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Abstract. The cross-combined measure (which is a natural extension of cross-correlation measure)

is introduced and important constructions of large families of binary lattices with optimal or nearly

optimal cross-combined measures are presented. These results are also strongly related to the one-

dimensional case: An easy method is showed obtaining strong constructions of families of binary

sequences with nearly optimal cross-correlation measures based on the previous constructions of

families of lattices. The important feature of this result is that so far there exists only one type

of constructions of very large families of binary sequences with small cross-correlation measure,

and this only type of constructions was based on one-variable irreducible polynomials. Since it is

very complicated to construct one-variable irreducible polynomials over Fp, it became necessary to

show other types of constructions where the generation of sequences is much faster. Using binary

lattices based on two-variable irreducible polynomials this problem can be avoided. (Since, contrary to

one-variable polynomials, using Schöneman-Eisenstein criteria it is possible to generate two-variable

irreducible polynomials over Fp fast.)

1 Introduction

Pseudorandom binary sequences and lattices have many applications in cryptography,

they play a crucial role in modern cryptography. One of the main applications is the famous

Vernam-cipher encrypting algorithm, where pseudorandom binary sequences are used as

key-streams. If in place of a text we would like to encrypt an image by Vernam cipher, then

the key-stream should be a pseudorandom binary lattice in place of a binary sequence. In

the present paper I will study large families of binary sequences and lattices and I will

extend an important family measure, the cross-correlation measure from families of binary

sequences to family of binary lattices.
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1.1 Large families of pseudorandom binary sequences

The constructive and quantitative study of pseudorandomness started by the work of

Mauduit and Sárközy [30]. They introduced the following pseudorandom measures in order

to study the pseudorandom properties of finite binary sequences:

Definition 1.1 For a binary sequence EN = (e1, . . . , eN) ∈ {−1,+1}N of length N , write

U(EN , t, a, b) =
∑t

j=0 ea+jb. Then the well-distribution measure of EN is defined as

W (EN) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣

∣

∣

∣

∣

t
∑

j=0

ea+jb

∣

∣

∣

∣

∣

,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤ a + tb ≤ N .

In order to study certain connections of between different elements of the sequence Mauduit

and Sárközy [30] introduced the correlation measure:

Definition 1.2 For a binary sequence EN = (e1, . . . , eN) ∈ {−1,+1}N of length N , and

for D = (d1, . . . , dℓ) with non-negative integers 0 ≤ d1 < · · · < dℓ, write V (EN ,M,D) =
∑M

n=1 en+d1 . . . en+dℓ. Then the correlation measure of order ℓ of EN is defined as

Cℓ(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣

∣

∣

∣

∣

M
∑

n=1

en+d1 . . . en+dℓ

∣

∣

∣

∣

∣

,

where the maximum is taken over all D = (d1, . . . , dℓ) and M such that 0 ≤ d1 < · · · <

dℓ < M + dℓ ≤ N .

In [7] Cassaigne, Ferenczi, Mauduit, Rivat and Sárközy formulated the following princi-

ple: “The sequence EN is considered a “good” pseudorandom sequence if these measures

W (EN) and Cℓ(EN ) (at least for “small” ℓ) are “small”.” This principle was justified by

Cassaigne, Mauduit and Sárközy [8] they proved that for the majority of the sequences

EN ∈ {−1,+1}N the measures W (EN) and Cℓ(EN) are around N1/2 (up to some logarith-

mic factors). Later Alon, Kohayakawa, Mauduit, Moreira and Rödl [4] improved on these

bounds.

It is also important that we will be able to present constructions for which these pseu-

dorandom measures are small. First Mauduit and Sárközy [30] studied the following con-

struction:
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Construction 1.A Let p be a prime number, N = p− 1 and define the Legendre-sequence

EN = (e1, e2, . . . , eN ) ∈ {−1,+1}N by

en =

(

n

p

)

,

where
(

·
p

)

denotes the Legendre symbol.

Then by Theorem 1 in [30] for the sequence EN defined in Construction 1.A we have

W (EN) ≪ N1/2 logN and Cℓ(EN) ≪ N1/2 logN .

After their first paper [30] on pseudorandomness, Mauduit and Sárközy continued it

by a series of papers and later many people continued to the work started by them. Since

then numerous constructions have been given by several authors.

First for fixed N the most constructions produced only a single sequence of length

N , however, in many applications one needs many pseudorandom binary sequences. In

2001 Hoffstein and Liemann [27] succeeded in constructing large families of pseudorandom

binary sequences based on the Legendre symbol, but they did not prove anything on its

pseudorandom properties. Their construction was the following:

Construction 1.B Let K ∈ N, p be a prime number, and denote by P≤K the set of monic

polynomials f(x) ∈ Fp[x] of degree k, where 0 < k ≤ K. For f ∈ PK define the binary

sequence Ep(f) = (e1, . . . , ep) by

en =

{

(

f(n)
p

)

for (f(n), p) = 1,

+1 for p | f(n).
(1.1)

Let F≤K, Legendre = {Ep(f) : f ∈ P≤K}.

Clearly F≤K, Legendre is a large family of pseudorandom binary sequences. Goubin,

Mauduit and Sárközy [14] proved that, under some not too restrictive conditions on the

polynomials f , the sequences Ep(f) have strong pseudorandom properties:

Theorem 1.A Let p, PK and F≤K, Legendre be defined as in Construction 1.B and for

f ∈ PK define Ep = Ep(f) ∈ F by (1.1). Suppose that f has no multiple root in Fp and

denote by k the degree of f . Then

W (Ep) ≤ 10kp1/2 log p.
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Moreover, assume that for ℓ ∈ N one of the following assumptions holds:

(i) ℓ = 2;

(ii) ℓ < p and 2 is a primitive root modulo p;

(iii) (4k)ℓ < p.

Then we also have

Cℓ(Ep) ≤ 10kℓp1/2 log p.

We remark that several important a posteriori tests (indicated by the 1.4-sts. package

of the National Institute of Standards and Technology) were checked by Rivat and Sárközy

[39] by computer for many sequences generated by Construction 1.B. In each cases they

obtained that the sequence passes all these tests. This work was continued by Mérai, Rivat

and Sárközy [37]. After the construction in Theorem 1.A many other constructions of large

families of pseudorandom sequences have been given by several authors.

