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Abstract 

Electrochemical synthesis and signal generation dominate among the almost 1200 papers 

published annually on protein imprinted polymers. Such polymers can be easily prepared 

directly on the electrode surface and the polymer thickness can be precisely adjusted to the 

size of the target to enable its free exchange. In this architecture the molecularly imprinted 

polymer (MIP) layer represents only one “separation plate”, thus the selectivity does not reach 

the values of “bulk” measurements. The binding of target proteins can be detected 

straightforwardly by their modulating effect on the diffusional permeability of a redox marker 

through the thin MIP films. However, this generates an “overall apparent” signal which may 

include non-specific interactions in the polymer layer and at the electrode surface. Certain 

targets, such as enzymes or redox active proteins enables a more specific direct quantification 

of their binding to MIPs by in situ determination of the enzyme activity or direct electron 

transfer, respectively. 
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1. Introduction 

Highly specific interactions are involved in most essential biological processes, e.g. the 

antigen-antibody interaction of the immune system, the action of enzymes in substrate 

conversion and the sequence specific hybridization of nucleic acids. These 

biomacromolecules are routinely used as specifiers in clinical diagnostics, environmental 

analysis and food control. In order to overcome some problems of biochemical reagents and 

to realize low-cost analyses, polymer chemists, biochemists and material scientists develop 

fully synthetic organic polymers and nucleotide-based aptamers. The synthesis of so-called 

molecularly imprinted polymers (MIPs) for proteins has been initiated  by Mosbach [1,2]. As 

compared with proteins the number of publications on nucleic acids is relatively small [3–5]. 

During the synthesis of MIPs monomers are polymerized in the presence of the target 

molecule, so-called template, which is removed after the formation of a polymeric network. 

The removal of the template from the polymer results in the formation of cavities, which 

mirror the shape of the target molecule. MIPs mimic the binding sites of antibodies by 

substituting the amino-acid-scaffold for synthetic polymers[6–9]. Whilst enzymes and 

antibodies are made up by 20 natural amino acids, MIPs can be synthesized from only ONE 

monomer and even without a cross-linker. This reduction of complexity is a real technological 

breakthrough. MIPs are more stable under harsh conditions such as high temperature, extreme 

pH, and organic solvents than antibodies. 

 

2. MIP-Synthesis 

Among the almost 1200 papers annually published on MIPs only around 10 percent cover 

the recognition of biopolymers [10]. 
  The reason for the restricted number of MIPs for high-molecular weight compounds is 

mostly caused by stability problems of the biomacromolecular templates, e.g. proteins, in the 

polymerization media. Electropolymerization overcomes several constrictions of radical 
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polymerization because it allows for polymer synthesis from aqueous solution under mild 

conditions. Anodic oxidation of pyrrole, scopoletin, o-phenylenediamine (o-PD), thiophene, 

p-aminophenylboronic acid and their derivatives in the presence of the target molecule gives 

ultra-thin MIP-layers directly on the conducting surface of electrodes or chips for quartz 

crystal microbalance (QCM) and surface plasmon resonance (SPR) [11]. As compared with 

the chemical MIP-synthesis the spectrum of electropolymerizible monomers is small. Thus 

the optimization of the monomer/target interaction is restricted. 

For the electrosynthesis of MIPs for macromolecular targets, esp. proteins, the following 

main procedures have been developed (Fig. 1): 

(i) In the simplest approach a mixture of functional monomers and macromolecule is 

polymerized (Fig. 1A). This approach can be also applied to locally electrosynthesize protein-

MIPs by the so called microelectrospotting procedure [12]. 

 (ii) Alternatively, the target can be adsorbed at the transducer surface prior 

polymerization [13] (Fig. 1B). Beside direct adsorption of proteins[14,15], deposition of 

protein-nanoparticle conjugates can be also used, e.g. by nanosphere lithography [16] to 

generate surface imprinted polymer layers.  

(iii) Oriented binding of the target prior polymerization via site-specific anchors, e.g. 

charged self-assembled monolayers (SAMs), boronic acid derivatives [17], aptamers [18] or 

inhibitors [19], which allows the formation of more uniform cavities in the MIPs (Fig. 1C). 
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Fig. 1. Workflow of MIP preparation. A) in one-step by electropolymerization of 

monomer/template mixture, B) in two-steps that involves the pre-adsorption of the target 

protein followed by EP of the monomer around the surface-confined targets, C) affinity 

binding of the target to a self-assembled anchor layer for oriented immobilization of the 

protein followed by electropolymerization. 

