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Abstract

In the area of computational paralinguistics, there is a grow-

ing need for general techniques that can be applied in a variety

of tasks, and which can be easily realized using standard and

publicly available tools. In our contribution to the 2018 Inter-

speech Computational Paralinguistic Challenge (ComParE), we

test four general ways of extracting features. Besides the stan-

dard ComParE feature set consisting of 6373 diverse attributes,

we experiment with two variations of Bag-of-Audio-Words rep-

resentations, and define a simple feature set inspired by Gaus-

sian Mixture Models. Our results indicate that the UAR scores

obtained via the different approaches vary among the tasks. In

our view, this is mainly because most feature sets tested were

local by nature, and they could not properly represent the ut-

terances of the Atypical Affect and Self-Assessed Affect Sub-

Challenges. On the Crying Sub-Challenge, however, a simple

combination of all four feature sets proved to be effective.

Index Terms: computational paralinguistics, ComParE 2018,

classification, posterior estimates, posterior calibration

1. Introduction

Computational paralinguistics consists of a great variety of

tasks, including emotion detection [1, 2], determining the

amount of cognitive load [3], whether the speaker has some

kind of physical (e.g. cold [4, 5]) or mental illness (e.g. depres-

sion [6], Parkinson’s disease [7] or Alzheimer’s disease [8]).

Availability and standardization of datasets is facilitated by

the Interspeech Computational Paralinguistic Challenge (Com-

ParE), held annually at the Interspeech conference.

Although state-of-the-art paralinguistic performance is usu-

ally achieved by incorporating task-specific features or tech-

niques (such as determining the duration when several peo-

ple are speaking at the same time for conflict intensity estima-

tion [9, 10])), there is a growing need for general approaches

which perform well for several different computational par-

alinguistic tasks. This need can be seen even in the base-

lines of the ComParE Challenges: in 2017 and 2018 (see [11]

and [12]), baseline systems did not exclusively rely on the tra-

ditional, 6373-sized feature set like the Challenges of the pre-

ceding years, but incorporated BoAW extraction [13], end-to-

end learning, and from this year, sequence-to-sequence autoen-

coders as well.

Due to this, in our contribution to the 2018 ComParE

Challenge [12], we experiment with different feature sets de-

signed with general paralinguistic applicability in mind. One

is the classic, 6373-sized paralinguistic feature set developed

by Schuller et al. [14]. The second and third feature sets rely

on the Bag-of-Audio-Words (BoAW) technique [15]; one uses

MFCCs as input for BoAW creation, while the other employs

posterior probability estimates supplied by a DNN. The fourth

feature set is calculated simply from standard frame-level fea-

tures in a statistical way.

This year’s ComParE Challenge [12] consists of four Sub-

Challenges: in the Crying Sub-Challenge the task is to identify

fussing, crying and neutral vocalizations of infants between 4

and 20 weeks old [16]. In the Atypical Affect Sub-Challenge,

the speech of mentally, neurologically, and/or psychically dis-

abled speakers has to be categorized [17]. In the Self-Assessed

Affect Sub-Challenge, the speakers’ subjective valence cate-

gory has to be determined. Lastly, in the Heart Beats Sub-

Challenge, 30 second-long “utterances” of heart beat sounds

have to be assigned into pre-defined categories (i.e. severity

of heart disease).

Following the Challenge guidelines (see [12]), we will omit

the description of the tasks, datasets and the method of eval-

uation, and focus on the techniques we applied. We treat all

four Sub-Challenges in the same way, except in one aspect,

which differs in the baseline set-up as well: in the Crying Sub-

Challenge we determine all meta-parameters via speaker-wise

cross-validation, whereas in the Atypical Affect, Self-Assessed

Affect and Heartbeat Sub-Challenges we use the separate de-

velopment set provided.

2. The Classification Process

In this study, we focus on extracting different feature sets from

the paralinguistic utterances. To this end, we decided to keep

the other parts of the classification process fixed: we will use

only Support-Vector Machine (SVM) classifiers and employ the

libSVM library [18]. We use the nu-SVM method with a linear

kernel; the value of C is optimized in the range 10{−5,...,2}, just

like in our previous paralinguistic studies (e.g. [5, 19, 20]).

