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Abstract
In this paper we present our initial results in articulatory-to-
acoustic conversion based on tongue movement recordings us-
ing Deep Neural Networks (DNNs). Despite the fact that deep
learning has revolutionized several fields, so far only a few re-
searchers have applied DNNs for this task. Here, we compare
various possible feature representation approaches combined
with DNN-based regression. As the input, we recorded syn-
chronized 2D ultrasound images and speech signals. The task
of the DNN was to estimate Mel-Generalized Cepstrum-based
Line Spectral Pair (MGC-LSP) coefficients, which then served
as input to a standard pulse-noise vocoder for speech synthesis.
As the raw ultrasound images have a relatively high resolution,
we experimented with various feature selection and transforma-
tion approaches to reduce the size of the feature vectors. The
synthetic speech signals resulting from the various DNN con-
figurations were evaluated both using objective measures and a
subjective listening test. We found that the representation that
used several neighboring image frames in combination with a
feature selection method was preferred both by the subjects tak-
ing part in the listening experiments, and in terms of the Nor-
malized Mean Squared Error. Our results may be useful for
creating Silent Speech Interface applications in the future.
Index Terms: articulatory, ultrasound, speech synthesis, deep
neural networks, audiovisual speech processing

1. Introduction
During the past few years, there has been a significant interest
in articulatory-to-acoustic conversion, which is often referred
to as “Silent Speech Interfaces” (SSI) [1]. This has the main
idea of recording the soundless articulatory movement, and au-
tomatically generating speech from the movement information,
without the subject actually producing any sound. Such an SSI
system can be highly useful for the speaking impaired (e.g. af-
ter laryngectomy), and for scenarios where regular speech is not
feasible but information should be transmitted from the speaker
(e.g. extremely noisy environments; military applications). For
this automatic conversion task, typically electromagnetic ar-
ticulography (EMA) [2, 3, 4], ultrasound [5, 6, 7, 8, 9, 10],
permanent magnetic articulography [11], or multimodal ap-
proaches [12] are used. One of the first systems sought to find
the relation between tongue movement recorded using ultra-
sound and spectral parameters of speech using a simple neu-
ral network [5], but the first results were not convincing, be-
cause the neural network was not able to handle this complex
task. Later SSI systems applied the ‘recognition-and-synthesis’

approach; that is, they performed phone recognition based on
articulatory movement, which was followed by text-to-speech
synthesis [4, 6]. The drawback of this scenario might be that
the error of the submodules adds up, which distorts the final
speech generation output. Therefore, state-of-the-art SSI sys-
tems use the ‘direct synthesis’ principle, where the speech sig-
nal is generated without an intermediate step, directly from the
articulatory data [2, 3, 7, 8, 9, 10, 11].

Recently, deep neural networks have produced accuracy
scores better than or equal to human performance in several dif-
ferent visual recognition tasks, such as object detection [13],
image classification [14] and edge (contour) detection [15], and
also in automatic speech recognition (ASR). In the area of Silent
Speech Interfaces, not many solutions have investigated deep
learning. Diener and his colleagues used surface electromyo-
graphic (EMG) speech synthesis in combination with a deep
neural network [16]. EMG channels captured from the face
were fed into a five-layer feed-forward neural network with
a bottleneck layer topology, resulting in a feature-extraction-
followed-by-mapping structure. The target of the DNN regres-
sion was a 25 dimension Mel Frequency Cepstral Coefficient
vector of the speech signal. A standard Mel Log Spectrum
Approximation (MLSA) vocoder was used for the synthesis of
speech. In their experiments, a slight improvement was found
compared to the Gaussian Mixture Model (GMM) based map-
ping technique. Jaumard-Hakoun et al. focused on the case
of singing and were able to synthesize sung vowels based on
ultrasound and video of the lips [10]. First, they applied a mul-
timodal Deep AutoEncoder to extract features from the tongue
and lips images. After this, multilayer perceptron (MLP) net-
works were used to predict spectral features represented by Line
Spectral Frequency (LSF) parameters, with a separate MLP be-
ing trained for each of the 12 LSF features. As the last step, a
vocal tract model was built and articulatory-based singing voice
synthesis was developed. Although the results of these studies
are encouraging, further research is necessary to develop high-
quality and real-time SSI systems.

According to our literature survey, there is a lack of tailored
deep learning methods for SSI regarding both the selection of
the optimal feature set from ultrasound-based articulatory data
and the speech generation step. Therefore the current paper
focuses on these two areas. We show that with simple fully-
connected deep neural networks are able to predict spectral fea-
tures from raw ultrasound data. Furthermore, we also demon-
strate that the quality of synthesized speech can be improved by
feature selection and other feature engineering methods.
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2. Methods
2.1. Data acquisition

One Hungarian female subject (42 years old) with normal
speaking abilities was recorded while reading sentences aloud.
The tongue movement was also recorded in midsagittal orienta-
tion using a “Micro” ultrasound system (Articulate Instruments
Ltd.) with a 2-4 MHz / 64 element 20mm radius convex ultra-
sound transducer at 82 fps. During the recordings, the trans-
ducer was fixed using an ultrasound stabilization headset (Ar-
ticulate Instruments Ltd.). The video of the lips was recorded
at 59.94 fps (interlaced) from front with an NTSC microcam-
era that was attached to the helmet – but the lip video was not
used in the current study. The speech signal was recorded with
an Audio-Technica - ATR 3350 omnidirectional condenser mi-
crophone that was clipped approximately 20cm from the lips.
Both the microphone signal and the ultrasound synchronization
signals were digitized using an M-Audio – MTRACK PLUS
external sound card at 22050 Hz sampling frequency. The ultra-
sound and the audio signals were synchronized using the frame
synchronization output of the equipment with the Articulate As-
sistant Advanced software (Articulate Instruments Ltd.).

