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Abstract

In this paper we evaluate, compare and benchmark the four most widely
used and most advanced morphological analyzers for the Hungarian language,
namely Hunmorph-Ocamorph, Hunmorph-Foma, Humor and Hunspell. The
main goal of the current research is to define objective metrics while compar-
ing these tools. The novelty of this paper is the fact that the analyzers are
compared based on their annotation token systems instead of their lemma-
tization features. The proposed metrics for the comparison are the follow-
ing: how different their annotation token systems are, how many words are
recognized by the different analyzers and how many words are there whose
morphological structure is equivalent using a well-defined mapping among the
annotation token systems. For each of these metrics, we define the concept
of similarity and distance. For the evaluation we use a unique Hungarian
corpus that we generated in an automated way from Hungarian free texts,
as well as a novel automated token mapping generation algorithm. Accord-
ing to our experimental results, Hunmorph-Ocamorph gives the best results.
Hunmorph-Foma is very close to it, but sometimes returns an invalid lemma.
Humor is the third best analyzer, while Hunspell is far worse than the other
three tools.

Keywords: natural language processing, grammar, morphology, lemmatiza-
tion, inflection, morphological analyzers, Hungarian language

MSC: 68T50

Annales Mathematicae et Informaticae
49 (2018) pp. 141–166
doi: 10.33039/ami.2018.05.001
http://ami.uni-eszterhazy.hu

141



1. Introduction

Morphological analysis is an important part of every natural language processing
(NLP) application. In NLP, processing of sentences is usually performed in several
layers, and each layer depends on the results of the layers below it. Upper layers
work on the sentence level, for example syntax tries to determine the structure of
these sentences. Knowing the part of speech tag and the affixes of each word in
a sentence helps in finding its functional components like the subject, the object
and the predicate. Usually the ultimate goal of NLP is to understand a text in an
automated way, finding semantic connections and concepts in the text. The basic
form of describing these relationships is the so-called triple generation, where each
triple contains a predicate, a subject and an object.

Morphology corresponds to the bottom layer, it’s the lowest level of NLP that
determines the structure of individual words. It’s a subdomain of grammar. Ac-
cording to the Merriam-Webster dictionary, morphology is “a study and description
of word formation (such as inflection, derivation, and compounding) in language”,
so it works with intraword components. On the other hand, grammar works with
higher level components, where the words are atoms.

The inner components of words according to morphology are the morphemes
that are the smallest morphological units in a word that have an associated mean-
ing, information [1]. Morphemes have two main categories: the lemma and the
affixes. The lemma is the root form of a word that holds the base meaning of it. In
many languages the meaning of the root form is modified using different affixes that
are appended, prepended or simply inserted into the word. The process of adding
affixes to a word is called inflection, while the inverse of inflection is lemmatization.

In most languages, there are other word formation techniques besides inflection
as well. Derivation is a special kind of inflection, where the meaning of the root
word is changed more dramatically, usually changing the part-of-speech tag as well.
For example, kindness is a noun, derived from the adjective kind. On the other
hand, a non-derivational inflection is (chair, chairs), where both words are nouns,
and the -s suffix denotes the plural form. A third technique for creating new words
is compounding, where two separate words are combined. An example for this
technique is fingerprint.

Besides the lemma that is the grammatically correct root form of the word, we
can also talk about stems, that can be generated from inflected forms by dropping
all the affixes. It can be seen that in some cases the lemma and the stem will differ:
for example the English word tried has the stem of tri and the lemma of try.

There are different types of affixes: prefixes are prepended to the root form of
the word (incorrect), while suffixes are appended (flying). Infixes are characters
that are inserted in the middle of the words. They are very rare in most languages,
an example is the Latin verb vincō where the n denotes present tense. In English
most inflection rules are suffixes, while in Hungarian there are a couple of cases
where we can find prefix affixes as well.

According to their morphological features, different languages represent differ-

142 G. Szabó, L. Kovács



ent complexity levels and thus fall into different language categories [4]. Inflective
languages such as English have a fix set of possible affix types for each part-of-speech
category. Isolating languages like Chinese and Vietnamese usually have words that
are their own stems, without any affixes. Languages that have only a few affix types
usually use auxiliary words and word position to encode grammatical information,
which is often said to be the characteristics of analytic languages. In intraflective
languages (Arabic, Hebrew), consonants express the meaning of words, while vow-
els add the grammatical meaning. Synthetic languages have three subcategories:
polysynthetic languages, fusional languages and agglutinative languages. Polysyn-
thetic languages, including some Native American languages contain complicated
words that are equivalent to sentences of other languages. Fusional languages
like Russian, Polish, Slovak and Czech, have morphemes that are not easily distin-
guishable and often multiple grammatical relations are fused into one affix. Finally,
agglutinative languages such as Hungarian, Finnish and Turkish have many affix
types and each word can contain a potentionally infinite number of affixes.

In computational linguistics, morphological analyzers and parsers can be used to
determine the morphological structure of the words in the chosen target language.
As agglutinative languages such as Hungarian are very challenging to handle due
to their many affix types and complex inflection rules, the goal of our research is
to solve the inflection and lemmatization problems for Hungarian in an automated
way.

There already exist some morphological analyzers for the Hungarian language.
The motivation for this paper is to decide which of these well-known analyzers is
worth using. To answer this question, we examine the following aspects:

• What are the most popular and usable morphological analyzers for the Hun-
garian language?

• What kind of metrics can we create to quantify the similarities and differences
among them?

• How can we compare them objectively to decide which one is worth using?

The goal of this paper is to give a novel survey and evaluation on the available
analyzers for the Hungarian language.

The results of this research are unique as we didn’t find any similar papers
that would objectively compare and benchmark morphological analyzers for the
Hungarian language based on their ability to determine the lemma and the affix
list of the given words.