2.1. Instance Sampling

Examining the datasets (see [12]), we can see that three of

the four tasks have significantly imbalanced class distribu-

tions. Since most classification methods inherently maxi-

mize example-wise accuracy, this degrades classification per-

formance when measured via the Unweighted Average Recall

(UAR) metric for highly imbalanced tasks. We decided to han-

dle this issue by instance sampling. That is, for each task and

feature set, we experimented with training one SVM model for

all the instances (full sampling); we discarded training examples

from the more frequent classes during training (downsampling);

and we used the training instances of the rarer classes more fre-

quently (upsampling) to balance class distribution. Since the

down- and upsampling approaches introduce a further random

factor into the training process, we decided to train several mod-

els and average out the resulting, instance-wise posterior values.



When downsampling, model training was repeated 100 times,

while we trained 5 models for the upsampling approach; the

difference comes from the fact that downsampling is a sampling

technique which is more affected by randomness than upsam-

pling. The only exception to this was the Crying Sub-Challenge

where, due to the fact that we had to perform speaker-wise

cross-validation, we reduced the number of models trained to

25 when downsampling and to 3 when upsampling.

2.2. Classifier Combination

Since we tested four essentially different feature sets, we had to

find a way to make use of all of them to make a common pre-

diction vector. To do this, one straightforward option is to ap-

ply early fusion, where we concatenate the feature vectors, and

train one, “combined” classifier model. We, however, decided

to utilize the late fusion approach, and trained separate classi-

fier models for each feature sets and fused the predictions for

each test instance. We chose this method because we found in

our previous paralinguistic studies that different types of feature

sets tend to require different meta-parameters (e.g. C of SVM)

for optimal performance. We fused the classifier outputs by tak-

ing the weighted means of the instance-wise posterior estimates,

because we found that this is a simple, yet robust procedure (see

e.g. [5, 19]).

3. General Paralinguistic Feature Sets

The aim of the current study is to look for novel feature sets

which have general usability in paralinguistic classification.

To this end, we tested four different feature representations,

the first being the standard, 6373-sized paralinguistic feature

set [14], referred to as the ComParE feature set. The second

and third feature sets we will test rely on the Bag-of-Audio-

Words representation [15, 21, 22], while the fourth one is a sim-

ple low-level feature set inspired by the normal distribution.

3.1. BoAW Representation

BoAW representation seeks to extract a fixed-length feature

vector from a varying-length utterance [15]. Its input is a set

of frame-level feature vectors such as MFCCs. In the first step,

clustering is performed on these vectors, the number of clusters

being a parameter of the method. The list of the resulting clus-

ter centroids will form the codebook. Next, each original fea-

ture vector is replaced by a single index representing the nearest

entry in the codebook (vector quantization). Then the feature

vector for the given utterance is calculated by generating a his-

togram of these indices. To eliminate the influence of utterance

length, it is common to use some kind of normalization such as

L1 normalization (i.e. divide each cluster count by the number

of frames in the given utterance).

To calculate the BoAW representations, we utilized the

OpenXBOW package [13]. We tested codebook sizes of 32,

64, 128, 256, 512, 1024, 2048, 4096, 8192 and 16384. We used

random sampling instead of kmeans++ clustering for codebook

generation since it was reported that it leads to a similar clas-

sification performance, while it is significantly faster [21]. We

allowed 5 parallel cluster assignments, i.e. for each frame we

chose the 5 closest cluster centers. As the second utterance-level

feature set, we used the BoAW representation of MFCCs,

i.e. we applied the frame-level 39-sized MFCC+∆+∆∆ fea-

ture vectors as the input of the BoAW codebook generation.

3.2. BoAW Representation of Frame-Level DNN Posteriors

In our previous study [5] we showed that frame-level DNN

training is indeed possible on the utterances of paralinguistic

tasks, and we proposed a method for extracting utterance-level

features from the frame-level posterior estimates produced by a

DNN. We also showed that training a second classifier method

such as an SVM on these newly extracted, utterance-level vec-

tors is a feasible approach. We found that it significantly outper-

formed other ways of aggregating the posterior estimates such

as taking their product or mean, or performing majority voting.

In our current study we decided to create a BoAW repre-

sentation of these frame-level posterior estimates. That is, for

the first step we trained a Deep Neural Network at the frame

level; we used the standard 39-sized MFCC + ∆ + ∆∆ feature

set as input, while the output neurons corresponded to the ac-

tual, utterance-level class label for each frame. Our DNN had

3 hidden layers, each containing 256 rectified neurons. We did

not expect this model to be very accurate; still, we expected

the DNNs to find class-specific locations in the utterances, and

that this would be reflected in the frame-level DNN outputs. To

improve the quality of the posterior estimates, we extended the

input feature vectors with 7-7 neighbouring frames at each side.