 

Taking advantage of the simpler MIP synthesis and template removal using low-molecular 

weight compounds, only fragments of the biomacromolecules have been also applied as 

templates (Fig. 2). In this line exposed peptides (epitopes) [20,21] or protein subunits [22] 

have been used as the template in the synthesis of MIPs, which recognize both the epitope and 

the holo-protein. The concept of using an exposed peptide sequence as the target in the MIP-

synthesis -the epitope imprinting approach- has been extended to artificial peptide tags of 

engineered proteins [23], sugars of glycoproteins [24] and even to chemical labels of 

macromolecules [25]. Representative examples which have been published within the last 

three years are presented in section 4. 

 

Fig. 2. Schematic representation of the “epitope” imprinting. 

 

3. Electrochemical readout 

Electrochemical approaches allow not only the elegant preparation of MIP-sensors, but 

they are also powerful tools for the generation of the measuring signal. 

Therefore, fully electronic MIP-sensors, which use electrochemistry for all steps of MIP-

synthesis and readout (Fig. 3) are more common among MIP-based protein sensors than SPR, 

QCM or spectroscopic methods. 

(i) The popularity of the electrochemical readout-based MIP sensors is largely due to the 

simple, cost effective and highly sensitive detection methodology offered by the monitoring 

the permeability of a small molecular weight redox marker through thin MIP films. The 
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simplified model for the generation of the measuring signal assumes that the removal of the 

protein template generates pathways in the tight MIP layer which allow the permeation of the 

redox marker to the electrode surface to provide a current signal by its oxidation or reduction. 

Rebinding of the target will decrease the current signal by closing these pores and 

subsequently the pathways to the electrode, thus causing a concentration dependent decrease 

in the permeation of the redox marker [26]. This methodology applies for insulating MIPs that 

constrain the redox reaction of the marker species to the electrode surface. The evaluation of 

the diffusional permeability of the redox active marker can be conveniently followed by many 

electrochemical techniques, e.g., cyclic voltammetry (CV), square wave voltammetry (SWV), 

differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). 

This methodology provides overall a straightforward approach for MIP-based affinity sensors 

for proteins. It offers also means to characterize each step of the MIP synthesis and the 

evaluation of the concentration dependence of target-rebinding to the MIP of not only 

(bio)macromolecular and (nano)particle targets but also of low molecular weight targets.  

However, since target rebinding causes only small decreases of the large reference signal 

after template removal, i.e., signal-off detection methodology, the precision of this approach 

is inherently problematic. Furthermore, nonspecific adsorption of surface-active constituents 

of the “real” sample may also influence the current signal. 

In spite of the inherent limitations of the method several papers describe MIPs for both 

small targets and macromolecules with lower limits of detection in the picomolar and even 

attomolar concentration range (Tab. 1). These publications evaluate either the relative or the 

absolute decrease of signal suppression in linear or semilogarithmic scales, and generally 

report two-phasic concentration dependencies without the discussion of the underlying 

mechanism. 

(ii) The analytical performance of MIP-sensors for enzymes can be directly characterized 

by measuring the enzymatic activity of the biocatalyst bound to the MIP. Using spectroscopic 

methods, the accumulation of a colored product in the bulk solution was evaluated for trypsin 

[27], human hemoglobin (Hb) [28] and cytochrome P450 BM3 (P450BM3) [29]. 

Electrochemical detection of an electroactive product allows the quantification of rebinding 

directly at the sensor surface. This has been successfully applied for AChE [19], laccase [30], 

and tyrosinase [31]. This approach is highly sensitive, however, the measuring signal sums up 

the activity of the enzyme molecules bound to the specific binding sites and that of the non-

specifically adsorbed enzyme at the polymer surface. 
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Fig. 3. The three main approaches for electrochemical readout of MIP-base electrochemical 

sensors for proteins: A) the flux of a redox marker is detected at the underlying electrode 

surface, which is modulated by the protein binding, B) in case of enzyme targets the 

enzymatic activity is detected through the generation of a redox active product at the electrode 

surface and C) in case of some redox active proteins the current due to direct electron transfer 

between the underlying protein and the electrode is measured. 

 

(iii) The most specific electrochemical detection uses direct electron transfer  (DET) [32–

34] or bioelectrocatalysis, which is based on DET between underlying electrode and the 

metalloprotein target. The generation of the catalytic current on addition of the (co)-substrate 

indicates that the protein reaches the electrode surface and has the “productive orientation” for 

DET. This approach has been pioneered by Reddy et al. [35] for the catalytic oxygen 

reduction in the presence of Hb and was transferred to myoglobine [36] and the catalysis of 

peroxide reduction by MIP-bound Hexameric tytosine-coordinated heme protein (HTHP) 

[33]. 