As a preparation step, we had to create a training corpus large enough to be
usable for the evaluation process. The corpus generation process was fully auto-
mated. The words were later used as the input of the morphological analyzers:
Hunmorph-Ocamorph, Hunmorph-Foma, Humor and Hunspell. These tools deter-
mined the lemma, the part of speech and affix types in the words. After analyzing
the morpheme model systems of the four tools, we also had to create a mapping
among them as they had many differences in their nature.

Benchmarking morphological analyzers for the Hungarian language 143



For the evaluation process we came up with unique metrics such as similarity
and distance to determine how far each analyzer is from each other. This way we
can formalize the subjective experiences.

The main research goals of our examinations are:

1. What are the main differences of the analyzer outputs and token systems?

2. How many words are recognized by each analyzer?

3. How many words are there whose morphological structure is determined
equivalently among the different analyzers?

4. What are the cumulative distances among the analyzers using the above three
metrics?

The ongoing research topic where we’d like to use the results of this paper is
the designing of a novel model and implementing a system built on this model that
can solve the inflection, stemming and lemmatization problems. The structure of
such a system can be seen in Figure 11.

PLUR

almákat

ACC

alma
Inflection

Engine

PLUR

ACC

alma
Lemmatization

Engine

Training set

Rule Set

Figure 1: Automated inflection and lemmatization using generated
morphological rules

In the figure we can see that the inflection and lemmatization engines use gen-
erated inflection rules that are derived from a training word pair set. This word
pair set can be generated from a Hungarian corpus using a morphological analyzer:
the analyzer determines the affix types in the words and using these morphological
structures we can produce word pairs consisting of base forms and inflected forms.
The applied analyzer will be the one that is proved to be the best by the results of
this paper.

The structure of this paper goes as follows:

• Section 2 introduces the four most widely used morphological analyzers that
will be evaluated.

1The word almákat is the plural form of alma (apple) in accusative case.
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• In section 3 we can read about the motivation behind our experiments and
the methodology of our research, introducing some formal theory behind the
metrics we use.

• Section 4 presents the method of generating the training corpus that will be
used as the input of the analyzers.

• The automated process of token mapping generation is summarized by section
5.

• The evaluation of the automated token mapping generation and the results
of the manual token mapping can be seen in section 6 and the tables of the
appendix2.

• Finally, in section 7 we present analytical comparisons, different statistics
and benchmarks on the examined analyzers.

2. Morphological analyzers

In literature, there are only a few existing publications that compare different
morphological analyzers for the Hungarian language. The main comparison point of
the papers we found is the stemming quality of these systems. They use test corpora
containing words and calculate an error value for every record using overstemming
and understemming indices [2].

We also found a very detailed Hungarian paper comparing some of the analyz-
ers that we will evaluate, namely Hunmorph-Ocamorph [16], Hunmorph-Foma [5],
Humor [13] and Hunspell [9]. The authors also brought in some other models that
we didn’t consider, as they can only be used for stemming purposes and not lemma-
tization or deeper morphological analysis: the Porter stemmer [10], the Hungarian
adaptation of Snowball [11, 14] and some Apache Lucene [6] modules like KStem,
Porter, EnglishMinimal, Stempel and Morfologik. The paper used metrics such as
the number of words that the analyzers could process, how good the first answer
was for each stemmer and how usable the other possible answers were compared
to each other [3].

It’s important to note that the goal of these papers was to evaluate the stemmer
aspects of the tools, while in this paper we’d like to take care of lemmatization as
well, which is a more complex problem, since stemming usually applies simpler rules
that cut the typical word-ending characters, generating the stem that is not always
the morphological root form. Lemmatization on the other hand always outputs
a grammatically correct root word. That’s why unlike the referenced papers that
compare the resulting stems, we’ll compare the morphological structure provided
by the tools, i.e. the different affix types that appear in the output for each word.
We’ll compare these lists and provide different statistics about them, like the total

2http://users.iit.uni-miskolc.hu/~szabo84/articles/morphological-analyzers/
appendix.pdf
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number of words that are recognized by the analyzers, the number of recognized
words, and the number of words whose structure is the same across the multiple
outputs.

Similar tools exist for other languages as well. For example morpha, morphg [8]
and ana [7] are three morphological analyzers for the English language. The first
two can solve the stemming and inflection problems using finite state machines,
while the third one can insert the appropriate indefinite articles (a or an) into free
texts. However, our target language is the Hungarian language, therefore we chose
the four possible analyzers for Hungarian language:

1. Hunmorph-Ocamorph [16]

2. Hunmorph-Foma [5]

3. Humor [13]

4. Hunspell [9]

In the following subsections we will introduce them one by one.

2.1. Hunmorph-Ocamorph
Hunmorph-Ocamorph [16] is the first morphological analyzer that we examine. It
is developed by the Budapest University of Technology and Economics, and is
based on the ocamorph morphological analyzer tool, using the Morphdb.hu [15]
Hungarian lexical database and morphological grammar. Both the tool and its
engine are fully open-source.

The analyzer engine was designed in a way that is totally language independent
so that it can work with dictionaries of any language. The dictionary for the
Hungarian language is called Morphdb.hu, and stores lexical records with different
affix flags. The analyzer uses these pieces of information to generate the output,
which is the lemma and the list of affix tokens contained by the database. Usually
this dictionary is in a very compact format, not allowing linguistics to directly
build it, that’s why Hunlex was developed, that can generate the dic and aff files
accordingly from central lexical databases.

To preserve disk and memory space, the dictionary records do not contain every
possible inflected form of the root lemma, instead the possible forms are described
using general rules and the unpredictable irregular forms. This means that most
of the inflected forms can be covered with a small amount of rules, and only the
irregular word forms must be taken care of additionally.

The transformation rules in the database have two main categories: the first
group of rules are morphosyntactically active meaning they add something (a mor-
pheme) to the root, while filter rules modify the previously existing form, changing
vowel length or other aspects of it. Each of these rules are connected to different
features of the words. If the associated features of a rule can be found in the input
word, then the transformation rule is applied. Note that the rules can be used both
for inflection and stemming, because these operations are the inverse of each other.
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2.2. Hunmorph-Foma
Hunmorph-Foma [5] is very similar to the previous morphological analyzer, but it
is based on the foma analyzer engine and has different annotation tokens.

