012).

There is another type of shimmy models corresponding
to the ground vehicles. In order to distinguish them from
the single wheel models, ”vehicle shimmy” is used in this
case. Vehicle shimmy models are often built with higher
degrees of freedom (DoF), and take into account of the
steering and suspension systems. Nonlinearities such as
the tyre elasticity, dry friction, and clearance (or freeplay)
of the steering system can all be considered. The semi-
empirical tyre model – Pacejka’s Magic Formula (Pacejka,
2002) is widely used in vehicle shimmy problems, not only
for the huge amounts of experimental validation of the
tyre model, but also because that the nonlinearity can be
introduced into the system in an explicit way, and the
resultant ordinary differential equations are relatively easy
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to solve. For the related models, we refer to Li and Lin
(2006), Wei et al. (2015) and Mi et al. (2017).

In this study, a 3 DoF vehicle shimmy model based on Li
and Lin (2006) is established along with the Delayed Tyre
Model as in Takacs et al. (2009). With the dependent sus-
pension and the simplified steering system, the analytically
more accurate tyre model can also be integrated without
making the equations too lengthy.

The controller considering shimmy is difficult to design
(see Goodwine and Stepan (2000)). In this respect, under-
standing more about the vibration is of great importance.
If we can determine which part of the mechanism influ-
ences shimmy the most, and make efforts to attenuate the
vibration accordingly, it can be expected that the problem
will be easier to deal with. This inspires us to check the
energy distribution and to find out the specific parameters
which may be used on shimmy control.

The rest of this paper is organized as follows: the dynamic
model of the system and the tyre model are explained in
section 2; in section 3, the stability charts and the corre-
sponding frequency maps are obtained with the linearized
system; the kinetic energy distributions in the generalized
coordinates are calculated with different critical frequen-
cies in section 4; finally, conclusions are given in section
5.

2. PROBLEM FORMULATION

2.1 System Modeling

With the assumptions that:

i) the vehicle runs at constant speed on a flat road,
ii) the steering wheel is fixed,



ϕ

ϕ

ϕ

θ1 θ2

ce ce

Z

Y
X

r

l

vehicle body

kingpin

kingpin

k3
c3

k3
c3

k1 c1k2 c2

γγ

m mv

R

kz
kz

Fig. 1. Mechanical model.

iii) no longitudinal slip occurs between the tyre and road,

a 3 DoF vehicle shimmy model (according to Li and Lin
(2006)) is introduced in this section, where the vibrations
of the left wheel θ1(t) and right wheel θ2(t) around their
kingpins, and the swing ϕ(t) of the dependent suspension
about the longitudinal axis are all taken into account, see
Fig. 1.

The equations of motion are given by:
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(1)
where Q1, Q2, and Q3 are the generalized forces; J0, Jd
are the mass moments of inertia of a wheel with respect
to (w.r.t.) the rolling axle and its diameter, respectively;
c1,2,3,e and k1,2,3,z are damping and stiffness parameters,
respectively; R is the rolling radius of the wheel, m is the
wheel mass, and γ is the caster angle; see Fig. 1.

2.2 The Delayed Tyre Model

As shown in Fig. 2, the tyre is considered to be thin,
thus the contact area decays into a line. Taking the
left wheel as an example, the lateral tyre deformation is
denoted by q1(x, t). In the (x, y) plane, L (a, q1(a, t)) is
the leading point, R (−a, q1(−a, t)) is the rear point, and
P (x, q1(x, t)) is an arbitrary point on the contact line,

where a is half of the contact length. With the stretched
string-type tyre assumption (Takacs et al., 2009), the tyre
deformation within the contact region is not restricted,
and outside the contact area decays exponentially. The
position of point P is expressed as

q1(x, t) =


q1(−a, t)e(x+a)/σ, if x ∈ (−∞,−a);

q1(x, t), if x ∈ [−a, a];

q1(a, t)e−(x−a)/σ, if x ∈ (a,∞);

(2)

where σ is the relaxation length. The generalized forces
are then given by

Q1,2 = k

∫ ∞
−∞

(a−Rγ)q1,2(x, t)dx,

Q3 =
(
k

∫ ∞
−∞

q1(x, t)dx+ k

∫ ∞
−∞

q2(x, t)dx
)
R,

(3)

where k is the lateral tyre stiffness, and q2(x, t) is the
lateral deformation of the right tyre.
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Fig. 2. Stretched string-type tyre.

