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Abstract

In this paper we study some families of Toeplitz-Hessenberg determinants
the entries of which are Fibonacci-Narayana (or Narayana’s cows) numbers.
This leads to discover some identities for these numbers. In particular, we es-
tablish connection between Fibonacci-Narayana numbers with Fibonacci and
tribonacci numbers. We also present new formulas for Fibonacci-Narayana
numbers via recurrent determinants of four-diagonal matrix.
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1. Introduction

The Fibonacci sequence {Fn}n≥0 is defined by the initial values F0 = 0, F1 = 1
and the recurrence relation Fn = Fn−1 + Fn−2, where n ≥ 2.

Among the several generalizations of Fibonacci numbers, some of the best
known are the tribonacci sequence {tn}n≥0 and the Fibonacci-Narayana sequence
(or Narayana’s cows sequence) {bn}n≥0, which are defined by the following third-
order recurrence relations:

tn = tn−1 + tn−2 + tn−3, t0 = t1 = 0, t2 = 1,

bn = bn−1 + bn−3, b0 = 0, b1 = b2 = 1,

for n ≥ 3.
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There are large number of sequences indexed in OEIS [10], being in this case

{Fn}n≥0 = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .} : A000045

{tn}n≥0 = {0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, . . .} : A000073

{bn}n≥0 = {0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, . . .} : A000930

The Fibonacci-Narayana sequence was introduced by the Indian mathemati-
cian Narayana in the 14th century, while studying the following problem: A cow
produces one calf every year. Beginning in its fourth year, each calf produces one
calf at the beginning of each year. How many cows are there altogether after, for
example, 20 years? This problem can be solved in the same way that Fibonacci
solved its problem about rabbits [6].

There has been considerable recent interest in the Fibonacci-Narayana sequence
and its generalizations (see [1, 2, 3, 4, 5, 9, 11] for more details). For instance, Did-
kivska and St’opochkina [4] proved some basic properties of Fibonacci-Narayana
numbers. Biglici [3] defined a generalized order-k Fibonacci-Narayana sequence and
by using this generalization and some matrix properties, established some identi-
ties related to Fibonacci-Narayana numbers. Flaut and Shpakivskyi [5] studied
some properties of generalized and Fibonacci quaternions and Fibonacci-Narayana
quaternions. Ramírez and Sirvent [9] defined the k-Narayana sequence of integer
numbers and studied recurrence relations and some combinatorial properties of
these numbers, and of the sum of their first n terms. These authors also estab-
lished some relations between the k-Narayana sequence and determinants of one
type of Hessenberg matrix.

The purpose of this paper is to study Fibonacci-Narayana numbers. We in-
vestigate some families of Toeplitz-Hessenberg determinants the entries of which
are Fibonacci-Narayana numbers. This leads to discover some identities for these
numbers. In particular, we establish connection between Fibonacci-Narayana num-
bers with Fibonacci and tribonacci numbers. We also present new formulas for
Fibonacci-Narayana numbers via recurrent determinants of four-diagonal matrix.

2. Toeplitz-Hessenberg matrices and determinants

A Toeplitz-Hessenberg matrix is an n× n matrix of the form

Mn(a0; a1, a2, . . . , an) =




a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
a3 a2 a1 · · · 0 0

· · · · · · · · · . . . · · · · · ·
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1



, (2.1)

where a0 6= 0 and ak 6= 0 for at least one k > 0. So aij = 0 for j > i+ 1.
Several mathematical objects may be represented as determinant of such ma-

trices (see, for example, [7] and the references given there).
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Expanding the determinant det(Mn) according to the first row repeatedly, we
obtain the recurrence

det(Mn) =

n∑

k=1

(−a0)k−1ak det(Mn−k), (2.2)

where, by definition, det(M0) ≡ 1.
The following result is known as Trudi’s formula [8]. This gives the multinomial

extension for det(Mn).

Lemma 2.1. Let n be a positive integer. Then

det(Mn) =
∑

(s1,...,sn)

(−a0)n−(s1+···+sn)
(
s1 + · · ·+ sn
s1, . . . , sn

)
as11 a

s2
2 · · · asnn , (2.3)

where the summation is over integers si ≥ 0 satisfying s1 + 2s2 + · · · + nsn = n,
and (

s1 + · · ·+ sn
s1, . . . , sn

)
=

(s1 + · · ·+ sn)!

s1! · · · sn!
is the multinomial coefficient.

