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A new copper catalyzed oxidative ring closure of ethynyl anilides with diaryliodonium salts were developed for the 

highly modular construction of benzoxazines bearing fully substituted exo double bond. The oxidative 

transformation includes an unusual 6-exo-dig cyclization step with the formation of C-O and C-C bond. 

Synthesis and functionalization of aromatic and heteroaromatic systems through C-H activation and oxidative coupling are 

the most important areas of current organic syntheses.
1
 Iodonium salts

2
 are useful coupling partners and their use enables the 

introduction of ethynyl
3
 

 and aryl
4
 moieties into the aromatic and heteroaromatic substrates via transition metal-catalyzed oxidative 

transformations. In the presence of directing groups with the appropriate choice of metal catalyst the incoming functional 

group can be directed selectively into the aromatic ring. As it was described by Daugulis the palladium catalyzed arylation of 

anilides gives ortho aryl acetanilides,
5
 while copper-triflate catalyzed arylation of pivalanilides provide selectively meta 
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directed arylpivalanilides, as it was demonstrated by Gaunt and Phipps.
6
 In most cases of the meta selective arylation, the 

pivalanilides bear functional groups in ortho position next to the protected amino group.  

We aimed to examine the chemoselective functionalization of ortho alkynylanilides with iodonium salts via copper-

catalyzed oxidative coupling. The alkynylanilide motif offers multiple sites of reactivity, either with the anilide aromatic 

system or using the triple bond (Scheme 1.). Meta selective arylation would provide meta arylated anilides,
6
 while the copper 

catalyzed electrophilic carbofunctionalization of alkynes with diaryl iodonium triflates forms highly functionalyzed 

tetrasubstituted alkenyl triflates or induce ring closure, which were demonstrated by Gaunt very recently.
7
  

Transition metal-accelerated ring closure with the participation of the triple bond can induce the formation of heterocycles. 

The ring closure can occur through two possible pathways: the preferred 5-endo-dig cyclization provides indoles
8
 while in 

the presence of Au,
9
 Pd

10
 or iodine

11
 catalysts the relatively rare 6-exo-dig ring closure affords benzoxazines,

12
 which have 

been shown to possess significant biological activity.
13

 

Beyond economic reasons a copper-catalyzed site selective formation of benzoxazines would offer the additional 

advantage through the formation of a copper -complex during the ring closure, which may enable the 
 

Scheme 1. Functionalization modes of alkynylanilides 

 
 

formation of an additional C-C bond between the heterocycle and an aryl group via reductive elimination. 

As a model substrate we chose 2-phenylethynyl-pivalanilide (1a) and reacted with phenyl-mesytyl iodonium triflate (2a) 

in the presence of transition metal catalysts in various solvents (Scheme 2.). We found that the alkyne was transformed with 

full conversion in the presence of 10 mol% Cu(OTf)2 in dichloroethane at 50
o
C.

14
 Other solvents (DCM, chloroform, DMF, 

dioxane, THF) and other catalysts (Pd(OAc)2, AuCl, CuSO4, CuI, Cu(MeCN)4OTf) proved to be not suitable for the efficient 

transformation of the pivalanilide.
15

 After isolation of the reaction product (3a) with 79% yield in the Cu(OTf)2-catalyzed 

reaction we examined its structure using NMR and were able to exclude formation of a biaryl system via meta selective 

arylation and indole formation. 
 

Scheme 2. Model reaction for optimization studies 
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While NMR studies supported the formation of a benzoxazine product, unambiguous identification of product was 

achieved through a single crystal X-ray diffraction study of benzoxazine derivative (3aa) (Figure 1). X-ray analysis 

confirmed that benzoxazine derivatives are formed through 6-exo-dig ring closure and subsequent C-C bond formation on 

the exo double bond. 

To examine the scope and limitation of the developed methodology, we reacted different alkynylanilides with 

phenylmesytyliodonium triflate in the presence of 10 mol% Cu(OTf)2 in DCE at 50
o
C (Scheme 4). 

The presence of methyl group in any position of the arylethynyl part caused lower efficiency compared to 
 

Figure 1. The molecular structure of compound 3aa. The displacement ellipsoids are drawn at the 50% probability level, and heteroatoms 
are shaded. 

 
 

the unsubstituted phenylethynyl derivative, but we obtained the desired compounds (3b, 3c, 3d) in 55%, 63% and 44% 

yields respectively. Arylethynyl pivalanilides substituted with halogens (Br, Cl, F) were also transformed to the appropriate 

benzoxazines (3e-i) in 40-63% yield. Both strongly electron withdrawing and donating groups are compatible with the 

reaction. In the case of nitro and methoxy group we obtained the appropriate products (3j and 3k) in 34 and 48% yield. 

However, when the arylethynyl reactant was substituted with ester group, benzoxazine 3l was obtained with 65% yield. 

When an extended aromatic ring system such as naphthalene was present in the substrate, the appropriate benzoxazine (3m) 

was prepared with good yield (79%). Exchanging the aryl group in the ethynyl substituent to a butyl group had no deleterious 

consequences on reactivity, and benzoxazine formation took place smoothly affording the desired alkyl substituted product 

3n in good yield (74%). 