In a coordinate system (X, Y, Z) fixed on the ground
(see Fig. 1), the position of the tyre contact point can
be derived by the matrix transformations. The linearized
forms of the position vector in X and Y directions are
given by



X(x, t) = vt− rθ1(t) + x,

Y (x, t) =
l

2
+ q1(x, t) + (x−Rγ)θ1(t) +Rϕ(t).

(4)

With assumption iii), the tyre particles stick to the ground
in the contact patch, that is,

dX

dt
= 0,

dY

dt
= 0. (5)

The substitution of (4) into (5) leads to the expressions of
ẋ and dq1(x, t)/dt. The travelling wave solution is:

X(x, t) = X(a, t− τ), Y (x, t) = Y (a, t− τ), (6)

where the delay τ is the time needed for the tyre particle
to move from the leading point L to an arbitrary point P
on the contact line.

With dq1(x, t)/dt = ∂q1(x, t)/∂t + ẋ · ∂q1(x, t)/∂x and
∂q1(a, t)/∂x = −q(a, t)/σ at the leading point P, equations
(2)-(6) together with (1) give a system which will finally
be governed by 3 delay differential equations (DDE) and
two ordinary differential equations (ODE).

Note that the ideas are only explained in brief here, for
details of the derivation we refer to Takacs et al. (2009)
and Mi et al. (2017).

3. STABILITY ANALYSIS

For our system which contains DDEs, there are infinite
many eigenvalues, but only a few of them locate in the
right half of the complex plane. When the eigenvalues
are in the imaginary axis, shimmy can occur in the
corresponding nonlinear system. The stability boundary
can be obtained by calculating the critical eigenvalues with
certain parameter combinations.

Fig. 3. Stability chart with realistic parameters.

Fixing the vehicle forward speed v and the wheel track l,
stability chart for a heavy vehicle (Li and Lin, 2006) is
shown in Fig. 3, and the parameters are given in Table.
1. Numerical method – the Bisection Method (Bachrathy
and Stepan, 2012) is used due to the high dimension of the
system.

In Fig. 3, there are two lobes in the speed ranges of 20-
50 m/s and 80-100 m/s, respectively, and the lobe in
the larger speed range only shows up a little with very
large wheel track though. To investigate more dynamic
behaviours, we reduce the damping values c1,2,e in the
steering system and at the kingpins by 0.4, and stiffness
values k1,2 of the steering system by 0.7. The stability
chart and the corresponding critical frequency map are

Fig. 4. Stability chart and the corresponding critical fre-
quency map with reduced damping and stiffness of
the steering system (and at the kingpins).

shown in Fig. 4, where more complicated vibrations occur.
The previously existing two lobes (similar as that in Fig.
3, with frequencies of 5-7 Hz and 10-15 Hz, respectively)
come down and their boundaries cross each other, where
the quasi-periodic oscillation is expected. A new lobe at
very high speed (> 65 m/s) with frequencies of about 15-
16 Hz shows up.

The vibration modes of the three selected points (marked
with red circles) in Fig. 4 are shown in Fig. 5. Panel (a) is
obtained at the point v = 11.3 m/s, l = 1.50 m in the first
lobe (with the lowest frequency of 5-7 Hz), with a critical
frequency of 4.4 Hz. Panel (b) and (c) are obtained at the
intersection point v = 59.8 m/s, l = 1.71 m of the first lobe
and second lobe (with the critical frequency of 10-15 Hz),
and the frequencies are 6.5 Hz and 10.5 Hz, respectively.
Panel (d) and (e) are for the intersection point v = 68.7
m/s, l = 1.21 m of the second lobe and third lobe (with
the highest frequency of 15-16 Hz), and the frequencies at
different lobes are 11.5 Hz and 15.3 Hz, respectively.
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(a) First lobe, v = 11.3 m/s, l = 1.50 m, and f = 4.4 Hz.
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(b) First lobe, v = 59.8 m/s, l = 1.71 m, and f = 6.5 Hz.
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(c) Second lobe, v = 59.8 m/s, l = 1.71 m, and f = 10.5 Hz.
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(d) Second lobe, v = 68.7 m/s, l = 1.21 m, and f = 11.5 Hz.
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(e) Third lobe, v = 68.7 m/s, l = 1.21 m, and f = 15.3 Hz.