Example 2.2. It follows from (2.3) that

det(M3) = (−a0)0
(

3

3, 0, 0

)
a31 + (−a0)1

(
2

1, 1, 0

)
a1a2 + (−a0)2

(
1

0, 0, 1

)
a3

= a31 − 2a0a1a2 + a20a3;

det(M4) = (−a0)0
(

4

4, 0, 0, 0

)
a41 + (−a0)1

(
3

2, 1, 0, 0

)
a21a2 + (−a0)2

(
2

1, 0, 1, 0

)
a1a3

+ (−a0)2
(

2

0, 2, 0, 0

)
a22 + (−a0)3

(
1

0, 0, 0, 1

)
a4

= a41 − 3a0a
2
1a2 + 2a20a1a3 + a20a

2
2 − a30a4.

Throughout this paper, we denote

det(±1; a1, a2, . . . , an) = det
(
Mn(±1; a1, a2, . . . , an)

)
.

3. Connection formulas between the
Fibonacci-Narayana numbers and Fibonacci
numbers

The next theorem gives relationship between Fibonacci-Narayana numbers and
Fibonacci numbers via the Toeplitz-Hessenberg determinants.
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Theorem 3.1. For all n ≥ 1,

det(1; b1, b3, . . . , b2n−1) = 1− (−1)nFn−1, (3.1)

det(1; b0, b2, . . . , b2n−2) = (−1)n−1Fn.

Proof. We will prove formula (3.1) using induction on n. The other proof follow
similarly, so we omit it for interest of brevity. For simplicity of notation, we write
Dn instead of det(1; b1, b3, . . . , b2n−1).

Clearly, formula (3.1) works, when n = 1 and n = 2. Suppose it is true for all
positive integers k ≤ n− 1, where n ≥ 3.

Using recurrence (2.2), we have

Dn =
n∑

i=1

(−1)i−1b2i−1Dn−i

= b1Dn−1 − b3Dn−2 + b5Dn−3 +
n∑

i=4

(−1)i−1 (b2i−2 + b2i−4)Dn−i

= Dn−1 −Dn−2 + 3Dn−3 +
n∑

i=4

(−1)i−1 (b2i−3 + 2b2i−5 + b2i−7)Dn−i

= Dn−1 −Dn−2 + 3Dn−3 +
n−1∑

i=3

(−1)ib2i−1Dn−i−1

+ 2
n−2∑

i=2

(−1)i+1b2i−1Dn−i−2 +
n−3∑

i=1

(−1)i+2b2i−1Dn−i−3

= Dn−1 −Dn−2 + 3Dn−3 +

(
n−1∑

i=1

(−1)ib2i−1Dn−i−1 + b1Dn−2 − b3Dn−3

)

+

(
2
n−2∑

i=1

(−1)ib2i−1Dn−i−2 − 2b1Dn−3

)
−Dn−3

= Dn−1 −Dn−2 + 3Dn−3 −Dn−1 +Dn−2 −Dn−3 + 2Dn−2 − 2Dn−3 −Dn−3
= 2Dn−2 −Dn−3.

Using the induction hypothesis and the definition of the Fibonacci sequence,
we obtain

Dn = 2
(
1− (−1)n−2Fn−3

)
−
(
1− (−1)n−3Fn−4

)

= 1− (−1)n (2Fn−3 + Fn−4)

= 1− (−1)nFn−1.

Consequently, the formula (3.1) is true for n. Therefore, by induction, the
formula works for all positive integers n.
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4. Connection formula between the
Fibonacci-Narayana numbers and tribonacci
numbers

The next theorem gives relationship between Fibonacci-Narayana numbers and
tribonacci numbers via the Toeplitz-Hessenberg determinants.

Theorem 4.1. For all n ≥ 1,

det(−1; b0, b1, . . . , bn−1) = tn. (4.1)

Proof. We will prove formula (4.1) using induction on n. It is easily seen that
det(−1; b0, b1, . . . , bn−1) = (−1)nDn, where

Dn = det(1;−b0,−b1, . . . ,−bn−1).
Clearly, formula (4.1) works, when n = 1 and n = 2. Suppose it is true for all

k ≤ n− 1, where n ≥ 2. Using recurrence (2.2), we have

Dn =

n∑

i=1

(−1)ibi−1Dn−i

= −b0Dn−1 + b1Dn−2 − b2Dn−3 +
n∑

i=4

(−1)i (bi−2 + bi−4)Dn−i

= Dn−2 −Dn−3 +
n−1∑

i=3

(−1)i+1bi−1Dn−i−1 +
n−3∑

i=1

(−1)i+3bi−1Dn−i−3

= Dn−2 −Dn−3 +

(
n−1∑

i=1

(−1)i+1bi−1Dn−i−1 − b0Dn−2 + b1Dn−3

)
−Dn−3

= Dn−2 −Dn−3 −Dn−1 +Dn−3 −Dn−3
= −Dn−1 +Dn−2 −Dn−3.