Although many constructions exist, Construction 1.B is one of the best: we have op-

timally good bounds for the pseudorandom measures and the elements of the sequences

can be generated fast. In these constructions it is guaranteed that the individual sequences

belonging to the family possess strong pseudorandom properties. However, in many appli-

cations it is not enough to know this; it can be much more important to know that the given

family has a “rich”, “complex” structure, there are many “independent” sequences in it. In

order to handle this requirement Ahlswede, Khachatrian, Mauduit and Sárközy [1] (see

also [2], [3], [16], [33]) introduced the notion of family complexity or briefly f -complexity

(which can be especially useful in cryptography):

Definition 1.3 The f -complexity Γ (F) of a family F of binary sequences EN ∈

{−1,+1}N is defined as the greatest integer j so that for any specification

ei1 = ε1, . . . , eij = εj (1 ≤ i1 < · · · < ij ≤ N)

(with ε1, . . . , εj ∈ {−1,+1}) there is at least one EN = (e1, . . . , eN ) ∈ F which satisfies it.

The f -complexity of F is denoted by Γ (F). (If there is no j ∈ N with the property above

then we set Γ (F) = 0.)

Later other properties of large families were studied and other family measures were intro-

duced, see e.g. collision free ([6], [34], [40], [41]), avalanche effect or a variant of Hamming-

distance called our case as distance-minimum ([6], [11], [29], [40], [41]). These measures

have multi-dimensional analogues (see the papers [19] and [20]) and in Section 1.2 these

multi-dimensional versions of family measures will be presented.
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In Section 3 of this paper I will introduce and focus on a new very general measure,

the cross-combined measure. This new measure will be a natural extension of the one-

dimensional cross-correlation measure defined by Mauduit, Sárközy and I in [21]:

Definition 1.4 Let N ∈ N, ℓ ∈ N, and for any ℓ binary sequences E
(1)
N , . . . , E

(ℓ)
N with

E
(i)
N =

(

e
(i)
1 , . . . , e

(i)
N

)

∈ {−1,+1}N (for i = 1, 2, . . . , ℓ)

and any M ∈ N and ℓ-tuple D = (d1, . . . , dℓ) of non-negative integers with 0 ≤ d1 ≤ · · · ≤

dℓ < M + dℓ ≤ N , write

Vℓ

(

E
(1)
N , . . . , E

(ℓ)
N ,M,D

)

=
M
∑

n=1

e
(1)
n+d1

· · · e
(ℓ)
n+dℓ

Let
∼

Cℓ

(

E
(1)
N , . . . , E

(ℓ)
N

)

= max
M,D

∣

∣

∣
Vℓ

(

E
(1)
N , . . . , E

(ℓ)
N ,M,D

)
∣

∣

∣

where the maximum is taken over all D = (d1, . . . , dℓ) and M ∈ N satisfying 0 ≤ d1 ≤

· · · ≤ dℓ < M + dℓ ≤ N with the additional restriction that if E
(i)
N = E

(j)
N for some i 6= j,

then we must not have di = dj. Then the cross-correlation measure of order ℓ of the family

F of binary sequences EN ∈ {−1,+1}N is defined as

Φℓ(F) = max
∼

Cℓ

(

E
(1)
N , . . . , E

(ℓ)
N

)

where the maximum is taken over all ℓ-tuples of binary sequences
(

E
(1)
N , . . . , E

(ℓ)
N

)

with

E
(i)
N ∈ F for i = 1, . . . , ℓ.

(Note that other cross-correlation type quantities also occur in [5], [13], [15].)

In [21] jointly with Mauduit and Sárközy we also studied main properties and con-

nections of cross-correlation measure to other family measures. Later Mérai studied the

average behaviour of the cross-correlation measure. Among others he proved that usually

the cross-correlation measure Φℓ of a family of binary lattices η : InN → {−1,+1} is

between two constant factors of N1/2(logN)1/2. For more details see [35] and [36].

The goal of the present paper is to extend this measure to the multi-dimensional case.

The multi-dimensional cross-combined measure will have all advantages then the one-

dimensional cross-correlation measure.
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1.2 Large families of binary lattices

Before introducing the definition of the multi-dimensional cross-combined measure we

will need to present the standard terminology the multi-dimensional theory of pseudo-

randomness. This will follow in the next section. In [28] Hubert, Mauduit and Sárközy

extended this theory of pseudorandomness to n dimensions.

Denote by InN the set of n-dimensional vectors whose coordinates are integers between

0 and N − 1:

InN = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N-lattice or briefly an N-lattice. In [25] this definition

was extended to more general lattices in the following way: Let u1,u2, . . . ,un be n linearly

independent n-dimensional vectors over the field of the real numbers such that the i-

th coordinate of ui is a positive integer and the other coordinates of ui are 0, so that

ui is of the form (0, . . . , 0, zi, 0, . . . , 0) (with zi ∈ N). Let t1, t2, . . . , tn be integers with

0 ≤ t1, t2, . . . , tn < N . Then we call the set

Bn
N = {x = x1u1 + · · ·+ xnun :, xi ∈ N ∪ {0}, 0 ≤ xi |ui| ≤ ti(< N)

for i = 1, . . . , n} (1.2)

an n-dimensional box N-lattice or briefly a box N-lattice.

In [28] the definition of binary sequences was extended to more dimensions by consid-

ering functions of type

η(x) : InN → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)) then we will simplify the notation slightly

by writing η(x) = η(x1, . . . , xn). Such a function can be visualized as the lattice points of

the N -lattice replaced by the two symbols + and −, thus they are called binary N-lattices.

In [28] Hubert, Mauduit and Sárközy introduced the following measures of pseudoran-

domness of binary lattices (here we will present the definition in the same slightly modified

but equivalent form as in [25]):

Definition 1.5 Let η : InN → {−1,+1} be a binary lattice. Define the combined pseudo-

random measure of order ℓ of η by

Qℓ(η) = max
B,d1,...,dℓ

∣

∣

∣

∣

∣

∑

x∈B

η(x+ d1) · · ·η(x+ dℓ)

∣

∣

∣

∣

∣

,
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where the maximum is taken over all distinct d1, . . . ,dℓ ∈ InN and all box N-lattices B such

that B + d1, . . . , B + dℓ ⊆ InN .