Foma is “a compiler, programming language, and C library for constructing
finite-state automata and transducers for various uses” [5] that is the open-source
implementation of the lexc/xfst grammatical analyzer of the Xerox laboratory.

Hunmorph-Foma is also open-source, and has an introductory readme file on
its Github page3. According to that, Hunmorph-Foma is better than Hunmorph-
Ocamorph as it is based on a broader corpus, has lower memory consumption and
is overall faster. The tool is also compared to Hunspell, and according to the
documentation, Hunspell is far behind both Hunmorph based analyzers.

In section 7 we’ll see how these analyzers can be compared to each other and
what the results will be like for our case.

2.3. Humor
Humor [13, 12] (High-speed Unification MORphology) is a closed-source morpho-
logical analyzer implementation developed by MorphoLogic4. Unlike the other
examined tools, this one is a commercial product with closed-source, only the DLL
is present, the internal implementation details are not visible to us.

Humor is a rule based system, similarly to the previous two tools. Rule based
design is well suited for highly agglutinative languages like Hungarian as in this
language one word might have many many inflected forms, in some extreme cases
almost a thousand different word forms and variations, so storing all of them in a
dictionary would require much disk space and memory.

Humor specifically targets the Hungarian language. During the processing of an
input word, the analyzer engine breaks up the word to morphs that are the concrete
appearances of morphemes, validates the connections of neighboring morphs and
checks the validity of the full morphological context. This means that it not only
determines the morphological structure of the words, it also checks if the possible
affix candidates can be in each other’s context. The neighborhood validation is
done using morpheme features, similarly to other morphological analyzers. If the
tool finds that two neighboring morphemes have mutually exclusive features, then
the morphological structure is marked invalid and dropped.

The added value of Humor over the Hunmorph based analyzers is that it not
only determines the affix types, it also shows which part of the word is associated
with which affix. If the lexical and surface form of the morpheme differs, the tool
returns both of them. This happens sometimes when the base form of a word
changes according to the added affix.

For each input word, Humor might give back multiple morphological structures,
among which some can look unfamiliar or strange. This is because they are valid
according to the rules, but are rarely or never used. Therefore Humor tries to

3https://github.com/r0ller/hunmorph-foma
4https://www.morphologic.hu
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return the more accepted forms first, and leave the weird forms to the end of the
list. This is done using occurrence counters.

2.4. Hunspell
Hunspell [9] is a popular open-source spell checker of LibreOffice, OpenOffice.org,
Mozilla Firefox and Thunderbird, Google Chrome, etc. Although it’s mainly used
for spell checking, it has other use cases as well, including morphological analysis.

Similarly to Hunmorph, the language database consists of two files: a dictionary
file containing lemmas and an affix file with the possible affix tokens, features and
transformation rules.

If the authors of Hunmorph-Foma are right, we will experience that Hunspell
is less usable than the Hunmorph based analyzers.

3. Methodology

In this section we summarize the steps we’ll take in the comparison of the four
examined morphological analyzers and introduce the formal model of the bench-
marking process.

First, let’s have a corpus W containing a set of valid words for the target
language: W = {w1, w2, . . . , wk}. We denote the set of lemmas in the language
with W̄ ⊂W . The automated process of corpus generation is described in section
4.

A = {A1, A2, . . . , An} denotes the set of investigated morphological analyzers.
Each analyzer has an associated set of annotation tokens: analyzer Ai is associated
with the token set Ti = {ti1 , ti2 , . . . , til}. We assume that for every morphological
analyzer pair (Ai, Aj) , i 6= j, the corresponding token sets are disjoint: Ti∩Tj = ∅.
If only one analyzer is examined in the next sections, we denote it with A, omitting
its index. If an analyzer pair is examined, they will be denoted by (A1, A2), and
so on.

The morphological analyzer Ai maps every word to a lemma and an ordered
list of tokens denoting the affix types, or an error state denoted by ε meaning that
the input word wasn’t recognized by Ai:

Ai : W →
(
W̄ ×

〈
tij1 , tij2 , . . . , tijm

〉
∪ ε
)

The projection for the lemma part is denoted by λ (Ai (w)), while the projection
for the token list part is denoted by τ (Ai (w)).

For a given morphological analyzer Ai, the set of recognized words is denoted
by

Wi = {w ∈W | Ai (w) 6= ε}
We can also determine the ratio of Wi compared to the full corpus:
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µi =
|Wi|
|W |

Based on the number of recognized words we can define the recognition simi-
larity of two morphological analyzers Ai and Aj as

σRi,j =
|Wi ∩Wj |
|Wi ∪Wj |

(3.1)

We can also define the recognition distance metric based on the recognition
similarity:

δRi,j =
1

σRi,j
(3.2)

The results for the number of recognized words, recognition ratio, recognition
similarity and distance can be seen in subsection 7.2.

For any morphological analyzer pair (Ai, Aj), the set of comparable words are
those words whose lemma is the same according to both analyzers:

Wi,j = {w ∈W | λ (Ai (w)) = λ (Aj (w))}
As the annotation token systems of the morphological analyzers may differ

significantly, we define a mapping among them as χi,j ⊆ Ti × Tj . Using this
mapping, we can easily map a token list:

χi,j (〈ti1 , ti2 , . . . , tio〉) = 〈χi,j (ti1) , χi,j (ti2) , . . . , χi,j (tio)〉
Similarly, a set of tokens can be mapped easily as well:

χi,j ({ti1 , ti2 , . . . , tio}) = {χi,j (ti1) , χi,j (ti2) , . . . , χi,j (tio)}
The given mapping is perfect if

∀w ∈Wi,j : χi,j (τ (Ai (w))) = τ (Aj (w))

Usually we cannot define a perfect mapping because there might be affix types
that are recognized by Ai but not recognized by Aj .

Section 5 will present a novel automated token mapping algorithm, while sec-
tion 6 will evaluate this automated process and compare its results to a manual
mapping introduced in the tables of the appendix5.

