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Abstract
In this study we deal with the three sub-challenges of the In-
terspeech ComParE Challenge 2017, where the goal is to iden-
tify child-directed speech, speakers having a cold, and differ-
ent types of snoring sounds. For the first two sub-challenges
we propose a simple, two-step feature extraction and classifi-
cation scheme: first we perform frame-level classification via
Deep Neural Networks (DNNs), and then we extract utterance-
level features from the DNN outputs. By utilizing these features
for classification, we were able to match the performance of
the standard paralinguistic approach (which involves extracting
thousands of features, many of them being completely irrele-
vant to the actual task). As for the Snoring Sub-Challenge, we
divided the recordings into segments, and averaged out some
frame-level features segment-wise, which were then used for
utterance-level classification. When combining the predictions
of the proposed approaches with those got by the standard par-
alinguistic approach, we managed to outperform the baseline
values of the Cold and Snoring sub-challenges on the hidden
test sets.
Index Terms: ComParE 2017, computational paralinguistics,
Deep Neural Networks, feature extraction

1. Introduction
Traditionally, the main focus of speech technology is Automatic
Speech Recognition (ASR), where the task is to create the writ-
ten transcription of an audio recording (an utterance) in an au-
tomatic way. Recently, however, the extraction and identifica-
tion of phenomena being present in the audio signal other than
the words uttered (e.g. emotions [1], conflict intensity [2], the
speaker’s blood alcohol level [3] or even whether the speaker is
suffering from Parkinson’s [4, 5] or Alzheimer’s disease [6]) has
gained interest, forming the area of computational paralinguis-
tics. The importance of this area is reflected in the fact that for
several years now the Interspeech Computational Paralinguistic
Challenge (ComParE) has been regularly held.

The ComParE 2017 Challenge [7] consists of three Sub-
Challenges, and these tasks are highly relevant for real-life ap-
plications: in the Addressee Sub-Challenge we have to deter-
mine automatically whether the adult speaks to a child or to an-
other adult; in the Cold Sub-Challenge speakers having a cold
should be found; while in the Snoring Sub-Challenge different
types of snoring have to be identified. Following the Challenge
guidelines (see [7]), we will omit the description of the tasks,
datasets and the method of evaluation, and focus on the tech-
niques we applied. We should add that, unlike in a standard
conference study, in this case it makes sense to experiment with
several techniques at the same time, which we will indeed do.

Although both ASR and computational paralinguistics deal
with recordings of human speech, they are inherently different
in two different ways. Firstly, ASR focuses on the words ut-
tered, and considers everything else (the speaker’s emotional
state, his cognitive load, alcohol level, etc.) as noise which is
to be ignored, while in paralinguistic tasks we are interested
only in the non-linguistic information present in the speech sig-
nal. The second difference is a more technical one: ASR di-
vides the speech signal into small, equal-sized excerpts called
frames, on which local likelihoods are estimated and combined
into a variable-length, utterance-level output (the transcrip-
tion). Therefore, when machine learning methods are applied
in ASR, they are usually applied at the frame level. In com-
putational paralinguistics, however, each utterance is treated as
one example, from which utterance-level features have to be ex-
tracted. Classification also resembles general machine learning
tasks: there are only a few hundred examples instead of mil-
lions, hence researchers prefer using Support-Vector Machines
(SVMs, [8]) instead of Deep Neural Networks (DNNs, [9]).

The standard solution for utterance-level feature extraction
in computational paralinguistics (see e.g. [10, 11, 12]) is to ex-
tract a huge variety of audio-based features, and then perform
classification at the utterance level. Notice that no machine
learning is done at the frame level; however, in ASR (and in
similar tasks such as laughter detection [13, 14]) fine-tuned so-
lutions exist on how frames should be classified. Unfortunately,
these are usually ignored in computational paralinguistics, and
in the notable exceptions when they are not (e.g. [15, 16]), ma-
chine learning is done in a strongly task-dependant way.