Fig. 5. Vibration modes of the selected points in Fig. 4
with different frequencies.

In the first lobe corresponding to panel (a) and (b), the
vibration amplitude of the swing angle ϕ(t) is small, while
the shimmy angles of front wheels θ1,2(t) are much larger.
The tiny difference in the amplitudes between left and
right wheels is caused by the asymmetry of the system, as
depicted in Fig. 1. Compared with panel (a), the vibration
amplitude of the swing angle ϕ(t) is larger in panel (b),
and the phases of θ1,2(t) and ϕ(t) are shifted relative to
the lateral tyre deformations q1,2(a, t). It can be related to
the wide speed range of the lobe. If we trace the vibration
modes along the first lobe with realistic parameters in Fig.
3, the phases shift little by little with the increase of the
speed, and so does the amplitude increase of ϕ(t). Panel
(b) and (c) have very similar vibration modes, where the
swing angle ϕ(t) of the suspension vibrates more strongly
compared with that in panel (a) and (b).

For the first two lobes, the contact lines q1(a, t) and q2(a, t)
(or the shimmy angles θ1(t) and θ2(t)) are in the same
phase, when the left and right wheels vibrate in the same
direction. However, in panel (e) of Fig. 5, the front wheels
vibrate in opposite phases.

4. ENERGY DISTRIBUTION

In order to investigate more details of the vibrations, the
kinetic energy distributed in each generalized coordinate
at different parameter combinations is checked in this part.

The energy of the system are also considered in Pacejka
(2002) and Ran et al. (2014) , and the energy flow method
is used to compare different tyre models, and to show how
the energy flows from different input sources. On contrast,
we do not focus on where the energy comes from, but on
how it reflects on different coordinates.

The contribution of the ith generalized coordinate to the
total kinetic energy (see Shi et al. (2009)) can be calculated
as

ηi(t) =
Ti(t)

T (t)
=

3∑
j=1

Jijqi(t)qj(t)

3∑
i=1

3∑
j=1

Jijqi(t)qj(t)

× 100%, i = 1, 2, 3,

(7)
where Ti(t) is the kinetic energy distributed in ith gen-
eralized coordinate (i.e. θ1(t), θ2(t), and ϕ(t)), Jij is the
element of matrix J in ith row, jth column.

By calculating the eigenvectors of the critical eigenvalues,
and substituting them into (7), the energy distributions
corresponding to Fig. 5, panel (a)-(e) are pictured in Fig.
6, panel (a)-(e), respectively. Panel (a) and (b) in Fig. 6
show that, the proportion of the front-wheel vibrations is
large in the first lobe, although that of the swing angle
rises with the increase of the critical frequency. For the
second lobe, the vibration of the suspension around the
longitudinal axis increases dramatically, see panel (c) and
(d). When the third lobe (see panel (e)) constitute the
majority of the total energy, just like the first lobe.
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(a) First lobe, v = 11.3 m/s, l = 1.50 m, and f = 4.4 Hz;
corresponding to panel (a) of Fig. 5.
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(b) First lobe, v = 59.8 m/s, l = 1.71 m, and f = 6.5 Hz;
corresponding to panel (b) of Fig. 5.
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(c) Second lobe, v = 59.8 m/s, l = 1.71 m, and f = 10.5 Hz;
corresponding to panel (c) of Fig. 5.
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(d) Second lobe, v = 68.7 m/s, l = 1.21 m, and f = 11.5 Hz;
corresponding to panel (d) of Fig. 5.
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(e) Third lobe, v = 68.7 m/s, l = 1.21 m, and f = 15.3 Hz;
corresponding to panel (e) of Fig. 5.

Fig. 6. Energy distributions on gereralized coordinates in
different vibration modes corresponding to Fig. 5.

Now it will be interesting to see what happens if some
specific damping values in different parts of the system
are changed.