To avoid overfitting, we trained 250 DNN models and av-

eraged out their frame-level outputs. To separate (frame-level)

DNN training from (utterance-level) SVM training, each DNN

model was trained only on half of the training set selected ran-

domly. Then it was evaluated on the remaining half of the train-

ing set and on the whole test set. For the Sub-Challenges that

had a distinct development set, we of course evaluated each

DNN model on it as well. Since speaker information was avail-

able for the Crying Sub-Challenge, we randomly selected half

of the speakers; the utterances of these speakers formed the

DNN training set. In the case of the other three Sub-Challenges,

unfortunately, we had no such information available, so the

same speakers might have appeared in the two sub-sets of the

training set formed for a DNN training.

In the next step, we aggregated these frame-level poste-

rior estimates into utterance-level feature vectors by calculat-

ing their BoAW representation. Since the inputs were posterior

values, we decided to take the logarithm of the scores before

calculating the codebooks. Furthermore, as these frame-level

vectors were of low dimensionality (i.e. 3 or 4), we calculated

a 16-sized BoAW representation for DNN posteriors as well.

3.3. Binned Feature Set

The fourth feature set was based on the idea that many paralin-

guistic phenomena display similar patterns over time. For ex-

ample, the beginning and the end of one crying event will prob-

ably differ, while it is likely that the beginning of two crying

events of the same type are somewhat similar. To exploit this,

we divided each utterance into 10 equal-sized parts, with 30%

overlap. Then we calculated the 40 raw mel filter bank energies

(also referred to as FBANK in the literature [23]) along with

energy and their first and second order derivatives (123 values

overall) for each frame. Inspired by the approach of modeling

each feature with a normal distribution and using the parame-

ters of the Gaussian curve, we simply averaged out each feature

in each part and took their standard deviation as well. By ex-

tending this feature set with the length of the utterance and with

the mean and standard deviation of all FBANK feature values of

the utterance, we ended up with 2707 attributes overall. Since

we calculated the statistics of the frame-level feature vectors in

specific bins, we called these features the binned feature set.



Table 1: The UAR scores obtained on the Crying Sub-Challenge

for the various feature extraction approaches

Sampling Feature Set CV Test

ComParE 78.7% —

BoAW (MFCC) 79.8% —

Downsampling BoAW (DNN) 76.9% —

Binned 78.8% —

Combination 81.9% 73.3%

ComParE 78.2% —

BoAW (MFCC) 78.2% —

Upsampling BoAW (DNN) 77.0% —

Binned 76.5% —

Combination 81.6% 74.5%

Best single baseline method (CV) 76.9% 67.7%

Best single baseline method (test) 75.6% 73.2%

Official ComParE baseline — 74.6%

4. Results

Tables 1 to 4 contain the results obtained in the various sub-

challenges via down- and upsampling. The sub-challenge base-

lines this year were determined as the optimal UAR values

obtained on the test set, where even the combination meta-

parameters (i.e. number of methods fused, way of hypothesis

combination) were determined on the test set. This is why we

felt it necessary to indicate the best single baseline method for

each sub-challenge. Of course, we did this only to provide a

point of reference for the feature extraction approaches tested,

not to criticize the official challenge baselines.

On the Crying Sub-Challenge (see Table 1), all the meth-

ods performed similarly well, leading to UAR scores between

76.9% and 79.8% in the cross-validation setup. By combining

these approaches via late fusion, we ended up achieving 81.6%

and 81.9% (CV), which led to UAR scores of 73.3% and 74.5%

on the test set, finishing just below the official baseline score of

74.6%. However, the baseline approach which performed best

in the CV setup achieved only 67.7% on the test set, and even

the highest-scoring (single) baseline method on the test set only

produced a score of 73.2%. In our opinion, this justifies our fea-

ture extraction and late fusion approaches applied. Note that,

as a last attempt, we applied posterior re-calibration [24] on the

combined probability estimates obtained via upsampling, which

resulted in a slight improvement in our UAR scores (82.3% and

75.0%, CV and test set, respectively).