Using the mapping, we can compare the recognized tokens of the morphological
analyzer by calculating the token similarity metric:

σTi,j,χi,j
=
|χi,j (Ti) ∩ Tj |
|χi,j (Ti) ∪ Tj |

(3.3)

5http://users.iit.uni-miskolc.hu/~szabo84/articles/morphological-analyzers/
appendix.pdf
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The token distance between two analyzers can be calculated with the following
formula:

δTi,j,χi,j
=

1

σTi,j,χi,j

(3.4)

In subsection 7.1 we’ll introduce the main differences among the annotation
token systems, as well as the exact numbers of token similarity and distance.

To measure how many words are there whose morphological structures are
equivalent according to two morphological analyzers using a given mapping, we
can first calculate the equivalence similarity as

σEi,j,χi,j
(Ai, Aj) =

|{w ∈W | χi,j (τ (Ai (w))) = τ (Aj (w))}|
|Wi ∪Wj |

(3.5)

Using the equivalence similarity, we can calculate the equivalence distance:

δEi,j,χi,j
(Ai, Aj) =

1

σEi,j,χi,j
(Ai, Aj)

(3.6)

Subsection 7.3 will introduce the results for the equivalence similarity and equiv-
alence distance.

Using the above distance definitions, we can calculate a cumulative distance
among the analyzers using the following formula:

δCi,j,χi,j
(Ai, Aj) = δRi,j + δTi,j,χi,j

+ δEi,j,χi,j
(3.7)

This cumulative distance will be detailed by subsection 7.4. For all the dis-
tances, we will also plot simple 2D Cartesian coordinate systems to visualize our
measurements.

4. Building the test corpus

The first step towards comparing multiple morphological analyzers is to create
an appropriately big test corpus, gathering a word set large enough to be usable.
Having such a word set we can ask each tool what kind of morphological structure
these words have and then compare the results.

The Hungarian Electronic Library6 was chosen as the source of the words. This
is a huge site containing many documents (16 250 at the time of writing) in Word,
PDF, HTML, etc. formats. Some documents are stored in multiple formats, while
others have only one stored version. The site has a paginated full list of these
documents that was used as the starting point. When we click on the title of a
chosen record, a details page is loaded with links to the available formats.

To speed up the process of word extraction, a fully automated method was im-
plemented in the Java language. The programming language was chosen because of

6http://mek.oszk.hu
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its functional features introduced in Java 8 and the advantages of parallel streams.
The pseudocode of the algorithm can be seen in Listing 1.

Listing 1: Word Extraction Algorithm (Pseudocode)

getPages ( )
. pa ra l l e l S t r eam ( )
. f latMap ( page −> getDocumentDetailsStreamOn ( page ) )
.map( documentDetail −> chooseAFormat ( documentDetail ) )
.map( document −> parseToStr ing ( document ) )
. f latMap ( content −> splitToWordStream ( content ) )
. forEach (word −> consumeWord (word ) ) ;

We iterate all the pages in parallel, using parallel streams that are built on top
of the Java 7 Fork/Join framework. The internal implementation of this framework
knows how many CPU cores we have and thus splits up the work into that many
chunks that are executed in parallel. Each page is flattened out to the stream of
document details on that page. These details are also processed in parallel: first,
we choose a format from the available ones, then we read that document into a
string, split that into a list of words, and finally we process the words and store
them in a CSV file containing the words and the number of their occurrences. For
the document processing, open source Java libraries were used like Apache POI7
for Word, iText8 for PDF and jsoup9 for HTML.

After executing this automated algorithm, the total number of lines in the final
CSV file was 13 345 903. It’s important to note that this is not the total number
of meaningful words because of some bugs in the document processing libraries,
typos in the documents, etc. These are just word candidates that either will be
proven to be real words or will be dropped in the next phase. The exact numbers
of the recognized words can be seen in subsection 7.2.

5. Automated algorithm for token mapping genera-
tion

The comparison of different morphological analyzers based on their annotation
token systems and the ability of determining the morphological structure of input
words requires a well-defined mapping among their token systems. There is two
possible ways of creating such a mapping: creating an automated algorithm for
constructing the mapping based on a training data, or using a manual process for
doing the same thing. The automated algorithm is the only solution in general,
but for our case the manual mapping is possible as well.

During our evaluation process, we tried both routes: first, we created an au-
tomated algorithm for generating a token mapping based on relative probabilities,

7https://poi.apache.org/
8http://itextpdf.com/
9https://jsoup.org/
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then examined the results and fixed the errors we found in the statistical mapping.
In this section we describe the automated algorithm and its theoretical background,
then in section 6 we compare the results of the automated and the manual process.

Let’s have two morphological analyzers Ai and Aj , a word w and the two
corresponding results containing the lemmas λ (Ai (w)), λ (Aj (w)) as well as tokens
τ (Ai (w)), τ (Aj (w)).

To build the appropriate mapping between (Ai, Aj), we use a training set of
{(Ai (w) , Aj (w)) | w ∈W ∧ λ (Ai (w)) = λ (Aj (w))}. The lemmas need to be
the same for the corresponding items, because otherwise we would also map to-
ken lists related to completely different words. Regarding the two different token
systems we assume that they are disjoint: Ti ∩ Tj = ∅.

The mapping can be formalized as a relation of χi,j ⊆ P (Ti)×P (Tj), because
in practice there can be cases when either the left side or the right side doesn’t
exist for a mapping.

One condition for the mapping is that each token can only appear at most once
both on the left side (the domain) and the right side (the range):

∀x ∈ Dom (χi,j) : |x χi,j | = 1

∀y ∈ Ran (χi,j) : |χi,j y| = 1

For simplicity, the notation χi,j (x) can be used in place of both x χi,j and
χi,j x.

As the different annotation token systems can be very different, both the domain
and the range of the mapping relation contain token lists of any length. For simpler
cases, one token of Ai can be mapped to another token of Aj , but in more complex
cases one token of Ai is covered by a token list of Aj or vice versa.