Note that in the one-dimensional special case Q1(η) is the well-distribution measure W .

Then η is said to have strong pseudorandom properties, or briefly, it is considered as

a “good” pseudorandom binary lattice at least for small ℓ’s and “large” N the measures

Qℓ(η)’s are “small” (much smaller, than the trivial upper bound Nn). This terminology is

justified by the fact that, as it was proved in [28], for a truly random binary lattice defined

on InN and for fixed ℓ the measure Qℓ(η) is “small”, more precisely, it is less than Nn/2

multiplied by a logarithmic factor. As in the one-dimensional case, many papers have been

written on pseudorandomness of binary lattices, for further references see e.g. [22], [23] and

[24].

In the application (similarly to the one-dimensional case) it is important that a large

family G of binary lattices has a “rich”, “complex” structure, there are many “independent”

sequences, resp. lattices in it which are “far apart”. Thus one needs quantitative measures

for these properties of families of binary lattices. In case of binary sequences some of these

measures were mentioned in Section 1.1.

Next few definitions of family measures of binary lattices introduced by Mauduit,

Sárközy and I in [21] follow:

Definition 1.6 If G is a family of binary lattices η is of the form

G = G(S) = {ηs : s ∈ S}, (1.3)

and for any s ∈ S changing any element of s changes “many” elements of ηs : InN →

{−1,+1}, then we speak about avalanche effect, and we say that F = F(S) possesses the

avalanche property. If for any s ∈ S, s′ ∈ S, s 6= s′ at least
(

1
2
− o(1)

)

Nn elements of ηs

and ηs′ are different, then F is said to possess the strict avalanche property.

Definition 1.7 If N ∈ N, n ∈ N, η : InN → {−1,+1} and η′ : InN → {−1,+1}, then the

distance d(η, η′) between η and η′ is defined by

d(η, η′) = |{(x1, x2, . . . , xn) : (x1, . . . , xn) ∈ InN ,

η(x1, . . . , xn) 6= η′(x1, . . . , xn)}|.
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If G is a family of binary lattices, then the distance minimum m(G) is defined by

m(G) = min
η,η′∈G
η 6=η′

d(η, η′).

So that G is collision free if m(G) > 0, and it possesses the strict avalanche property if

m(G) ≥

(

1

2
− o(1)

)

Nn. (1.4)

2 The definition of cross-combined measure and its connection

with other family measures

In this section I extend the cross-correlation measure to the multi-dimensional case.

This new measure will be called as cross-combined measure:

Definition 2.1 Let N ∈ N, ℓ ∈ N, and for any ℓ binary sequences η1, . . . , ηℓ with

ηi : InN → {−1,+1} (i = 1, 2, . . . , ℓ)

and for any B box-lattice of the form (1.2) and ℓ-tuple D = (d1, . . . ,dℓ) with di ∈ InN

(i = 1, 2, . . . , ℓ) write

Vℓ (η1, . . . , ηℓ, B,D) =
∑

x∈B

η1(x + d1) · · · ηℓ(x+ dℓ) (2.1)

Let
∼

Qℓ (η1, . . . , ηℓ) = max
B,D

|Vℓ (η1, . . . , ηℓ, B,D)| (2.2)

where the maximum is taken over all D = (d1, . . . ,dℓ) and B box-lattice satisfying B +

d1, B + d2, . . . , B + dℓ ⊆ InN with the additional restriction that if ηi = ηj for some i 6= j,

then we must not have di = dj. Then the cross-combined measure of order ℓ of the family

G of binary lattices η ∈ {−1,+1}N is defined as

Φℓ(G) = max
∼

Qℓ (η1, . . . , ηℓ) (2.3)

where the maximum is taken over all ℓ-tuples of binary lattices (η1, . . . , ηℓ) with

ηi ∈ G for i = 1, . . . , ℓ.
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By the definition of
∼

Qℓ, we have
∼

Qℓ (η, . . . , η) = Qℓ(η), thus it follows from (2.3) that

Proposition 2.1 We have

Φℓ(G) ≥ max
η∈G

Qℓ(η).

This means that if we have a “good” upper bound for Φℓ(G), then this guarantees that all

lattices in G possesses strong pseudorandom properties.

Next in this section I will study the connection of cross-combined measure with other

family measures. As an a multi-dimensional analog of Proposition 2.2 in [21] now we obtain:

Proposition 2.2 If N, n ∈ N and G is a large family of binary lattices η : InN → {−1,+1}

then for η1, η2 ∈ G we have

∣

∣

∣

∣

d(η1, η2)−
Nn

2

∣

∣

∣

∣

≤
1

2

∼

Q2(η1, η2) ≤
1

2
Φ2(G). (2.4)

Proof. Clearly we have

d(η1, η2) =
∑

x∈In
N

(η1(x)− η2(x))
2

4
=

Nn

2
−

1

2

∑

x∈In
N

η1(x)η2(x)

whence, by (2.1), (2.2) and (2.3),

∣

∣

∣

∣

d(η1, η2)−
Nn

2

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

∣

∣

∑

x∈In
N

η1(x)η2(x)

∣

∣

∣

∣

∣

∣

≤
1

2

∼

Q2(η1, η2) ≤ Φ2(G)

which proves (2.4).

If the cross-combined measure of order 2 of a family G of n-dimensional binary lattices

is o(Nn) then it follows from Definition 1.7 and (2.4) that

m(G) = min
η,η′∈F
η 6=η′

d(η1, η2) ≥
Nn

2
−

1

2
Φ2(G) =

Nn

2
− o(Nn)

so that (1.4) holds. This proves

Proposition 2.3 If N, n ∈ N, G is a large family of binary lattices η : InN → {−1,+1}

and Φ2(G) = o(Nn) then the family G possesses the strict avalanche property.
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3 Cross-combined measure of a family of binary lattices

constructed by using quadratic characters

Mauduit and Sárközy [31] constructed a large family of binary lattices with strong

pseudorandom properties by using quadratic characters of finite fields (this construction

generalizes the one dimensional constructions in [14] and [30]). They proved the following

theorem:

Theorem 3.A Assume that q = pn is the power of an odd prime, f(x) ∈ Fq[x] has degree

k with

0 < k < p.