In the current study we combine the two approaches. First,
following standard ASR practice, we perform frame-level clas-
sification using Deep Neural Networks. Second, based on the
frame-level DNN outputs, we carry out a thresholding-based,
utterance-level feature extraction step. We show that the fea-
tures extracted this way can be used for utterance classifica-
tion even on their own, but by combining the predictions got
this way with the ones of the standard approach, the results
exceed the Challenge baselines, and these scores were also
achieved by fusing state-of-the-art techniques such as bag-of-
audio-words [17] and end-to-end learning [18].

Unfortunately, our proposed approach cannot be applied to
every task: due to the presence of overfitting, it is advisable to
separate the utterances used for frame-level DNN training from
those that are utilized for utterance-level classification. In the
ComParE 2017 Challenge, two tasks (the Addressee and the
Cold Sub-Challenges) were sufficiently large to allow such a
split of the training set. For the Snoring Sub-Challenge, how-
ever, we propose a special feature extraction scheme which does
not incorporate frame-level machine learning.
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Figure 1: The workflow of the proposed paralinguistic processing scheme.

2. DNN-based Feature Extraction Scheme
Next, we describe the proposed feature extraction and classifi-
cation approach. (For the general scheme of the proposed work-
flow, see Fig. 1.) For the first step, we train a Deep Neural Net-
work at the frame level. Then, for the second step, we extract
a number of (utterance-level) features from the DNN outputs,
which are used to train a Support-Vector Machine to predict
the actual paralinguistic phenomenon. Lastly, we combine the
predictions with those obtained using standard utterance-level
features.

2.1. Frame-level Classification

For the first step of our proposed workflow we train a Deep Neu-
ral Network with standard frame-level features (e.g. MFCC,
PLPand FBANK [19]) as input, while the output neurons cor-
respond to the actual, utterance-level class label for each frame.
Of course, we cannot expect that the frames will be classified
very accurately: in most paralinguistic tasks, the actual phe-
nomenon we are looking for (e.g. breath intakes for physical
load, cough events for having a cold, and hesitation in dementia)
is not present in every part of the utterance. Still, since DNNs
have proven to be quite robust, we may confidently expect them
to find some locations within the utterance that are specific to
the given class, and this will be reflected in the frame-level DNN
outputs.

2.2. Thresholding-Based Utterance-Level Feature Extrac-
tion and Classification

For the next step we create features from the frame-level DNN
outputs, and these features will be used for utterance-level clas-
sification. The most straightforward solution is to classify each
frame based on the DNN likelihood scores, and count the ra-
tio of frames classified as each possible class, or to aggregate
the frame-level likelihoods via arithmetic or geometrical mean.
However, the posterior estimates provided by a DNN contain
valuable information, and this information should not be dis-
carded. Due to this, we propose using several different thresh-
old values. That is, using the step size parameter s, first we
count the number of frames where the DNN output correspond-
ing to the first class is greater than or equal to s, we divide it
by the total number of frames in the utterance, and then use
this value as the first newly extracted feature. Next, we repeat
this step using the values 2 · s, 3 · s, . . . , 1 as thresholds and
using all the classes. Doing this for all the utterances, we ex-
tract a new feature set for all the utterances, which can be used
for performing classification for the third step by some machine
learning method such as DNNs or SVMs.

2.3. Classifier Output Combination

Although using the frame-level DNN outputs may prove to be
beneficial for classification, we should not discard all other
kinds of features: optimality is probably achieved via a com-
bination of the two approaches. One possible way of com-
bining them is to merge the feature vectors of each utterance,
and train one classifier model. However, often it is more ben-
eficial training separate machine learning models for different
types of features, as these may require different meta-parameter
settings for optimal performance. Therefore we suggest train-
ing one machine learning method using the standard utterance-
level features like that proposed in the ComParE baseline stud-
ies [11, 12, 7], and train a separate one using the features ex-
tracted as described in Section 2.2. To combine the outputs of
the two models, we suggest taking the weighted mean of the
(utterance-level) posterior scores of the two models, which is a
simple-yet-robust technique (see e.g. [20]).