A naïve mapping between the annotation token systems of two morphological
analyzers Ai and Aj would be

x χi,j y ⇔ ∃w ∈W : (Ai (w) = (w0, x) ∧ Aj (w) = (w0, y))

However, this mapping would have many rules and wouldn’t be able to gener-
alize. That’s why we also want to optimize two metrics of the mapping relation:

|χi,j | → min!

σEi,j,χi,j
(Ai, Aj)→ max!

Based on these goals the automated process must be able to generate a map-
ping relation for all the examined morphological analyzers: Hunmorph-Ocamorph,
Hunmorph-Foma, Humor and Hunspell. For simplicity, we create a mapping be-
tween Hunmorph-Ocamorph, and all the other analyzers, treating the token system
of Hunmorph-Ocamorph as the base. The steps of the algorithm for any two ana-
lyzers are the following:
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1. Generate a set of candidate mapping items based on relative probability
within the training data set.

2. ∀x ∈ Dom (χi,j) choose y ∈ Ran (χi,j) that has the highest probability. Do
the same for the remaining token sequences of the range.

3. Eliminate all the redundant pairs (x, y) ∈ χi,j where ∃ (x′, y′) ∈ χi,j and
∃ (x′′, y′′) ∈ χi,j such that x = x′ + x′′ and y = y′ + y′′.

Algorithm 1 contains the pseudocode for this automated process.

Algorithm 1 Generating a statistical mapping

1: procedure GenerateStatisticalMapping(records1, records2)
2: r ← EmptyMap ()
3: m← EmptyMap ()
4: for all (r1, r2) ∈ GeneratePairs (records1, records2) do
5: C ← GenerateCombinations (r1, r2)
6: for all c ∈ C do
7: v ← 0
8: if m [c] then
9: v ← m [c]

10: end if
11: Put (m, v + 1)
12: end for
13: end for
14: RemoveNonAtomicEntries (m)
15: SortEntries (m)
16: for all e ∈ m do
17: Put (r, e)
18: RemoveSimilarEntries (m, e)
19: end for
20: return r
21: end procedure

The input of the procedure is the resulting (lemma, token list) pairs of two
analyzers. The GeneratePairs subprocedure generates pairs from the given lists,
where every pair is related to the same input word and has the same lemma. Gen-
erateCombinations returns a set of token list pairs where all the possible token
sequences appear. For example a token pair (abc, ef) will yield the following com-
binations: (a, e), (bc, f), (ab, e) and (c, f). From all these possible combinations,
we count the occurrences of all the possible mapped token lists. After that, we
remove all the entries that can be produced by combining other shorter token lists.
For example if we have the candidates (abcd, efg), (ab, e), (c, f), (d, g), then we
can see that the first candidate can be removed as it is the combination the latter
three. The remaining entries are sorted by their relative probabilities (frequencies),
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in descending order. The resulting mapping is generated from the most frequent
entries, but we also make sure that if an item is put in the resulting map, we remove
all the other entries that have the same left or right side.

To improve the results, we also applied a second phase after this automated
algorithm, where we did not generate all the possible pairs (line 4), but only those
whose probability was the highest based on the frequency map of the previous
phase.

6. Evaluation of the automated mapping construc-
tion algorithm

Before the evaluation, let’s see how the manual mapping is structured. We grouped
the different tokens by their categories: part-of-speech categories, noun and verb
features, different derivation types and postposition subcategories. The mapping
for the different categories are summarized by the tables of the appendix10as the
tables would be too big to include them in this section. The tables contain the
tokens of the four analyzers, as well as the name of the affix and a word or phrase in
Hungarian and English. However, sometimes it was hard to give a perfect English
translation of the Hungarian word, while in other cases the same word is used for
different affix types. This could be remedied using whole sentences, but it would
require more space, so we sticked with only words and phrases.

In this section we only provide some explanation for the different tables.
First, let’s examine the part-of-speech category tokens in Table 1 of the ap-

pendix. As we can see, most POS categories exist in all models, but some rare ones
only exist in Hunmorph-Ocamorph. This is not a big problem, as the common
POS categories are more important for our case.

Table 2 of the appendix contains all the tokens for noun features.
As we can see, Ocamorph and Foma can describe all features, while some are

missing from Humor and Hunspell. Some tokens in the column of Hunspell are
marked with an asterisk, which means that the actual token is longer, but it con-
tains the prefix appearing in the cell, which identifies the whole token uniquely.
This way we saved some space. An example is the token ék* which is in reality
ék_FAMILIAR_noun.

We can also see the first few differences in the token range among the four
token systems: Foma, Humor and Hunspell have more fine-grained tokens than
Ocamorph. For example, the Foma token Possp3p is associated with two tokens in
Ocamorph: 〈PLUR〉 and 〈POSS〈PLUR〉〉. This will be observable in other tables
as well.

Table 3 of the appendix contains the tokens for verb features. As all the samples
use the Hungarian word fut (run), the English counterparts are not provided.

10http://users.iit.uni-miskolc.hu/~szabo84/articles/morphological-analyzers/
appendix.pdf
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Instead, the features appearing in the inflected form of each row can be deduced
from the first column’s description.

Here, we can find similar rows to the noun features, where Ocamorph requires
multiple tokens to describe the same features as only one token in other columns,
for example the Foma token Inf11 is represented with two tokens in Ocamorph,
namely 〈INF〉 and 〈PERS〈1〉〉. Also, Humor lacks multiple affix tokens compared
to the other analyzers.

Note that the token 〈VPLUR〉 does not exist in the database of Hunmorph-
Ocamorph, but we had to introduce it to avoid ambiguity. This is because the 3rd
person plural indefinite form of verbs have the 〈PLUR〉 token by default, just like
plural nouns, which would lead to errors by the time we start generating word pairs:
the same affix type would have two kinds of inflection. That’s why we decided to
modify the original token to make sure that the two inflections have different tokens
and thus can be easily distinguished.