Denote the quadratic character of Fq by γ (setting also γ(0) = 0). Consider the linear

vector space formed by the elements of Fq over Fp, and let v1, . . . , vn be a basis of this

vector space (i.e., assume that v1, v2, . . . , vn are linearly independent over Fp). Define the

n dimensional binary p-lattice η : Inp → {−1,+1} by

η(x) = η((x1, . . . , xn)) =











γ(f(x1v1 + · · ·+ xnvn)) for

f(x1v1 + · · ·+ xnvn) 6= 0

+1 for f(x1v1 + · · ·+ xnvn) = 0.

(3.1)

Assume that and f(x) has no multiple zero in Fq, ℓ ∈ N and

4n(k+ℓ) < p.

Then we have

Qℓ(η) < kℓ(q1/2(1 + log p)n + 2).

Indeed this is a combination of Theorems 1 and 2 in [32].

Throughout this section p, n and q = pn will be fixed (except Corollary 3.B). We will

denote the construction of Theorem 3.A by G≤K, quadratic:

Construction 3.A Denote by P≤K the set of monic polynomials f ∈ Fq[x] with degree

0 < degf ≤ K. Let G≤K, quadratic denote the family of the binary lattices η defined by (3.1)

assigned to polynomials f ∈ P≤K .

It is clear that all lattices η ∈ G≤K, quadratic satisfying the conditions of Theorem 3.A

possess strong pseudorandom properties.



On the cross-combined measure of families of binary lattices and sequences 11

In order to simplify the notations we will introduce a function τ : Fn
p → Fq. We may

assume that Inp represents the elements of Fn
p and thus we may also use τ as a function

τ : Inp → Fq. Let v1, v2, . . . , vn be the basis of the vectorspace Fq over Fp defined in Theorem

3.A. (Here q = pn.) For an x = (x1, x2, . . . , xn) ∈ Fn
p let

τ(x) = x1v1 + x2v2 + . . . xnvn.

Then τ is a bijection. We also have for a,b ∈ Fn
p τ(a + b) = τ(a) + τ(b). Then (3.1) in

Theorem 3.A can be written the equivalent form

η(x) =

{

γ(f(τ(x))) for f(τ(x)) 6= 0

+1 for f(τ(x)) = 0.
(3.2)

In [19] jointly with Mauduit and Sárközy we proved that the family measure of Gquadratic,≤K

is optimal. The distance minimum was also estimated in [19] and If K < 1
2
q1/2, then

G≤K, quadratic is collision free. Moreover if q → ∞, K = o(q1/2), then G≤K, quadratic possesses

the strict avalanche property.

Unfortunately, it turned out that for K ≥ 2, our new measure, the cross-combined

measure of G≤K, quadratic is very bad:

Proposition 3.1 For K ≥ 2 we have Φ3(G≤K, quadratic) ≥ q − 2.

Proof. Consider the following 3 polynomials: f1(x) = x, f2(x) = x+1, f3(x) = x(x+1) ∈

Fq[x]. Let ηi be the binary lattice defined by (3.1) with fi in place of f for i = 1, 2, 3. Then

using (3.2) we get:

Φ3(G≤K, quadratic) ≥
∼

Q3(η1, η2, η3) ≥ V3(η1, η2, η3, I
n
p , (0, 0, 0)) =

∑

x∈Inp

η1(x)η2(x)η3(x)

=
∑

τ(x)∈Inp
τ(x)(τ(x)+1)6=0

γ(τ(x))γ(τ(x) + 1)γ(τ(x)(τ(x) + 1)) + γ(1) + γ(−1)

=
∑

y∈Fq

y(y+1)6=0

γ(y2(y + 1)2) + γ(1) + γ(−1) ≥ q − 2.

Clearly Proposition 3.1. can be easily extended to cross-combined measures of higher order.

Thus we need to restrict the family G≤K, quadratic to a large subfamily of it such that

this subfamily has a good cross-combined measure. In the one-dimensional case jointly

with Mauduit and Sárközy [21] we have the following idea:
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Construction 3.B Consider the set of monic irreducible polynomials of the form f(x) =

xk+ak−2x
k−2+ak−3x

k−3+ · · ·+a0 (so that the coefficient ak−1 = 0) with degree 0 < k ≤ K

and let F≤K, irreducible, Legendre (F≤K, Legendre) the set of all binary sequences defined by (1.1)

where the used monic irreducible polynomial f are in this form.

Then by [21] the family F≤K, irreducible, Legendre has optimal cross-correlation measure:

Theorem 3.A

Φℓ(F≤K, irreducible, Legendre) ≤ 10Kℓp1/2 log p.

(This is Theorem 1 in [21]). Here the family F≤K, irreducible, Legendre is almost as large as

F≤K, Legendre, and so far this is the only method to construct very large family of binary

sequences with optimal cross-correlation measure. In Section 5 I will show another type

of construction of a very large family of binary sequences for which the cross-correlation

measure is nearly optimal.

Next I return to the cross-combined measure and the multi-dimensional case.

Construction 3.1 Let G≤K, irreducible, quadratic denote the following subfamily of

G≤K, quadratic: consider those η ∈ G≤K, quadratic for which the used polynomials f in

(3.1) are monic irreducible and of the form f(x) = xk + ak−2x
k−2+ ak−3x

k−3 + · · ·+ a0 (so

that the coefficient ak−1 = 0) with degree 0 < k ≤ K and let G≤K, irreducible, quadratic the set

of all binary lattices obtained in this way. Clearly G≤K, irreducible, quadratic ⊂ G≤K, quadratic.

Next I prove

Theorem 3.1

Φℓ(G≤K, irreducible, quadratic) < Kℓq1/2(log p+ 1)n + 2ℓ.