3. Experiments (Addressee and Cold)
3.1. DNN Parameters

At the frame level we trained a Deep Neural Network with 3
hidden layers, each containing 256 rectified neurons [21], while
we applied the softmax function in the output layer. DNN
training was done with our custom implementation for Nvidia
GPUs, which achieved good accuracy scores on several tasks
and datasets (e.g. [22, 23]). We used the standard 39-sized
MFCC + Δ + ΔΔ feature set;training was done with a 15-
frames wide sliding window. Note that we did not fine-tune the
DNN training meta-parameters, since we were interested only
in the trend of the frame-level DNN outputs. To avoid over-
fitting in the subsequent classification process, we just used a
subset of the training set for training these DNNs: 1000 ran-
domly selected recordings were used for the Addressee Sub-
Challenge, while we used 2000 recordings for the Cold Sub-
Challenge. Of course, it would have been best to split the
training set based on speakers, but speaker information was not
available for either corpora.

3.2. Feature Extraction and Classification

For the next feature extraction step, we used a step size of 0.02
to threshold the DNN outputs, resulting in 50 features for each
class; since for both the Addressee and the Cold Sub-Challenge
there were only two classes, it was enough if we performed the
feature extraction step for one class only. After standardization
(i.e. transforming the feature vectors so as to have a zero mean
and unit variance), we trained a Support-Vector Machine, using
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Table 1: The results obtained on the Addressee Sub-Challenge

Approach Dev. Test
ComParE feature set 59.1% —
Thresholded feature set 56.0% —
Frame-level DNN outputs (mean) 53.8% —
Frame-level DNN outputs (product) 53.8% —
Frame-level DNN outputs (majority) 53.2% —
ComParE feature set (downsampled) 61.7% —
Thresholded feature set (downsampled) 58.8% —
ComParE + DNN-based (combined) 62.0% 67.7%

ComParE baseline 66.4% 70.2%

the LibSVM [24] library. We used the nu-SVM method with a
linear kernel; the value ofC was tested in the range 10{−5,...,1},
just like that in our previous paralinguistic studies (e.g. [20, 25,
26]).

Note that there was inevitably some overfitting present in
the frame-level DNN training process; this way, the DNN-based
thresholding feature extraction step returned biased feature val-
ues for the utterances which were used for DNN training.
Therefore we excluded these utterances from the utterance-level
classification step, leaving 2742 and 7505 utterances for train-
ing, the Addressee Sub-Challenge and Cold Sub-Challenge, re-
spectively. We chose the C value which gave the highest accu-
racy score on the development set; then we trained SVMmodels
using the examples of both the training and development sets,
and this model was used for making predictions for the test set.

As a reference, we also tried combining the DNN outputs
in various ways: we took their mean for each class within the
given utterance, we combined them by multiplication (which is
the standard way of frame-level posterior aggregation), and we
experimented with choosing the most probable class for each
frame and then using simple majority voting of the frame-level
class label hypotheses.

We also tested a combination of the results got by the pro-
posed feature extraction scheme and those got with the standard,
6373-long feature set. For each example, we took the weighted
mean of the posterior scores got by the two approaches; then
the optimal weights were determined on the development set.

3.3. Instance Sampling

Another special aspect of these datasets was that the distribu-
tion of the two classes was quite imbalanced, which might re-
duce the performance of the classifier method used. Follow-
ing our previous experiments (e.g. [26]), we decided to opt for
downsampling: for SVM model training, we used all the train-
ing examples of the rarer classes (i.e. “Adult-Directed Speech”
for the Addressee Sub-Challenge and “Cold” for the Cold Sub-
Challenge), and discarded examples from the more frequent
classes to exactly balance the training data. Since this sam-
pling scheme introduced a further random factor to the training
process, while also reducing the variability of the training sam-
ples, we repeated this process 100 times, and averaged out the
resulting posterior scores of all the models.