As for derivations, it seems that Ocamorph is superior, because Foma, Humor
and Hunspell lack many of the token types. Table 4 of the appendix shows all the
derivation types where the source POS category is /NOUN, table 5 of the appendix
contains the tokens for derivations whose source POS category is /VERB, table 6
of the appendix contains the tokens for derivations whose source POS category is
/ADJ, while table 7 of the appendix shows the tokens for derivations whose source
POS category is /NUM.

It’s interesting that in some cases, one token in Humor means multiple things.
For example, [FF] means both [SUPERLAT] and [SUPERSUPERLAT]. However,
as this case is ambiguous, we only included it in one row.

Table 8 of the appendix shows all the different postposition subcategories. Most
of the tokens here are only recognized by Hunmorph-Ocamorph, but for the sake
of completeness we include these tokens as well.

All in all, we can state that the two main conclusions from the token mapping
tables are that in some cases Ocamorph describes affix types using multiple to-
kens while the other token systems have more fine-grained token types, as well as
Foma, Humor and Hunspell have multiple missing tokens, especially in the area of
derivations.

With this manual mapping, we got a clear picture about all the relations be-
tween the different tokens. However, creating the mapping manually was a very
time-consuming and error-prone process, as we had to examine many of the ana-
lyzer results by hand. The automated mapping generation has the advantage of
being much faster, even though it can produce invalid mappings as well.

First, let’s see the runtime performance of the automated algorithm in Table 1.
As we can see, the algorithm finished in around 2.5 minutes even for the slowest

case. The differences in runtime can come from the differences of the token systems
and the number of results with the same lemma.

Although the runtime of the algorithm was superior compared to the manual
process, we also found that there were some invalid mappings in the results. The
reason is that for some words the analyzers returned multiple ambiguous morpho-
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A1 A2 Runtime [seconds]

Ocamorph Foma 108.83
Ocamorph Humor 38.37
Ocamorph Hunspell 152.76

Table 1: Runtime of the automated statistical mapping generation
algorithm

logical structures with the same lemma. An example is the word olvastam (I read
(past tense)) where Hunmorph-Ocamorph returned two results:

• olvas/VERB〈PAST〉〈PERS〈1〉〉〈DEF〉 and
• olvas/VERB〈PAST〉〈PERS〈1〉〉.
The difference is that the first morphological structure is definite while the sec-

ond one is indefinite, because the analyzer cannot decide which one is the correct
result for the given inflected form. This is a linguistic problem that cannot be elim-
inated in an automated way and can be observed with all the examined analyzers,
so these ambiguous results led to some invalid mapping items like

• CondDefPl1 mapping to 〈COND〉〈PERS〈1〉〉〈PLUR〉 instead of

• CondDefPl1 mapping to 〈COND〉〈PERS〈1〉〉〈PLUR〉〈DEF〉.
Table 2 contains the percent values for the statistical mapping correctness com-

pared to the manual process.

A1 A2 Mapping Correctness

Ocamorph Foma 85.71%
Ocamorph Humor 73.73%
Ocamorph Hunspell 73.01%

Table 2: Correctness of the statistical mapping

We can see that the generated mapping between Hunmorph-Ocamorph and
Foma proved to be 85.71% correct, while the mappings between Ocamorph and
Humor, as well as Ocamorph and Hunspell became a bit worse. This can be due
to the conceptual differences of these morphological analyzers.

7. Analytical results

In this section, we present the analytical results for the metrics mentioned in section
3: the differences among the token systems, the number of recognized words, the
equivalence of the morphological structures provided by the analyzers and the
cumulative distances. We also provide Cartesian coordinate systems to visualize
the resulting distances in 2D space.
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7.1. Comparison of the token systems
In this subsection, we highlight the main differences in the token systems of the
examined analyzers.

Let’s start the analysis from the end of the list: Hunspell. It is not surprising
that among other morphological analyzers Hunspell prove to be not so strong, as
it is rather a spell checker tool than a morphological analyzer. There are multiple
missing tokens compared to Ocamorph, and the output results are more bloated
as well.

Next in line is Humor. Although its source code is not visible for the end
user (it is a closed-source product), the experience shows that this tool is more
undeterministic than the others. There were cases when the same word caused
runtime errors once and produced a valid result other times. This can be due to it
being an older version, maybe newer versions of the product would perform better.
Also, it seemed that the tool couldn’t handle special accented vowels well, because
there were many cases where words with such characters haven’t been recognized
even if the overall morphological structure of the word was rather simple.

A positive point about Humor is that it also recognized compound words. A
good example is the word szekrényajtót (accusative case of wardrobe door in Hun-
garian). Other tools tend to only recognize that this is the accusative case of the
word szekrényajtó (wardrobe door), while Humor also recognized that it is a com-
pound word (szekrény (wardrobe) + ajtó (door)). However, for the current research,
not being able to recognize compound words is not a real problem as we are only
interested in affixes and inflection. In case of Humor we would have to merge the
components of compound words to extract this information properly.

Another good aspect of Humor (and also Foma and Hunspell) is that its tokens
are more fine-grained than those of Hunmorph-Ocamorph.

For the first sight, Hunmorph-Foma might seem the best tool out of the four.
It has fine-grained tokens that help the word pair generation process, it has the
highest total number of recognized words (see subsection 7.2), and so on.

However, during the analysis we found some cases where the stem is incorrect. A
simple example is (merengők, mereng+Adj+Plur) which is the plural of meditative
in Hungarian. The morphological structure says that the stem is mereng (meditate)
which is in reality a verb, but according to the tokens it is an adjective. The correct
structure would be merengő+Adj+Plur. If there are such incorrect records in the
final CSV file, during the word pair generation process there will be incorrect
word pairs that distort the future training set. Instead of the correct (merengő,
merengők) we would generate (mereng, merengők) which is incorrect.