Proof. By the definition of cross-combined measure we have that there exist binary lattices

η1, η2, . . . , ηℓ ∈ G≤K, Legendre D = (d1, . . . ,dℓ) ℓ-tuple (where di ∈ Inp) and B box-lattice

satisfying B + d1, . . . , B + dℓ ⊂ Inp with the additional restriction that if ηi = ηj for some

i 6= j then we must not have di = dj such that

Φℓ(G≤K, irreducible, quadratic) = |Vℓ(η1, . . . , ηℓ, B,D)| =

∣

∣

∣

∣

∣

∑

x∈B

η1(x+ d1) · · ·ηℓ(x + dℓ)

∣

∣

∣

∣

∣

(3.3)
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Clearly by (3.2) there exists monic irreducible polynomials fi (i = 1, 2, . . . , ℓ) such that all

fi can be written of the form the form

xk + ak−2x
k−2 + ak−3x

k−3 + · · ·+ a1x+ a0 (3.4)

for some 0 < k ≤ K, a0, a1, . . . , ak−2 ∈ Fq (thus the coefficient of xdegfi−1 is always 0) and

for the binary lattice ηi (i = 1, 2, . . . , ℓ) we have

ηi(x) =

{

γ(fi(τ(x))) for f(τ(x)) 6= 0

+1 for fi(τ(x)) = 0.
(3.5)

By (3.3), (3.5) and since irreducible polynomials may have only one zero (and only in the

case of linear polynomials) we have

Φℓ(G≤K, irreducible, quadratic) ≤

∣

∣

∣

∣

∣

∑

x∈B

γ(f1(τ(x + d1))) · · ·γ(fℓ(τ(x+ dℓ)))

∣

∣

∣

∣

∣

+ 2ℓ

=

∣

∣

∣

∣

∣

∣

∑

y∈τ(B)

γ(f1(y + τ(d1)) · · ·fℓ(y + τ(dℓ)))

∣

∣

∣

∣

∣

∣

+ 2ℓ (3.6)

where the set τ(B) is defined by τ(B)
def
= {τ(x) : x ∈ B}. Next we use Winterhof’s Lemma

[43]:

Lemma 3.1 Let χ be a non-trivial multiplicative character of order d over Fq and g ∈ Fq[x]

of a polynomial with s distinct zeros in Fq and which is not of the form ch(x)d with c ∈ Fq

and h(x) ∈ Fq[x]. Then for 1 ≤ ti < p (i = 1, 2, . . . , n) and for a set C defined by

C = C(t1, t2, . . . , tn) = {x1v1 + x2v2 + · · ·+ xnvn : 0 ≤ xi ≤ ti for i = 1, 2, . . . , n} (3.7)

we have
∣

∣

∣

∣

∣

∑

y∈C

χ(g(x))

∣

∣

∣

∣

∣

< sq1/2(1 + log p)n ≤ degg q1/2(1 + log p)n.

This is Theorem 2 in [43]. (The main tool in the proof is Weil theorem [42].)

Clearly the set τ(B) is a set of the form (3.7). We will use Lemma 3.1 with the quadratic

character γ in place of χ and with the polynomial g(y)
def
= f1(y + τ(d1)) · · · fℓ(y + τ(dℓ)).

In order to use this lemma first we need to show g(y) is not of the form ch(y)2. If for some
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1 ≤ i < j ≤ ℓ we have fi(y) 6= fj(y) then

fi(y + τ(di)) 6= fj(y + τ(dj)) (3.8)

also holds since if

fi(y + τ(di)) = fj(y + τ(dj)) (3.9)

then degfi = degfj = k. Then the coefficient of the term xk−1 are the same both in

fi(y + τ(di)) and fj(y + τ(dj)) and by the special form of these polynomials (see (3.4))

we also have that (3.9) holds only if τ(di) = τ(dj). Since τ is a bijection then we have

di = dj. Writing this in (3.9) we get the polynomials fi and fj are the same, but then the

lattices ηi and ηj are also the same. In the definition of cross-combined measure we have

the additional restriction that if ηi = ηj then we must have di 6= dj , which is contradiction.

Thus we proved (3.8). By (3.8) we get g(y) is a product of different irreducible polynomials

thus it cannot be of the form ch(y)2. So we may use Lemma 3.1 for the character sum in

(3.6) and we obtain

Φℓ(G≤K, irreducible, quadratic) < Kℓq1/2(log p+ 1)n + 2ℓ

which was to be proved.

4 Cross-combined measure of a family of binary lattices

constructed by using Legendre symbol

Next I study a natural construction of families of two-dimensional binary lattices based

on Legendre symbol introduced by Sárközy, Stewart and I in [25], [26]. In the case of

this construction we will have slightly weaker upper bounds both for the pseudorandom

measures of the binary lattices and for the cross-combined measure of the family than

the optimal. The reason of this is that in order to estimate the necessary character sums

we would need the two-dimensional analogue of Weil theorem [42]. The multi-dimensional

analogue of Weil theorem were studied by Delinge [9], [10], and however later Fouvry and

Katz [12] simplified the requirements still an inconvenient assumption of nonsingularity is

required in order to reach the optimal bounds, which in our cases are not applicable. How-

ever in the case of this construction we have weaker upper bounds for the pseudorandom

measures, on the other hand the lattices of the family can be generated very fast, which
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makes the implementation easy. Our starting point is the following construction defined

by Sárközy, Stewart and I in [25]:

Construction 4.A Let p be an odd prime. Denote by R≤K the set of monic polynomials

f ∈ Fp[x1, x2] with degree 0 < degf ≤ K. Let G≤K, Legendre denote the family all binary

lattices η : I2p → {−1,+1} which can be written of the form defined by

η(x1, x2) =

{

(

f(x1,x2)
p

)

if (f(x1, x2), p) = 1,

1 if p | f(x1, x2).
(4.1)

with a polynomial f ∈ R≤K .

In [25] and [26] jointly with Sárközy and Stewart we proved that under some not too

restricitve conditions on the polynomial f or the prime p we have:

Qℓ(η) ≤ 11kℓp3/2 log p.

Similarly to Section 3, it turned out that for K ≥ 2, the cross-combined measure of

G≤K, Legendre is very bad:

Proposition 4.1 For K ≥ 2 we have Φ3(G≤K, Legendre) ≥ p2 − 2.