Thus,

det(1;−b0,−b1, . . . ,−bn−1) = (−1)n
(
− tn−1
(−1)n−1 +

tn−2
(−1)n−2 −

tn−3
(−1)n−3

)

= tn−1 + tn−2 + tn−3 = tn.

Consequently, the formula (4.1) is true for n. Therefore, by induction, the
formula works for all positive integers n.

5. Some Toeplitz-Hessenberg determinants with
Fibonacci-Narayana entries

In this section, we evaluate det(±1; a1, a2, . . . , an) with special Fibonacci-Narayana
entries ai.
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Theorem 5.1. Let n ≥ 1, except when noted otherwise. Then

det(1; b0, b1, . . . , bn−1) =
(−1)n−1 + (−1)bn+1

2 c
2

,

det(1; b1, b2, . . . , bn) =
(−1)n−1 + (−1)bn/3c

2
,

det(−1; b1, b2, . . . , bn) = 2n−1
bn−1

3 c∑

i=0

1

8i

(
n− 1− 2i

i

)
, (5.1)

det(1; b2, b3, . . . , bn+1) = 0, n ≥ 4,

det(1; b2, b4, . . . , b2n) = (−1)n−1
n∑

i=0

(
i+ 1

n− 1− 2i

)
,

det(−1; b2, b4, . . . , b2n) =
2n−1∑

i=0

(
i

4n− 1− 2i

)
,

det(1; b3, b4, . . . , bn+2) = (−1)n
2

(
1 + (−1)n

)
/2, n ≥ 2,

det(1; b3, b5, . . . , b2n+1) = 0, n ≥ 4,

det(1; b4, b5, . . . , bn+3) =
(−1)bn−1

3 c + (−1)bn
3 c

2
,

det(1; b4, b6, . . . , b2n+2) = 1, n ≥ 3,

det(1; b5, b6, . . . , bn+4) =

n+2∑

i=0

(
n+ 2− i
1 + 2i

)
,

det(1; b5, b7, . . . , b2n+3) = n+ 1, n ≥ 2,

det(1; b6, b8, . . . , b2n+4) = (n2 + 3n+ 4)/2,

where
(
m
k

)
= m!

k!(m−k)! is the binomial coefficient and b·c is the floor function.

Proof. We will prove only (5.1), the other ones can be proved in the same way.
Obviously, det(−1; b1, b2, . . . , bn) = (−1)nDn, where

Dn = det(1;−b1,−b2, . . . ,−bn),
When n = 1 and n = 2, the formula holds. Assuming (5.1) to hold for all k ≤ n−1,
we prove it for n ≥ 3. Using (2.2), we have

Dn =

n∑

i=1

(−1)ibiDn−i

= −b1Dn−1 + b2Dn−2 − b3Dn−3 +
n∑

i=4

(−1)i (bi−1 + bi−4)Dn−i

= −Dn−1 +Dn−2 −Dn−3 +
n−1∑

i=3

(−1)i+1biDn−1−i +
n−3∑

i=1

(−1)i+3biDn−3−i
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= −Dn−1 +Dn−2 −Dn−3 +
n−1∑

i=1

(−1)i+1biDn−1−i −Dn−2 +Dn−3 −Dn−3

= −Dn−1 +Dn−2 −Dn−3 −Dn−1 −Dn−2 +Dn−3 −Dn−3
= −2Dn−1 −Dn−3

= −(−2)n−1
bn−2

3 c∑

k=0

1

8k

(
n− 2− 2k

k

)
− (−2)n−4

bn−1
3 c−1∑

k=0

1

8k

(
n− 4− 2k

k

)
.

Thus,

Dn = −(−2)n−1
bn−2

3 c∑

k=0

1

8k

(
n− 2− 2k

k

)
− (−2)n−1

bn−1
3 c∑

k=1

1

8k

(
n− 2− 2k

k − 1

)
. (5.2)

Let n 6= 3m− 2. Then
⌊
n−2
3

⌋
=
⌊
n−1
3

⌋
. From (5.2), using well-known formula

(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
, (5.3)

we have

Dn = −(−2)n−1
bn−1

3 c∑

k=0

1

8k

(
n− 2− 2k

k

)
− (−2)n−1

bn−1
3 c∑

k=1

1

8k

(
n− 2− 2k

k − 1

)
.