The Atypical Affect and the Self-Assessed Affect Sub-

Challenges (see tables 2 and 3) are similar to each other in that

they are both emotion detection-related tasks. Not unrelated to

this fact, the UAR scores of the different approaches also show

similar trends on these two Sub-Challenges. Among the base-

line values, the two approaches which handle the audio signal

inherently in a local manner (i.e. end-to-end learning and se-

quence autoencoders) provided promising scores on the devel-

opment set, but their performance on the test set was quite low.

Considering the nature of the two tasks, it is logical that local

(e.g. frame-based) approaches did not achieve state-of-the-art

UAR values here, and that even the official baseline score barely

exceeded the value got by using the ComParE feature set.

Interestingly, for both Sub-Challenges, we can find specific

codebook size (N ) values where the baseline BoAW approach

led to UAR values which fell close to that of the ComParE ap-

proach on the test set. However, examining the trends of the

UAR values as a function of the codebook sizes (see Table 2

Table 2: The UAR scores obtained on the Atypical Affect Sub-

Challenge for the various feature extraction approaches

Sampling Feature Set Dev Test

ComParE 36.8% —

BoAW (MFCC) 39.3% —

Downsampling BoAW (DNN) 40.0% —

Binned 37.6% —

Combination 43.4% 33.8%

ComParE 36.4% —

BoAW (MFCC) 35.5% —

Upsampling BoAW (DNN) 42.5% —

Binned 34.0% —

Combination 42.8% 32.3%

Best single baseline method (dev) 41.8% 28.0%

Best single baseline method (test) 37.8% 43.1%

Official ComParE baseline — 43.4%

Table 3: The UAR scores obtained on the Self-Assessed Affect

Sub-Challenge for the various feature extraction approaches

Sampling Feature Set Dev Test

ComParE 56.6% —

BoAW (MFCC) 57.2% —

Downsampling BoAW (DNN) 49.6% —

Binned 57.4% —

Combination 63.3% 57.1%

ComParE 58.1% —

BoAW (MFCC) 50.8% —

Upsampling BoAW (DNN) 50.6% —

Binned 59.7% —

Combination 60.7% 57.6%

Best single baseline method (dev / test) 56.5% 65.2%

Official ComParE baseline — 66.0%

in [12]), the peak on the test set is accompanied by a quite low

UAR score on the development set. Therefore we consider the

occasional high UAR scores on the test set got via the baseline

BoAW approaches to be just the appearance of random noise.

It looks like, despite the global aggregation step, the BoAW ap-

proach still counts as local due to its frame-level basics.

Among our tested feature sets, there were two variations of

the BoAW approach, inherently working in a local manner, and

our binned feature set also focuses on local, raw information in-

stead of higher-level (e.g. prosodic) speech properties. We think

this might be the reason why, although they had a promising

performance on the development set and could be combined ef-

ficiently as well, we got low UAR values on the test set for these

two sub-challenges. Apparently, not only are they below the of-

ficial challenge baselines, but they do not even reach the (base-

line) scores obtained via simply using the ComParE feature set

(although, as we already pointed out, there is only a slight dif-

ference between the two). If our reasoning is correct, then we

cannot even hope to get significantly higher UAR scores on the

test set than those achieved via the 6373-sized ComParE fea-

tures, when we only utilize these four attribute sets. (Interest-

ingly, re-calibrating the posteriors obtained via using the Com-

ParE feature set with downsampling, we managed to achieve

UAR values of 43.1% and 39.4% on the Atypical Affect Sub-

Challenge, development and test sets, respectively.)

As regards the Heart Beats Sub-Challenge (see Table 4),

the different heart diseases are naturally determined by inves-



Table 4: The UAR scores obtained on the Heart Beats Sub-

Challenge for the various feature extraction approaches

Sampling Feature Set CV Test

Downsampling

ComParE 51.8% —

BoAW (MFCC) 43.9% —

Binned 49.0% —

Combination 53.2% 49.3%

Upsampling

ComParE 49.3% —

BoAW (MFCC) 47.6% —

Binned 44.8% —

Combination 54.4% 48.6%

Best single baseline method (dev) 50.3% 46.4%

Best single baseline method (test) 42.6% 52.3%

Official ComParE baseline — 56.2%

tigating two or more (successive) heart beats. This is why, in

our opinion, inherently local approaches are unable to perform

well on this task. Among the baseline methods [12], we can see

again that the ComParE approach performed robustly, while for

the other methods the high UAR scores on the test set are usu-

ally accompanied by low ones on the development set.