The proof of Proposition 4.1 is similar to Proposition 3.1 thus we leave the details to the

reader. Thus again we need to restrict G≤K, Legendre to a proper large subfamily which has

good cross-correlation measure. Again we have the idea using irreducible polynomials. Here

we need the following special case of Theorem 1 in [25]:

Theorem 4.A Let p be an odd prime, f ∈ Fp[x1, x2] be an irreducible polynomial in two

variables of degree k. Define η : I2p → {−1,+1} by (4.1). If f(x1, x2) is not of the form

f(x1, x2) = ϕ(γx1 + δx2) (4.2)

with γ, δ ∈ Fp and ϕ ∈ Fp[x].

Then for the binary p-lattice defined by (4.1) we have

Qℓ(η) ≤ 11kℓp3/2 log p.

Indeed the condition that f(x1, x2) is not of the form (4.2) is necessary? The answer is

affirmative since by Theorem 2 in [26] we have
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Theorem 4.B Let p be an odd prime, f ∈ Fp[x1, x2] be a polynomial in two variables

of degree k. Define η : I2p → {−1,+1} by (4.1). If f(x1, x2) is of the form f(x1, x2) =

ϕ(γx1 + δx2) with some γ, δ ∈ Fp and ϕ ∈ Fp[x], hen for the binary p-lattice defined by

(4.1) we have

Q2(η) ≥ p2 − 4p3/2 − 8kp.

By Theorem 4.A and Theorem 4.B we have the idea studying the following subfamily

of G≤K, Legendre:

Construction 4.1 Let G≤K, irreducible, Legendre denote the following subfamily of

G≤K, Legendre: consider those η ∈ G≤K, quadratic for which the used monic polynomials

f in (4.1) are irreducible and not of the form (4.2). Clearly G≤K, irreducible, quadratic ⊂

G≤K, quadratic.

The cross-combined measure of this family is relatively small:

Theorem 4.1

Φℓ(G≤K, irreducible, Legendre) < 11Kℓp3/2 log p.

Proof. The theorem is trivial for the cases p ≤ 7 and p ≤ K, thus throughout the proof we

may assume p ≥ 11 and K < p. Let η1, η2, . . . , ηℓ ∈ G≤K, irreducible, Legendre binary lattices,

D = (d1, . . . ,dℓ) and B box-lattice satisfying B +d1, . . . , B +dℓ ⊂ Inp with the additional

restriction that if ηi = ηj for some i 6= j then we must not have di = dj for which we have

Φℓ(G≤K, irreducible, Legendre) = |Vℓ(η1, . . . , ηℓ, B,D)| =

∣

∣

∣

∣

∣

∑

x∈B

η1(x+ d1) · · ·ηℓ(x+ dℓ)

∣

∣

∣

∣

∣

Clearly by (4.1) there exists monic irreducible polynomials fi (i = 1, 2, . . . , ℓ) which are

not of the form (4.2) and

ηi(x) =

{

(

fi(x)
p

)

for f(x) 6= 0

+1 for fi(x) = 0.

Since for fixed x1 the polynomial f(x) = f(x1, x2) has at most K zeros in x2, we have f(x)

has at most Kp zeros in x. Then similarly to (3.6) we get

Φℓ(G≤K, irreducible, Legendre) =

∣

∣

∣

∣

∣

∑

x∈B

(

(f1(x+ d1)) · · ·fℓ(x+ dℓ)

p

)

∣

∣

∣

∣

∣

+ 2Kℓp. (4.3)
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First we mention that by the following lemma from [25] the irreducible polynomials f1(x+

d1), . . . , fℓ(x+ dℓ) are different.

Lemma 4.1 Let ϕ(x1, x2) ∈ Fp[x1, x2] be nonzero and let c, a1, a2 ∈ Fp with (a1, a2) 6=

(0, 0) be such that

ϕ(x1, x2) = cϕ(x1 + a1, x2 + a2),

for all (x1, x2) in F2
p. Suppose that the degree of ϕ(x1, x2) is less than p. Then there is a

polynomial g ∈ Fp[x] such that

ϕ(x1, x2) = g(a2x1 − a1x2).

This is Lemma 6 in [25]. We will also use the following lemma from [25]:

Lemma 4.2 Let p ≥ 5 be a prime and χ be a multiplicative character of order d. Suppose

that h(x1, x2) ∈ Fp[x1, x2] is not of the form cg(x1, x2)
d with c ∈ Fp, g(x1, x2) ∈ Fp[x1, x2].

Let k be the degree of h(x1, x2). Then we have

∑

x∈B

χ (h(x)) < 10kp3/2 log p

for every 2 dimensional box p-lattice B ⊆ I2p .

This is Lemma 2 in [25]. (The main tool in the proof is Weil theorem [42].)

Since by Lemma 4.1 the irreducible polynomials f1(x+d1), . . . , fℓ(x+dℓ) are different,

the product polynomial g(x) = f1(x + d1) · · ·fℓ(x+ dℓ) cannot be of the form cg(x)2. By

(4.3) and using Lemma 4.2 we get

Φℓ(G≤K, irreducible, Legendre) < 10Kℓp log p+ 2Kℓp < 11Kℓp log p.

which was to be proved.

Corollary 4.1 For all subfamily G0 of G≤K, irreducible, Legendre we have

Φℓ(G0) < 11Kℓp3/2 log p..

This corollary is trivial and at first sight not very interesting. The important feature of it is

that while the construction of one-variable irreducible polynomials is slow and complicated,

then there is an easy way to construct two-variable irreducible polynomials using the

Schöneman-Eisenstein criteria:
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Lemma 4.3 Let f ∈ Fp[x1, x2] be a polynomial of the form

f(x1, x2) = xk
1 + x1x2g(x1, x2) + x2h(x2) (4.4)

with g ∈ Fp[x1, x2], deg g ≤ k − 3, h ∈ Fp[x2], deg h(x2) ≤ k − 2 and x2 ∤ h(x2) Then

f(x1, x2) is irreducible and not of the form (4.2).

This lemma follows from the proof of Theorem 3 in [26] where the irreducibility of the

polynomial was deduced from Theorem 282 in the book of Rédei [38].