When the damping values corresponding to the front-
wheel shimmy, that is, c1,2 of the steering system or ce at
the kingpins are increased while all the others remain the
same with that in Fig. 4, the resulting stability charts and
corresponding frequency maps are shown in Fig. 7. Either
we increase c1,2 (see panel (a) of Fig. 7) or ce (see panel (b)
of Fig. 7) by a factor of 1.5, the third lobe disappears in
the shown region. Compared to the stability chart in Fig.
4, the first two lobes almost stand in the same positions
– they become a bit smaller indeed but not palpable. It
agrees with the energy distribution in panel (e) of Fig. 6.

The stability chart and frequency map with increased
damping c3 of the suspension around longitudinal axis are
shown in Fig. 8, where the damping is multiplied by a
factor of 1.5 also. This time, the first lobe and third lobe
remain but the second lobe goes up.

(a) c1,2 are increased by a factor of 1.5.

(b) ce is increased by a factor of 1.5.

Fig. 7. Stability charts obtained with increased damping
values of the steering system and at the kingpins.

To conclude, the first lobe is ”stubborn”, and does
not change much with the increase of specific damping
value(s). When the total damping is increased, the first
lobe goes up, and the unstable region becomes smaller
(see Fig. 3). The second lobe is sensitive to the suspension
damping (c3), and the third lobe is sensitive to the damp-
ing parameters corresponding to the front-wheel shimmy
(i.e. c1,2 and ce).

Fig. 8. Stability chart obtained with increased damping
value c3 of the suspension around the longitudinal axis
by a factor of 1.5.



Table 1. Parameters in the stability analysis.

Description Symbol Value

mass moment of inertia
J0 4.85 kg m2

Jd 6 kg m2

J3 20 kg m2

damping

c1 10 N s/(m rad)
c2 100 N s/(m rad)
c3 1 050 N s/(m rad)
ce 44 N s/(m rad)

stiffness

k1 35 500 N m/rad
k2 17 000 N m/rad
k3 32 000 N m/rad
kz 400 000 N/m

geometric parameters
R 0.4 m
r 0.07 m
γ 0.04 rad

tyre-road contact
a 0.2 m
σ 0.65 m

5. CONCLUSION

In this paper, a 3 DoF shimmy model taking into account
the steering system and the suspension system is intro-
duced with the Delayed Tyre Model. Constraint equations
are derived with the stretched string-type tyre assumption,
which considers the lateral tyre deformation both in and
out of the contact patch. The resultant system with delay
differential equations is linearized and the stability charts
are obtained by numerical method.

For more interesting dynamic behaviours of the system,
the damping and stiffness values are reduced. As a result,
quasi-periodic oscillations occur, and even a new lobe
appears. By determining the eigenvectors corresponding
to the critical frequencies at some chosen points in the
stability chart, the vibration modes are visualized. It turns
out that in the previous existing two lobes, the front wheels
vibrate in the same direction, while in opposite phases in
the new lobe.

By calculating the kinetic energy distribution in each gen-
eralized coordinate, the main energy consuming coordi-
nate(s) can be determined. If we increase the correspond-
ing damping values of the components, the unstable lobes
in the high speed range shrink dramatically. However, the
lobe with lowest critical frequency stays still.

Although the vibration modes can already provide much
information about shimmy, the differences among diverse
modes are vague. If we further calculate the kinetic energy
of each generalized coordinate, the results show that even
the similar looking vibration modes (such as the first and
second lobes) can have very different energy distributions,
and the attenuation of shimmy can be related to different
damping parameters.

With the development of the technology, the maximum
speed of ground vehicles is increasing, and the control
strategies have been developed in various driving condi-
tions. But shimmy is rarely taken into account in the con-
troller designing. This paper introduces a dynamic model
considering steering and suspensions systems, and gives
some analytical reference for vehicles, for example, with
multiple active dampers, on how to deal with the shimmy
problem.

The model is established with many simplifications and
assumptions: some geometric parameters such as the cam-
ber angle are not considered; the tyre contact length and
the relaxation length are taken as constants; the steering
wheel is fixed; the translational and rotational movements
of many components are neglected, etc. The suggestions on
shimmy attenuation are neither direct nor easily achiev-
able, especially with a heavy truck at very high speed.
However, from the view point of understanding more about
the shimmy phenomenon, this work can still provide some
valuable reference in the future research.
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