Surprisingly, we were unable to test our DNN-based BoAW

approach on this task, as the frame-level DNN diverged during

training. This, in our opinion, was because the 15-frame wide

sliding windows used for DNN training contained information

from only one heart beat, which was insufficient to gather any

task-related information. Our submissions, however, consist-

ing of the combination of the remaining three methods, led to

48.6% and 49.3% on the test set, exceeding the performance of

the baseline ComParE method (46.4%).

4.1. Late Fusion Weights

Fig. 1 contains the weights of the four tested feature extractor

methods determined in the CV setup or on the development set.

On the Crying Sub-Challenge, we can see similar weights for

the up- and downsampling case, which, in our opinion, indicates

the robustness of our feature extraction and classifier combina-

tion process on this particular dataset. Besides having speaker

information available for this dataset (which allowed a speaker-

independent split of the training set for “DNN Training” and

“DNN Evaluation” sub-sets, allowing robust frame-level poste-

rior estimates), the other reason for our successful entry in this

sub-challenge might be that in this sub-challenge inherently lo-

cal approaches can be efficiently utilized.

For the Atypical Affect and the Self-Assessed Affect Sub-

Challenges we can see that the up- and downsampling cases had

diverse weights. In our opinion this also reflects the inability of

local methods to capture the significant differences among the

different emotion classes. Furthermore, the noise introduced by

the BoAW codebook construction process might made several

configurations look promising on the development set, while

their good performance was just due to random noise. In the

Heart Beats Sub-Challenge, we can see that the ComParE fea-

ture set dominated in both cases, the other two approaches hav-

ing at most moderate weights for both sampling cases.

Overall, in our opinion, our tests demonstrated that there is

no Holy Grail of paralinguistic feature sets. When the task is to

categorize well-defined, relatively short acoustic events such as

in the Crying Sub-Challenge (or in the Snoring Sub-Challenge

in 2017 [11]), we can utilize feature sets that are local by na-

ture, such as the BoAW variations or our binned feature set.

0 0.2 0.4 0.6 0.8 1

Crying (d.s.)

Crying (u.s.)
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Heart Beats (u.s.)
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(6373)
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(FBANK)

Figure 1: Relative weights of the various feature extractors de-

termined in cross-validation or on the development set. “d.s.”

refers to downsampling, while “u.s.” to upsampling.

If, however, the task is inherently linked with long-term infor-

mation (e.g. various prosodic attributes for the different types

of emotion-related tasks), such local approaches turn out to be

of less use than the standard, 6373-sized ComParE feature set.

For such tasks, we could expect a better performance from fea-

ture sets which capture relations of distant parts of the utterance

instead, but these in turn are probably only slightly useful for

the categorization of, for instance, crying events. A further op-

tion is, of course, to develop task-specific attributes such as the

amount of time when multiple people are speaking at the same

time for conflict intensity estimation [9, 10, 20] or the dura-

tion of pause before the subject’s speech for detecting decep-

tion [25]; these features, however, clearly have the drawback of

not being general at all.

5. Conclusions

In our contribution to the Interspeech 2018 Computational Par-

alinguistic Challenge (ComParE), we investigated general, task-

independent feature sets and feature extraction methods. Be-

sides the standard attribute set, we used two variations of Bag-

of-Audio-Words representation, and a statistical feature set in-

spired by Gaussian Mixture Models. Inspecting the UAR scores

achieved by using both the baseline approaches and the feature

extraction schemes proposed by us, we concluded that most

feature sets applied, being inherently based on local informa-

tion sources, are not really useful for specific tasks like vari-

ous forms of emotion detection. For other tasks, however, the

combination of all the tested feature sets might lead to an im-

provement in the UAR scores. Specifically, on the Crying Sub-

Challenge we achieved a score of 74.5% on the test set, which is

a 9% relative improvement compared to the standard ComParE

feature set, and practically matches official Challenge baseline.
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E. Nöth, “Analysis of speech from people with Parkinson’s dis-
ease through nonlinear dynamics,” in Proceedings of NoLISP,
2013, pp. 112–119.

[8] I. Hoffmann, D. Németh, C. Dye, M. Pákáski, T. Irinyi, and
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[25] C. Montacié and M.-J. Caraty, “Prosodic cues and answer type
detection for the deception sub-challenge,” in Proceedings of In-

terspeech, San Francisco, CA, USA, 2016, pp. 2016–2020.