Using polynomials of form (4.4) we can construct a large family of binary lattices such

that its implementation is easy and fast:

Construction 4.2 Let G≤K, Sch−Eis, Legendre denote the following subfamily of

G≤K, irreducible, Legendre: consider those η ∈ G≤K, quadratic for which the used polynomials f

in (4.1) are of the form (4.4). Clearly G≤K, Sch−Eis, Legendre ⊂ G≤K, irreducible, Legendre ⊂

G≤K, quadratic.

Using Corollary 4.1 we immediately get

Corollary 4.2 For all subfamily G0 of G≤K, irreducible, Legendre we have

Φℓ(G≤K, Sch−Eis, Legendre) < 11Kℓp3/2 log p.

Thus the family G≤K, Sch−Eis, Legendre has nearly optimal cross-combined measure, clearly

is is very large (it contains more than pK(K−1)/2 different binary lattices) and the binary

lattices in it can be generated easily and very fast. In the next section we will show how is

possible to generate a very large families of pseudorandom binary sequences with optimal

or nearly optimal cross-correlation measure using these families of binary lattices.

5 Constructions of binary sequences with optimal or nearly

optimal cross-correlation measures based on lattices and

multi-dimensional theory

In [18] jointly with Mauduit and Sárközy we reduced the two dimensional case to the

one-dimensional one by the following way: To any 2-dimensional binary N -lattice

η : I2N → {−1,+1} (5.1)
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we may assign a unique binary sequence EN2 = EN2(η) = {e1, e2, . . . , eN2} ∈ {−1,+1}N by

taking the first (from the bottom) row of the lattice then we continue the binary sequence

by taking the second row of the lattice, then the third row follows, etc.; in general, we set

eiN+j = η((j − 1, i)) for i = 0, 1, . . . , N2 − 1, j = 1, 2, . . . , N. (5.2)

We will denote the sequence defined by this way by E(η). In [18] with Mauduit and Sárközy

we asked if it is true that if E(η) is a “good” pseudorandom binary sequence then η is a

“good” pseudorandom 2-dimensional lattice? The answer to this question is negative; in [18]

it is showed that it may occur that the pseudorandom measures of the sequence EN2(η) are

small, however, the corresponding pseudorandom measures of the lattice η are large. On

the other hand, in [17] I proved the following: if the lattice η has small combined measure,

then the corresponding E(η) sequence has small correlation measure as well.

Theorem 5.A Let η be an arbitrary binary lattice. Then

Cℓ(E(η)) ≤ (ℓ+ 2)Qℓ(η).

Here I generalize this result to families of binary sequences and lattices and the cross-

correlation and cross-combined measure.

Definition 5.1 Let F be a two-dimensional family of binary lattices η : I2N → {1−,+1}.

Define the family E(G) of binary sequences of length N2 by

E(G)
def
= {E(η) : η ∈ G}.

Next I will prove that if a family G of two-dimensional binary lattices has good cross-

combined measure than the family of binary sequences E(G) also has good cross-correlation

measure. The proof of this fact will be very similar to the proof of Theorem 5.A in [17].

Theorem 5.1 Let G be a family of two-dimensional binary lattices η : I2N → {−1,+1}.

Then

Φℓ(E(G)) ≤ (ℓ+ 2)Φℓ(G)

Proof. By the definition of the cross-correlation measure we have that there exist binary

sequences E(η1), E(η2), . . . , E(ηℓ) ∈ E(G) (where η1, η2, . . . , ηℓ ∈ G), M ∈ N and ℓ-tuple

D = (d1, d2, . . . , dℓ) of non-negative integers with 0 ≤ d1 ≤ d2 ≤ · · · ≤ dℓ < M + dℓ with

the additional restriction that if E(ηi) = E(ηj) (in other words ηi = ηj) for some i 6= j
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then we must not have di = dj and for which

Φℓ(E(G)) =
∣

∣Vℓ(E(η1), . . . , E(ηℓ),M,D)
∣

∣ . (5.3)

Write E(ηi) of the form E(ηi) = (e
(i)
1 , e

(i)
2 , . . . , e

(i)

N2) for i = 1, 2, . . . , ℓ. Then by (5.3)

Φℓ(E(G)) =

∣

∣

∣

∣

∣

M
∑

n=1

e
(1)
n+d1

· · · e
(ℓ)
n+dℓ

∣

∣

∣

∣

∣

. (5.4)

Next few definitions will follow: For x ∈ Z let

x = rN (x)N +mN (x)

where mN(x) ≡ x (mod N), 0 ≤ mN (x) ≤ N − 1 and rN(x) =
[

x
N

]

.

By definition e
(i)
yN+x+1 = ηi(x, y) for 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1 and i = 1, . . . , ℓ

and thus

e(i)n = ηi(mN(n− 1), rN(n− 1)).

Then for 1 ≤ i ≤ ℓ

e
(i)
n+di

= η(mN(n + di − 1), rN(n+ di − 1)). (5.5)

Here

n+ di − 1 = (rN(n− 1) + rN(di))N +mN (n− 1) +mN(di).

Thus if 0 ≤ mN (n− 1) +mN (di) ≤ N − 1 then

rN(n+ di − 1) = rN(n− 1) + rN(di), mN (n+ di − 1) = mN(n− 1) +mN (di)

and if N ≤ mN (n− 1) +mN(di) then

rN(n + di − 1) = rN(n− 1) + rN(di) + 1, mN(n + di − 1) = mN (n− 1) +mN(di)−N.

Thus we get that there exists an ai
def
= N − 1−mN (di) such that for mN (n− 1) ≤ ai

rN (n+ di − 1) = rN (n− 1) + rN (di), mN (n+ di − 1) = mN(n− 1) +mN(di) (5.6)
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and for ai + 1 ≤ mN(n− 1)

rN(n + di − 1) = rN(n− 1) + rN(di) + 1, mN(n + di − 1) = mN (n− 1) +mN(di)−N.