Another problem with this tool was the handling of adjective derivation. A
sample record is (legeslegszebbik, legeslegszép+Adj+Mid+Ik) which is the supersu-
perlative designative form of the word nice in Hungarian. This structure suggests
that the lemma is legeslegszép which is in reality not a meaningful Hungarian word,
but rather a semi-inflected form of the real root form szép (nice), containing the
supersuperlative prefix affix as well. Hunmorph-Ocamorph can recognize this fact
and produce the right lemma.
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Although these cases are not general as we only found a couple of them,
these differences suggested us that Hunmorph-Ocamorph is slightly better than
Hunmorph-Foma.

With the notations of section 3, specifically equations 3.3 and 3.4, we gathered
the similarity and distance values among the examined morphological analyzer
annotation token systems in Table 3.

A1 A2 σT1,2,χ1,2
δT1,2,χ1,2

Ocamorph Foma 0.5707 1.7521
Ocamorph Humor 0.5171 1.9340
Ocamorph Hunspell 0.6927 1.4437
Foma Humor 0.4049 2.4699
Foma Hunspell 0.5171 1.9340
Humor Hunspell 0.4488 2.2283

Table 3: Similarity
(
σTi,j,χi,j

)
and distance

(
δTi,j,χi,j

)
values among

the annotation token systems

Figure 2 visualizes the approximation of these distance values to make them
easier to imagine. It seems that Ocamorph and Hunspell have the closest token
systems, however, this doesn’t mean that both tools are advanced in other areas,
as we’ll see in the next subsections.
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Figure 2: Visualizing the annotation token system distances

7.2. Recognition statistics
Let’s investigate how many word candidates in the corpus have been recognized
by the different morphological analyzers and in how many cases did the analyzers
throw errors. As we discussed previously, a word w is recognized by analyzer Ai if
Ai (w) 6= ε.

With this definition in mind, it is a good starting point in the comparison
process to determine how many words are common among the different analyz-
ers. Table 4 contains the total number of results, the number of recognized words
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(|Wi|) and the ratio of recognized words compared to the whole corpus (µi). The
denominator of µi, i.e. the total number of unique words recognized by at least one
analyzer is 3 852 592. Since the input words might have multiple different mor-
phological structures returned by the analyzers, the first number is always higher
than |Wi|.

A Total Results |W | µ

Hunmorph-Ocamorph 4 423 882 2 515 570 65.30%
Hunmorph-Foma 3 759 201 3 154 529 81.88%
Humor 1 017 004 823 531 21.38%
Hunspell 148 828 99 441 2.58%

Table 4: The number of total results, the number of recognized
words (|Wi|) and the ratio of recognized words (µi) for each mor-

phological analyzer

As we can see, Hunspell and Humor both recognized the least amount of words,
so that points to the conclusion that these two analyzers are weaker than the
Hunmorph based ones.

Let’s look at the number of commonly recognized words among the analyzers:
how many words are recognized by more of the examined analyzers. First, let’s see
the statistics of table 5 that show the number of words recognized by only a single
analyzer.

A Words Recognized only by A

Ocamorph 159 651
Foma 723 968
Humor 387 380
Hunspell 16 256

Table 5: The number of words only recognized by one analyzer

Hunspell has the lowest number, the second lowest one is for Ocamorph. This
could be surprising, but we will see later that the cause of this is that Ocamorph’s
recognized words are usually recognized by Foma as well. On the other hand,
Foma has the highest number in the table, which means that there are many
words recognized only by Foma. These are mostly special cases like conjunction,
postposition, etc.

Next, let’s look at the number of words recognized by exactly two morphological
analyzers in Table 6.

As we can see, the Hunmorph based tools have many commonly recognized
words, while the others are far behind them.

Table 7 shows the commonly recognized words among exactly three analyzers.
This shows that if we include Hunspell, the number of items in the intersection

of the three sets drops dramatically, and in this regards Humor is better than
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Ocamorph Foma Humor

Foma 1 997 989 - -
Humor 12 132 69 705 -
Hunspell 748 16 262 7 610

Table 6: The number of words recognized by exactly two analyzers

Morphological Analyzers Recognized Words

Ocamorph-Foma-Humor 336 339
Ocamorph-Foma-Hunspell 48 200
Ocamorph-Humor-Hunspell 99
Foma-Humor-Hunspell 1 654

Table 7: The number of words recognized by exactly three analyz-
ers

Hunspell.
Finally, the number of words recognized by all the four morphological analyzers

is 8 612.
To visualize the number of recognized words for the three strongest tools,

namely Hunmorph-Ocamorph, Hunmorph-Foma and Humor, let’s look at the Venn-
diagram in Figure 3. We omitted Hunspell as it has far worse metrics, so that we
can use a simple 2D visualization. Therefore the values of Figure 3 are a bit dif-
ferent than the previous tables, because the metrics of Hunspell are not included.

FomaOcamorph

Humor

344 951

1 997 989

12 231 71 359

740 230160 399

394 990

Figure 3: Venn diagram of the number of recognized words for the
three strongest morphological analyzers

The Humor tool (as well as Hunspell whose data is not included in the dia-
gram) is far worse than the Hunmorph-Ocamorph and Hunmorph-Foma for the
first sight, as it could recognize far less words than the Hunmorph based tools, and
the intersection sizes were also too low.

The conclusion, like in the previous subsection is that the Ocamorph and Foma
based analyzers are the best, and they also have many recognized words in common.
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The only major issue with Foma so far is that in some cases it handles stems
incorrectly.

Table 8 shows the similarity and distance values for all the possible analyzer
pairs based on equations 3.1 and 3.2.

A1 A2 σR1,2 δR1,2

Ocamorph Foma 0.4132 2.4201
Ocamorph Humor 0.1070 9.3485
Ocamorph Hunspell 0.0220 45.3530
Foma Humor 0.0898 11.1373
Foma Hunspell 0.0177 56.4347
Humor Hunspell 0.0195 51.3475

Table 8: Similarity (σRi,j) and distance (δRi,j) values among the mor-
phological analyzers based on the number of recognized words

Figure 4 visualizes the approximation of these distance values. Hunmorph-
Ocamorph and Hunmorph-Foma are very close to each other indeed, and Humor is
not far from them either. On the other hand, Hunspell is far from the three other
analyzers, as we saw in the previous tables.
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Figure 4: Visualizing recognition distances

7.3. Equivalent morphological structures
The third important question is how many words are there whose morphological
structure is determined in the same way by more than one morphological analyzers.
In section 6 we read about the different mappings among the token systems of the
four tools, so it is interesting to check if we convert every token to a common token
system, are the results the same?