In the following two sections the realization of concepts to uses targets of different 

complexity from low-molecular weight epitopes via large fragments to biomacromolecules is 

exemplified by selected papers published within the last three years. The analytical 

performance of the respective MIP sensors and the potential of the different methods for 

electrochemical readout of MIPs are compared.  

 

4. MIPs for peptides, proteins, glycoproteins and nucleic acids using epitopes, domains 
and tags for the MIP-synthesis 

The concept of epitope imprinting has been applied for the key player of diabetes-the 

peptide hormone insulin. A MIP-film for the recognition of insulin was deposited by anodic 

oxidation of o-PD on top of a SAM of a C-terminal peptide (of not defined length). The 

measuring signal was generated from the current suppression for the redox marker 

ferricyanide. The authors report that this epitope-imprinted MIP showed a linear measuring 
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range for the “holo”-insulin between 10 fM and 50 pM. They claim “successful application in 

serum samples” [37]. 

The carbohydrate antigen 19-9 (CA19-9) is the routinely used biomarker in the diagnosis 

of pancreatic adenocarcinoma. The epitope approach has been successfully applied for this 

carbohydrate: The MIP was synthesized using electropolymerization of o-PD in the presence 

of either the terminal monosaccharide acetylneuraminic acid or the tetra saccharide sialyl 

Lewis (SLe) on the surface of a glassy carbon electrode (GCE). Rebinding was measured by 

cyclic voltammetry of the redox marker ferricyanide. The tetra saccharide SLe could be 

indicated down to 10-13 M and the MIP has a limit of detection (LOD) of 0.028 U/mL for 

CA19-9 [24]. 

 After the realization of fragment imprinting for IgG [22] the extension of this concept to 

enzymes has been presented by Jetzschmann et al.[29]. Both the separated domains and the 

holo P450 BM3 have been bound prior polymer deposition via an N-terminal engineered his6-

anchor to the electrode surface. Rebinding after template removal was evaluated by 

quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by 

the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). The 

holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted 

with the oxidase domain as compared to the BMR-MIP or the non-imprinted polymer (NIP). 

The his6-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the 

interaction with the MIP and the binding to the electrode.  

As compared with proteins the number of publications on nucleic acids is very small, due 

to the fact that hybridization assays represent an alternative difficult to compete with, 

especially since synthetic analogues of DNA probes, such as peptide nucleic acids, or locked 

nucleic acids present all advantages in terms of stability that is expected from MIP based 

receptors. Still DNA MIPs with excellent analytical performances were reported. Thus a MIP 

for HIV related DNA was prepared by electropolymerizing a solution containing o-PD and 20 

µM of 15-mer ssDNA (5-NH2-GGGGGGCCAAGGCCCAGCCCCTCACA-3) on the surface 

of indium tin oxide (ITO)-electrodes. The template was removed in ethanol/ NaOH mixture. 

After rebinding of the template from the sample the MIP-bound ssDNA was hybridized with 

complementary ssDNA which was conjugated with Europium sulfide nanocrystals. The 

amount of the HIV-specific DNA was quantified by electrochemiluminescence in the 

concentration range 3.0 fM to 0.3 nM. The authors do not explain, how the formation of 

dsDNA which has a larger foot print than the ssDNA target could proceed in the smaller MIP 
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cavities and how interaction with  only one building block of the polymer (o-PD) could bring 

about fM affinities [38]. 

High affinity binding of labeled nucleic acid to a MIP for the low-molecular label was 

reported by You et al.[25]. A MIP for Rhodamine B (RhB) was prepared by polymerizing 

methacrylic acid derivatives in the presence of RhB on the surface of a GCE, which was 

modified with gold nanoparticles and graphene oxide. This MIP recognized RhB modified 

single stranded DNA with high affinity and allowed the measurement of complementary 

DNA in the fM-range [25]. 

 

5. MIPs for holo-Proteins 

The application of the total biopolymer  as the target for MIP-synthes is the dominating 

approach since the intoduction of protein-MIPs. The measuring signal of a MIP sensor for the 

copper enzyme tyrosinase from mushrooms was generated either by measuring the formation 

of the oxidation product by the target enzyme or by evaluation of the permeability of the 

redox marker ferricyanide. It was prepared by electropolymerizing scopoletin or o-PD in the 

presence of the target protein. The template was removed either by treatment with proteinase 

K or by alkaline solution. The MIP-sensor has a linear measuring range up to 50 nM of 

tyrosinase with a limit of detection of 3.97 nM. At saturation of rebinding an imprinting factor 

of 70 was calculated and the MIP shows good discrimination towards BSA and cytochrome c. 