(5.7)

Then {1, a1+1, a2+1, . . . , aℓ+1, mN(M − 1)+1, N} is a multiset which contains integers

1 = c1 < c2 < · · · < cm ≤ N where m ≤ ℓ + 3. By (5.6) and (5.7) we get that for

cj ≤ n ≤ cj+1 − 1 there exist numbers bi,j and fi,j such that

rN(n + di − 1) = rN(n) + rN(di − 1) + bi,j , mN(n + di − 1) = mN (n) +mN (di − 1)− fi,j

(5.8)

where bi,j ∈ {0, 1} and fi,j ∈ {0, N}. Moreover, if bi,j = 0 then fi,j = 0 and if bi,j = 1 then

fi,j = N . Now

[1,M ] =

= {n = TN + x+ 1 : T = 0, 1, . . . ,

[

M − 1

N

]

, x = 0, 1, . . . , mN (M − 1)}

∪ {n = TN + x+ 1 : T = 0, 1, . . . ,

[

M − 1

N

]

− 1, x = mN(M − 1) + 1,

. . . , N − 1}.

Thus

[1,M ] = ∪m−1
j=1 {n : n = rN(N − 1)N +mN (n− 1) + 1,

cj ≤ mN(n− 1) ≤ cj+1 − 1, rN(n− 1) ∈ {0, 1, 2, . . . , Tj}} (5.9)

where Tj =
[

M−1
N

]

if cj+1 ≤ mN(M−1)+1 and Tj =
[

M−1
N

]

−1 if mN (M−1)+1 ≤ cj. (Since

mN (M − 1) + 1 ∈ {c1, c2, . . . , cm} and c1 < c2 < · · · < cm thus cj < mN(M − 1) + 1 < cj+1

is not possible.) By this, (5.4), (5.5) and (5.6)

Φℓ(E(G)) =
M
∑

n=1

e
(1)
n+d1

· · · e
(ℓ)
n+dℓ

=
m−1
∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

e
(1)
n+d1

. . . e
(ℓ)
n+dℓ

=
m−1
∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M
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ℓ
∏

i=1

ηi(mN(n− 1) +mN (di)− fi,j , rN(n− 1) + rN(di) + bi,j) (5.10)

By (5.9)

{(mN(n− 1), rN(n− 1)) : 1 ≤ n ≤ M and cj ≤ mN (n− 1) ≤ cj+1 − 1} =

{(x, y) : 0 ≤ x ≤ Tj and cj ≤ y ≤ cj+1 − 1}.

Using this, (5.8) and (5.10) we get

Φℓ(E(G)) =

m−1
∑

j=1

Tj
∑

x=0

sumcj+1−1
y=cj

ℓ
∏

i=1

ηi(x+mN(di)− fi,j, y + rN(di) + bi,j) ≤ (m− 1)Φℓ(G)

≤ (ℓ+ 2)Φℓ(G)) (5.11)

which was to be proved. Let us see whether the pairs (mN(di) − fi,j, rN(di) + bi,j) are

different for fixed j as i runs over 1, 2, . . . , ℓ. Indeed if for fixed j there exist i1 and i2 with

(mN(di1)− fi1,j, rN(di1) + bi1,j) = (mN(di2)− fi2,j, rN(di2) + bi2,j),

then

N(rN (di1) + bi1,j) +mN(di1)− fi1,j = N(rN(di2) + bi2,j) +mN (di2)− fi2,j.

Since if bi,j = 0 then fi,j = 0 and if bi,j = 1 then fi,j = N , from this we get

NrN (di1) +mN (di1) = NrN (di2) +mN (di2)

di1 = di2

By the definition of cross-correlation measure di1 = di2 is possible only if E(ηi1) 6= E(ηi2).

Then clearly we have ηi1 6= ηi2 , so indeed

∣

∣

∣

∣

∣

∣

Tj
∑

x=0

cj+1−1
∑

y=cj

ℓ
∏

i=1

ηi(x+mN (di)− fi,j, y + rN (di) + bi,j)

∣

∣

∣

∣

∣

∣

can be estimated by Φℓ(G) in (5.11). This completes the proof of Theorem 5.1
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Using Theorems 3.1, 4.1, Corollary 4.2 and Theorem 5.A we immediately get the fol-

lowing:

Corollary 5.1 Let q = p2 where p is a prime and define G≤K, irreducible, quadratic as in

Construction 3.1. Then

Φℓ(E(G≤K, irreducible, quadratic)) < Kℓ(ℓ+ 2)p(log p + 1)n + 2ℓ.

Corollary 5.2 Let p be a prime and define G≤K, irreducible, Legendre as in Construction 4.1.

Then

Φℓ(E(G≤K, irreducible, Legendre)) < 11Kℓ(ℓ+ 2)p3/2 log p.

Corollary 5.3 Let p be a prime and define G≤K, Sch−Eis, Legendre as in Construction 4.2.

Then

Φℓ(E(G≤K,Sch−Eis, Legendre)) < 11Kℓ(ℓ+ 2)p3/2 log p.

Thus each family of binary sequences in Corollaries 1,2 and 3 have optimal or nearly op-

timal cross-combined measure. Between them we were able to prove the strongest bound

for cross-correlation measure in the case of the family of E(G≤K, irreducible, quadratic). The

weak point of this construction is that it is based on one-variable irreducible polynomials

over Fp2, which have slow and complicated generation. Using binary lattices based on two-

variable irreducible polynomials and Legendre symbol this problem can be avoided, however

a slightly weaker upper bound is obtained for the cross-correlation measure than in the orig-

inal construction. But, contrary to one-variable polynomials, using Schöneman-Eisenstein

criteria it is very easy to construct two-variable irreducible polynomials over Fp (e.g. see

Lemma 4.3). Indeed by Construction 4.2 the binary lattices in G≤K, Sch−Eis, Legendre can be

implemented easily and fast, and thus the binary sequences in E(G≤K,Sch−Eis, Legendre) also

can be implemented easily and fast. However we do not have the strongest bound cp log p,

we have only cKℓ2p3/2 log p for the cross-correlation measure of this family, it is much bet-

ter than than the trivial bound p2. Moreover, the family E(G≤K,Sch−Eis, Legendre) is very

big, it contains more than pK(K−1)/2 pieces of binary sequences, which is also important in

the applications.
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