Table 9 shows the number of equivalent words, common words and the percent-
age ratio. We chose the token system of Hunmorph-Ocamorph, and executed the
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mapping using the tables in the appendix11.

Morphological
Analyzers

Equivalent
Structures

Recognized
Words

Percentage
Ratio

Ocamorph-Foma 1 818 027 2 342 940 77.60%
Ocamorph-Humor 334 617 357 182 93.68%
Ocamorph-Hunspell 53 320 57 659 92.47%
Foma-Humor 363 735 416 310 87.37%
Foma-Hunspell 50 569 74 728 67.67%
Humor-Hunspell 16 755 17 975 93.21%

Ocamorph-Foma-Humor 279 327 344 951 80.98%
Ocamorph-Foma-Hunspell 37 949 56 812 66.80%
Ocamorph-Humor-Hunspell 7 685 8 711 88.22%
Foma-Humor-Hunspell 8 240 10 266 80.26%

Ocamorph-Foma-Humor-Hunspell 6 745 8 612 78.32%

Table 9: The number of equivalently analyzed words, common
words and the percentage ratio across the different analyzer combi-

nations

The overall results are the same as before: Ocamorph and Foma are close to each
other as 77.60% of the commonly recognized words have the same morphological
structure as well. Although the percentage ratios are higher for other combinations,
the number of common words are much lower, so in reality the number of equivalent
morphological structures is still much lower for Humor and Hunspell.

We also analyzed the differences manually by selecting 100 problematic words
randomly from every set and checking what causes the differences. First, we real-
ized again that with Foma, sometimes the stem is invalid, but also we found cases
where the POS category was recognized in a different, invalid way. Sometimes
nouns were marked as adjectives, and so on. Another big difference was that the
concrete derivation tokens missing from Foma, Humor and Hunspell were some-
times replaced with the target POS category. The final typical error was that with
some verb features, Foma, Humor and Hunspell sometimes added an extra 〈PERS〉
token at the end of the verb structures in case of normal 3rd person verbs, while
Ocamorph didn’t do that.

Moreover, Hunspell’s structures contained many unnecessary pieces of informa-
tion that caused our parser to have a hard time determining the correct structure
of the word in case of compound words with many affix types.

In case of derivation tokens missing from analyzers other than Ocamorph, the
results were incorrect in most cases, as the weaker analyzers determined the stem
to be the derived word form.

The similarity and distance values defined in equations 3.5 and 3.6 can be seen
in Table 10.

11http://users.iit.uni-miskolc.hu/~szabo84/articles/morphological-analyzers/
appendix.pdf
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A1 A2 σE1,2,χ1,2
δE1,2,χ1,2

Ocamorph Foma 0.7759 1.2887
Ocamorph Humor 0.9188 1.0883
Ocamorph Hunspell 0.7969 1.2549
Foma Humor 0.8727 1.1458
Foma Hunspell 0.4497 2.2237
Humor Hunspell 0.7372 1.3564

Table 10: Similarity (σEi,j,χi,j
) and distance (δEi,j,χi,j

) values among
the morphological analyzers based on their equivalence

Figure 5 shows the distance of the four morphological analyzers based on the
morphological structure equivalence of their recognized words. Ocamorph and
Foma are close together, Humor and Hunspell are a bit further, as we can see in
the figure.
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Figure 5: Visualizing equivalence distances

7.4. Cumulative Distance
To visualize the overall cumulative distance among the four examined morpholog-
ical analyzers, we defined the formula in equation 3.7. Figure 6 shows the overall
distances based on this final metric.

All in all we can see that Hunspell is far away from the remaining three mor-
phological analyzers. Hunmorph-Ocamorph and Hunmorph-Foma are the closest,
while Humor is close to the two Hunmorph based systems, preceding Hunspell by
far.

Based on the previous statistics, we can state that the best morphological an-
alyzer is Hunmorph-Ocamorph. Although Hunmorph-Foma can also be used suc-
cessfully, the Ocamorph based tool is better regarding the total number of recog-
nized words and the accuracy of the produced morphological structure. Behind
Hunmorph-Foma the number of recognized words is the second best, but as we
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Figure 6: Visualizing cumulative distances

found multiple cases where Hunmorph-Foma returned invalid stems, Hunmorph-
Ocamorph seems more reliable.

8. Conclusion

In this paper we benchmarked the four most widely used morphological analyzer
tools for the Hungarian language: Hunmorph-Ocamorph, Hunmorph-Foma, Humor
and Hunspell. For evaluation, we had these tools analyze more than 13 million Hun-
garian word candidates. As the four annotation token systems were different, we
created a complete mapping among them, first by using a novel automated algo-
rithm, then also manually, to evaluate the automated results. After mapping the
tokens, we compared the morphological analyzers based on different statistics: the
main differences in the annotation token systems, the total number of words that
got recognized by each analyzer and the number of recognized words, finally we
looked at how many words had equivalent morphological structure across the four
analyzers. For each of these statistics, we defined the concept of similarity and dis-
tance, and besides calculating these metrics, we also visualized the distances among
the morphological analyzers. From the three statistics and also a fourth, cumula-
tive distance metric it became visible that Hunmorph-Ocamorph and Hunmorph-
Foma recognized many words and had many things in common, while Humor and
Hunspell had worse results. From the two Hunmorph based tools it seems that
Hunmorph-Ocamorph is worth using as Hunmorph-Foma sometimes provided in-
valid lemmas. In the future we will use the results of Hunmorph-Ocamorph to
generate Hungarian word pairs for each Hungarian affix type. This data set will
be used as training data for our novel inflection/lemmatization method.
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