3.4. Results

Tables 1 and 2 show the results obtained in the Addressee and
in the Cold Sub-Challenges, respectively. The results for the
two datasets have a lot in common: firstly, it is clear that only
using the frame-level DNN outputs and combining them by av-

Table 2: The results obtained on the Cold Sub-Challenge

Approach Dev. Test
ComParE feature set 58.3% —
Thresholded feature set 61.1% —
Frame-level DNN outputs (mean) 52.9% —
Frame-level DNN outputs (product) 52.6% —
Frame-level DNN outputs (majority) 53.1% —
ComParE feature set (downsampled) 64.0% —
Thresholded feature set (downsampled) 65.0% —
ComParE + DNN-based (combined) 65.8% 72.0%

ComParE baseline 65.2% 71.0%

eraging out the posteriors or taking their product yielded far
worse results than what could be obtained by using the baseline,
6373-long (“ComParE”) feature set. Since both tasks are binary
classification ones, the UAR scores in the range 52.6 − 53.8%

reflect a pretty low performance (slightly above chance level).
However, when we extracted the new utterance-level feature set
from the frame-level DNN outputs, the resulting UAR values
were much better; in the case of the Cold Sub-Challenge, we
could even outperform the one got by the ComParE feature set.

The performance of the two SVM-based methods were fur-
ther increased by downsampling, which is easy to understand
for the Cold Sub-Challenge, where only 10% of the examples
belonged to the “Cold” class; but even in the Addressee Sub-
Challenge, training several models using equal class distribu-
tion and averaging out their posterior values brought a 2.5%

improvement. Combining the two models trained on the two
feature sets brought a further increase in the UAR values; in the
case of the Cold Sub-Challenge, we managed to increase the
scores on the test set as well, achieving 72.0%with out first sub-
mission. We would like to emphasize that the baseline 71.0%
score is already a fusion of three approaches: besides using the
model trained on the standard ComParE feature set, the predic-
tions got via end-to-end learning and bag-of-audio-words rep-
resentation were also fused into a final prediction vector. Our
approach, however, performed significantly better.

The results are more difficult to interpret in the case of the
Addressee Sub-Challenge. It is more interesting since the two
tasks were quite similar: both were binary classification ones
with a slightly (Addressee) or heavily (Cold) unbalanced class
distribution, and having plenty of training examples available.
In our opinion, this low performance reveals one of the weak
points of our approach: the overfitting of frame-level DNNs.

Recall that, after training the frame-level DNNs, we eval-
uate them for all instances, extract a new feature set from the
DNN outputs, and train a new classifier model for utterance
classification. Since DNNs are prone to overfitting, the utter-
ances used for DNN training cannot be used while training the
second model, as the DNN outputs for their frames are biased
towards the correct class. To avoid this, we used only 1000 and
2000 utterances for DNN training, the Addressee and Cold Sub-
Challenges, respectively, which were then excluded during the
training of the utterance-level classifiers.

DNNs, however, can overfit to other phenomena as well,
such as speakers; that is, they tend to perform better for speak-
ers present in the training set, even if the given utterance of the
speaker was not used during training. The audio files used in
the Addressee Sub-Challenge were from only 61 homes, and
although each speaker occurred only in the training, develop-
ment or test set, we could not split the training set further into
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Table 3: The results obtained with DNNs

Sub-Challenge Approach Dev. Test

Addressee
DNN + prob. sampl. 61.3% 68.1%

ComParE (6373) 61.8% 67.6%

ComParE baseline 66.4% 70.2%

Cold
DNN + prob. sampl. 68.1% 64.3%

ComParE (6373) 64.0% 70.2%

ComParE baseline 65.2% 71.0%

speaker-independent subsets, since speaker information was not
provided. This overfitting can be observed in the DNN out-
puts: combining the frame-level posteriors for utterance clas-
sification yielded UAR scores of 68.6 − 69.6% for the 2742
utterances of the training set (i.e. utterances not used for DNN
training), while for the development set these values fell in the
range 53.2 − 53.8%. DNN overfitting was not a problem for
the Cold Sub-Challenge, though, due to the large numbers of
speakers (630) being present there.