The ring closure and the C-C bond formation were also performed with substrates bearing substituents on the anilide. The 

presence of halogens on the aromatic ring such as fluoro- and chloro- groups are well tolerated under the reaction conditions 

and the reaction provides the products 3o and 3p in high yield (70% and 71%). The transformation was also worked with 

functional groups with different electronic properties. In case of electron withdrawing ester functionality present in the 

anilide part, benzoxazine 3q was isolated in 44% yield, and the methoxy derivative 3r was obtained with 60% yield. When 

the t-butyl group of the amide moiety was replaced with methyl, phenyl, p-methoxyphenyl and p-nitrophenyl group the 

reactions provided the appropriate benzoxazine products (3s-v) with the similar efficiency to pivalanilide 3a (53-88%).  

After examining the applicability of different ethynyl anilides we studied the reactivity of different aryl-mesityl iodonium 

triflates in the transformation (Scheme 5.). Utilizing the developed conditions, reaction of meta and para tolyliodonium 

triflates with alkynyl pivalanilides gave the products 3b, 3c, 3w and 3x with 35%-69% yields. However, ortho substituted 

tolylethynyl iodonium salt did not provide benzoxazine 3d. 

 
 
Scheme 4. Copper catalyzed coupling of ethynylanilides with phenyl mesityl iodonium triflate. 



 
Reaction conditions: Arylethynylanilide (0.3 mmol), iodonium salt (0.36 mmol), Cu(OTf)2 (0.03 mmol), DCE (3 ml) at 50°C. % Yields of 

isolated product. a The scheme indicates the molecular structure of the major isomers. Value refers to the time dependent major:minor ratio 

obtained from the NMR analysis of freshly prepared samples. Isomerization was observed in the NMR solvent. 
 

It is of note, that the deleterious effect of any kind of ortho substituent on the aryl ring of the iodonium salt was observed 

in 5 additional cases (F, Cl, Br, CF3, COOEt, not shown in Scheme 5.). Iodonium salts with halogen (F, Cl, Br) substituted 

aromatic rings reacted with similar efficiency and provide the appropriate products with 38%-83%. The benzoxazines were 

obtained with good yield when ester (3l), acetyl (3cc) and trifluoromethyl (3dd) groups were present in the aryl part of the 

iodonium salt.  

After the exploration of the substrate scope, we considered the product structure with regard to the  
 

Scheme 5. Copper catalyzed coupling of arylethynyl pivalanilides with different aryl mesityl iodonium triflates. 



 Reaction conditions: Arylethynyl pivalanilide (0.3 mmol), iodonium salt 

(0.36 mmol), Cu(OTf)2 (0.03 mmol), DCE (3 ml) at 50°C. % Yields of isolated product. a The scheme indicates the molecular structure of 

the major isomers. Value refers to the time dependent major:minor ratio obtained from the NMR analysis of freshly prepared samples. 

Isomerization was observed in the NMR solvent. 
 

geometry of the substituted double bond. In case of all the non-symmetrically substituted diaryl derivatives the NMR 

measurements showed the presence of mixture of geometric isomers.
16

 Careful analysis revealed that the products are 

isomerizing in NMR solvents.
17

 

Regarding a possible mechanism of the transformation, on the basis of similar copper catalyzed oxidative couplings we 

propose that the reaction starts with the formation of Cu(I) species from Cu(OTf)2 (Scheme 6.). In the following step the 

Cu(I) catalyst is oxidized by the iodonium salt (2) resulting the formation of Ar-Cu(OTf)2 intermediate (4). We suppose that 

this highly electrophilic Cu(III) species coordinates to the triple bond from the outer sphere and induces the ring closure. The 

lone pair of the amide nitrogen serves as the electron source, and the oxygen attacks to the sp carbon atom next to the 

aromatic ring of the anilide. With the lost of triflate group from copper intermediate 6 forms, which is able to undergo 
 

 

Scheme 6. Proposed mechanism for the formation of the major geometric isomer  

 
 

reductive elimination providing the Cu(I) catalyst and the benzoxazine product 3. The overall transformation includes 6-

exo-dig cyclization which is accompanied by the formation of new C-O and C-C bond. This mechanistic path provides the 
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major geometric isomers formed during the transformation where the aryl group derived from the arylacetylene is in Z 

position to the oxygen atom of the benzoxazine ring.
18 

In conclusion we have developed a new copper-catalyzed oxidative transformation for the construction of benzoxazine 

derivatives from substituted ortho ethynyl anilides and diaryl iodonium salts. We determined that the oxidative 

transformation includes an unusual 6-endo-dig cyclization with the formation of C-O bond, followed by C-C bond coupling 

in the exo double bond. The developed methodology enables the versatile synthesis of a new class of benzoxazines with high 

modularity, due to the easily variable functional groups built in through the reaction sequence. Detailed mechanistic studies 

and the expansion of the principle of endo-dig cyclization-C-C bond formation sequence catalyzed by copper for substrates 

containing triple bond and nucleophilic sites are in progress in our laboratory. 
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