= −(−2)n−1
bn−1

3 c∑

k=0

1

8k

(
n− 1− 2k

k

)
.

Let n = 3m− 2. Then
⌊
n−1
3

⌋
−
⌊
n−2
3

⌋
= 1. Now, using (5.3), we have

Dn = −2n−1
bn−1

3 c−1∑

k=0

1

8k

(
n− 2− 2k

k

)
− 2n−1

bn−1
3 c∑

k=0

1

8k

(
n− 2− 2k

k − 1

)

= −(−2)n−1
bn−1

3 c∑

k=0

1

8k

(
n− 1− 2k

k

)
.

Therefore,

det(−1; b1, b2, . . . , bn) = (−1)n+1(−2)n−1
bn−1

3 c∑

k=0

1

8k

(
n− 1− 2k

k

)

= 2n−1
bn−1

3 c∑

k=0

1

8k

(
n− 1− 2k

k

)
.

Since the formula (5.1) holds for n, it follows by induction that it is true for all
positive integers n.
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The Trudi formula (2.3), taken together with Theorems 3.1 and 4.1 yields the
following corollary. Similarly, one can obtain the multinomial extensions for for-
mulas from Theorem 5.1.

Corollary 5.2. The following formulas hold:
∑

2s1+3s2+···+nsn−1=n

(−1)σn−1pn(s)b
s1
2 b

s2
4 · · · b

sn−1

2n−2 = −Fn, n ≥ 2, (5.4)

∑

s1+2s2+···+nsn=n
(−1)σnpn(s)b

s1
1 b

s2
3 · · · bsn2n−1 = (−1)n − Fn−1, n ≥ 1, (5.5)

∑

2s1+3s2+···+nsn−1=n

pn(s)b
s1
1 b

s2
2 · · · b

sn−1

n−1 = tn, n ≥ 2, (5.6)

where pn(s) =
(
s1+···+sn
s1,...,sn

)
is the multinomial coefficient, σn = s1 + · · ·+ sn, si ≥ 0,

Fn and tn are the n-th Fibonacci and tribonacci numbers, respectively.

Example 5.3. It follows from (5.4), (5.5), and (5.6), respectively, that

b32 − 2b2b6 − b24 + b10 = F6,

b51 − 4b31b3 + 3b21b5 + 3b1b
2
3 − 2b1b7 − 2b3b5 + b9 − 1 = F4,

3b21 + 2b1b4 + 2b2b3 + b6 = t7.

6. Fibonacci-Narayana determinants

In this section, we prove two formulas expressing Fibonacci-Narayana numbers bi
with even (odd) subscripts via recurrent determinants of four-diagonal matrix of
order n.

Let Pn and Qn denote the n× n four-diagonal matrices

Pn =




1 b2
−2 0 b4 0
b5 −b3 0 b6

b7 −b5 0 b8
. . . . . . . . . . . .

0 b2n−3 −b2n−5 0 b2n−2
b2n−1 −b2n−3 0




and

Qn =




1 b1
−1 0 b3 0
b4 −b2 0 b5

b6 −b4 0 b7
. . . . . . . . . . . .

0 b2n−4 −b2n−6 0 b2n−3
b2n−2 −b2n−4 0




.
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Theorem 6.1. For all n ≥ 1,

b2n =
1

n−1∏
i=1

b2i

det(Pn), (6.1)

b2n−1 =
1

n−1∏
i=1

b2i−1

det(Qn). (6.2)

Proof. We prove only formula (6.2), the formula (6.1) one can be proved similarly.
We use induction on n. Since det(P1) = 1 = b2 and det(P2) = 2 = b4, the result
is true when n = 1 and n = 2. Assume it true for every positive integer k < n.
Expanding det(Pn) by the last row, we have

b2n =
1

n−1∏
i=1

b2i

(
b2n−3b2n−2 det(Pn−2) + b2n−1b2n−2b2n−4 det(Pn−3)

)

=
1

n−1∏
i=1

b2i

(
b2n−3b2n−2

n−2∏

i=1

b2i + b2n−1b2n−2b2n−4

n−3∏

i=1

b2i

)

= b2n−3 + b2n−1.

Therefore, the result is true for every n ≥ 1.
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