3.5. Experiments with Deep Neural Networks

For these two Sub-Challenges, we also experimented with the
use of Deep Neural Networks. We followed the approach of
DNN training that proved to be quite successful in the past
ComParE Challenges [26, 27]; namely, we trained 10 neural
networks for each task, having three hidden layers and each hid-
den layer consisting of 1000 rectified neurons. We utilized the
standard 6373-sized feature set provided by the organizers, and
to balance class distribution, we applied the probabilistic sam-
pling technique [28, 29] during training with λ = 1. Examin-
ing the results (see Table 3) we can see that this approach yields
results similar to those of SVM with this feature set (case Com-
ParE (6373)), but lags behind the official Challenge baseline,
which combines different paralinguistic techniques.

4. Experiments (Snoring)
The Addressee and Cold Sub-Challenges differed from the typ-
ical paralinguistic tasks in that there was a huge amount of
utterances available, allowing large training, development and
test sets. In the Snoring Sub-Challenge, however, we had 828
recordings overall, which along with the small average duration
of the recordings made training a frame-level DNN unfeasible.

In our contribution to this sub-challenge, we implemented
another idea. Since each recording contained only one snore
event, we assumed that snore events of the same type (i.e. be-
longing to the same class) display similar patterns over time. To
exploit this, for the first step we calculated frame-level features
for all the utterances. We chose the feature set proposed by
Schuller et al. [30] in the Vocalization Sub-Challenge of Com-
ParE 2013, because we found it a quite exhaustive and robust
one in our previous studies (e.g. [31, 32]). It consisted of the
frame-wise 39-longMFCC+Δ+ΔΔ feature vector along with
voicing probability, HNR, F0 and zero-crossing rate, and their
derivatives. To these 47 features their mean and standard deriva-
tive in a 9-frame long neighbourhood were added, resulting in a
total of 141 features. We extracted this feature set with the tool
OpenSMILE [33].

For the second step we divided each utterance into 10
equal-sized parts, and simply averaged out each feature in each
window; by extending this utterance-level feature set with the
length (number of frames) of the utterance, we ended up with

Table 4: The results obtained on the Snoring Sub-Challenge

Approach Dev. Test
ComParE feature set 41.4% —
Frame-based feature set 48.3% —
ComParE + Frame-based (combined) 49.3% 64.0%

ComParE baseline 40.6% 58.5%

1411 attributes overall. Using this feature set, we trained an
SVM model, which could be used for making predictions both
on the development set and on the test set. Note that, although
there was a huge class imbalance in this task as well, we consid-
ered downsampling pretty useless, considering the low number
of training examples belonging to the Tongue class.

Like for the other two sub-challenges, next we trained
an SVM model on the standard, 6373-long feature set; the
combination of the two predictions was again done by taking
the weighted mean of their posteriors, for which the optimal
weights were determined on the development set.

4.1. Results

Table 4 shows the results obtained on the Snoring Sub-
Challenge. It is clear that the UAR values achieved on both
sets are much better than the baseline ones. As usual, the im-
provement is higher on the development set, on which we tuned
our meta-parameters (e.g. number of segments or complexity
of SVM), but our results are higher on the test set as well: our
score of 64.0% is much higher than the baseline value of 58.5%,
meaning a 13% improvement.

5. Conclusions
In the area of computational paralinguistics, besides following
the standard approach of extracting a huge variety of standard
utterance-level features, usually other task-specific steps are re-
quired to achieve state-of-the-art performance. In this study
we proposed a two-step feature extraction scheme, where first
we perform frame-level classification by DNNs. Then, for the
second step we extract several utterance-level features from the
frame-level DNN outputs, used for (utterance-level) classifica-
tion. By following this approach in the Cold Sub-Challenge of
the Interspeech Computational Paralinguistic Challenge 2017,
we achieved a significant improvement over the baseline value
on the test set. However, in the technically quite similar Ad-
dressee Sub-Challenge we were unable to even match the base-
line score on the test set, which is, in our opinion, due to the
low number of speakers being present in the training set, and
the tendency of overfitting of frame-level DNNs. In the last
sub-challenge (Snoring), due to the low number of recordings,
we could not apply this approach. We extracted a number of
frame-level features instead, which we averaged out in specific
segments of each snore recording. By training a separate SVM
model on this newly extracted feature set and combining its pre-
dictions with the SVM model trained in the standard way, we
got 13% in terms of relative error reduction on the test set.
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