Because both proteins are considerably smaller than tyrosinase, it could be expected that they 

could simply “fill” the binding pockets and suppress the permeability for the redox marker. 

Their smaller effect demonstrates the preference of the interactions between the target and the 

polymer scaffold [31]. Table 1 presents the analytical parameters of electrosynthesized MIPs 

which mostly used o-PD or scopoletin as monomers and a redox marker for electrochemical 

readout. 

 

Tab. 1. MIPs for peptides and proteins prepared by electropolymerization. SPE: screen-

printed electrode; CEA: carcinogenic embryonic antigen; RGO: reduced graphene oxide; 

FM1: 4-bis(2,2’-bithien-5-yl) methylbenzoic acid glycol ester. nd: not detetermined. 

Template                      Electrode Monomer (Linear) 
measuring range 

Kd Reference 

Transferrin                                    bare Au wire scopoletin 0.1 - 1 µM 0.5 µM [13] 

HSA             bare Au disk scopoletin 0.3 - 1.5 µM  2.8 µM [39] 
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Ferritin                bare Au disk scopoletin  0.25 - 0.75 µM  nd [39] 

Ferritin Carbon-
nanotube 

phenol 2.3 aM - 227fM 121.8 aM [40] 

Troponin T  bare Au disk o-PD 0.2 - 21 pM 2.4 pM [41] 

Troponin T RGO pyrrole 0.26 - 2.6 pM 0.7 pM [42] 

Annexin 
A3 

Carbon-SPE caffeic acid 2.8 pM - 5.5 nM nd [43] 

CEA Ag-SPE pyrrole 0.28 - 6.9 fM 32.2 fM [44] 

HSA             bare Au disk bithiophene
derivatives 

12 - 300 pM nd [45] 

Tyrosinase GCE o-PD 10- 50 nM nd [31] 

Oxytocin Au film FM1 0.06 -1 mM nd [46] 

Insulin Bare Au o-PD 10 - 500 fM nd [37] 

 

Extraordinary signal amplification was demonstrated for a MIP for epidermal growth 

factor (EGF). It was prepared by electrochemically initiated polymerization of acrylamide on 

top of a SAM carrying the immobilized target. Nano-liposomes which were loaded with Cd2+ 

and decorated with antibodies against EGF were applied for signal amplification. The 

measuring signal was generated by potentiometric stripping analysis of the liberated Cd2+ 

ions. The measuring range extended from 0.005 to 5.000 pg/mL [47]. 

Recently Sun et al. [34] reported about the readout by DET of MIP–bound  Hb. The MIP 

was deposited on top of the electrode which was modified with Fe3O4@SiO2 nanoparticles. 

The current signal in the CVs however, are far too cathodic for native Hb, thus the evaluation 

is questionable. From the analytical point of view binding assays like MIPs cannot compete 

with simple spectroscopic measurements, e.g. with Drabkin’s method for Hb and signal 

amplification (as described in [48]) is not required for measurements in the mM-concentration 

range. 

 

6. Conclusions 

Application of MIP-sensors in real samples is still a challenge and the spectrum of targets 

is still considerably smaller than that of commercially available immunoassays [49,50]. 

Several protein MIPs have been tested in artificial urine or spiked semi-synthetic plasma and 
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measurements in real samples have been claimed. However, measurements by “binding” 

sensors in blood are complicated by the presence of highly abundant proteins, e.g. serum 

albumin, in the g/L region whilst protein marker for heart failures and cancer are typically in 

the mg/L to ng/L range. Therefore, selectivity coefficients above 1.000 are required whilst 

MIPs which are synthesized from one or two monomers typically possess vales below 100. 

This drawback of electrosynthesized MIPs can be partially compensated by the combination 

with specific anchors, e.g. boronic acid derivatives [17] or aptamers [18]. 
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Highlights 

1. MIPs mimic efficiently the function of antibodies 

2. Electrochemical synthesis and signal generation dominate among the 

MIP-sensors 

3. Number of analytes is still smaller than that of commercially available 

immunoassays 

4. Specificity of MIPs can be improved by integration of boronic acid derivatives 

or aptamers 