2.2. Preprocessing the speech signal

For the analysis and synthesis of speech, a standard vocoder was
used from SPTK (http://sp-tk.sourceforge.net).
First, the speech signal was lowpass filtered and resampled to
11 050 Hz. F0 was measured with the SWIPE algorithm [17].
Next, 12-order Mel-Generalized Cepstral analysis (MGC) [18]
was performed with α = 0.42 and γ = −1/3. MGCs were
converted to Line Spectral Pair (LSP) representation as these
have better interpolation properties. In order to make the result
of the speech analysis to be in synchrony with the ultrasound
images, the frame shift was chosen to be 1 / FPS (where FPS
is the frame rate of the ultrasound). Together with the gain, the
MGC-LSP resulted in a 13-dimension feature vector, which was
used in the training experiments.

For the synthesis phase, we assumed that the F0 parameter
can not be estimated from the articulatory images, so we used
the original F0 extracted from the input. The predictions of the
DNN served as the remaining MGC-LSP parameters required
by the synthesizer. First, impulse-noise excitation was gener-
ated according to the F0 parameter. Afterwards, spectral filter-
ing was applied using the MGC-LSP coefficients and a Mel-
Generalized Log Spectral Approximation (MGLSA) filter [19]
to reconstruct the speech signal.

2.3. Preprocessing the ultrasound signal

The original raw ultrasound images were 64×946 sized
grayscale images. To remove some of the noise from the record-
ings and also to reduce the size of the dataset, we resized each
image so as to have a new size of 64×119 using a bicubic inter-
polation. This reduction did not significantly affect the visual
content of the images, and the DNNs trained on these reduced
images achieved almost identical results.

In the simplest configuration, one ultrasound image serves
as the input of the neural network, and the corresponding target
vector is an estimate of the acoustic parameters of the speech
signal at the given time instance. However, it is well known both
in automatic speech recognition and in various image process-
ing tasks that extending the feature vector with several neigh-
bouring time frames markedly improves DNN performance.
Due to this, we extended the input vector of our DNN to contain

Figure 1: A raw ultrasound image and the mask which was used
in our correlation-based feature selection method (max., 20%).

several consecutive images. This, however, also multiplies the
number of DNN parameters, which means that both the train-
ing procedure and the synthesis will require more time, and the
risk of overfitting also increases. To avoid these problems we
decided to reduce the size of the input images further. On the
one hand, we experimented with feature selection by using a
novel, correlation-based feature selection method. On the other
hand, we also utilized the Eigentounge feature transformation
algorithm [20]. These methods significantly reduced the input
vector, and this allowed us to train the DNNs on a larger tem-
poral context, while retaining the same number of parameters.

2.4. Correlation-based feature selection

After investigating the audio and video signals, we observed
that the speech signal uttered depends only on specific parts of
the ultrasound image. This means that large parts of the im-
age are completely irrelevant and so the size of the DNN input
vector could be reduced by discarding the corresponding pixels.
Since the relevance of a pixel can roughly be captured by corre-
lation, in the first applied feature selection method we utilized
the correlation of the target scores and the pixels of the images.
For this, we calculated the absolute value of the correlation for
each pixel and each target score in the training set. Since we had
13 training targets, this process resulted in 13 correlation scores.
As we planned to train one neural network to jointly predict all
13 parameters of the vocoder, we had to select only one, com-
mon feature subset instead of selecting a subset for each param-
eter. Because of this, we had to create one overall importance
score for each pixel from the 13 correlation scores. We tested
two solutions for this score aggregation by taking the mean and
the maximum of the absolute correlation values. Then, in the
last step of feature selection, we only retained 5, 10, . . . , 25%
of the pixels with the largest importance scores. Fig. 1 shows an
input ultrasound image and the parts which were retained after
this feature selection approach.

2.5. Eigentounge feature extraction

The so-called ‘Eigentongue’ feature extraction method [20] is
almost identical to the popular Eigenface method of Turk and
Pentland [21], the only difference being the type of the input
images. The eigentongue technique seeks to find a finite set of
orthogonal images (called eigentounges), which constitute, up
to a certain accuracy, a subspace for the representation of all
likely tongue configurations. The standard way to extract the
eigentongues is to apply PCA on the training data and define
the eigenvectors obtained as the eigentounges. The eigentongue
components extracted are supposed to encode the maximum
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Figure 2: The first two extracted Eigentongues.

amount of relevant information present in the images, which
mainly consist of tongue position, but other structures such as
the hyoid bone and muscles are also present. Fig. 2 shows some
examples of the eigentounge images. To reduce the dimension
of the data it is standard practice to select a subset of the eigen-
tounges corresponding to the highest eigenvalues, and only use
these vectors to transform the data to a lower dimension.

2.6. DNN setup

We trained DNNs with 5 hidden layers, with each hidden layer
consisting of 1000 rectified neurons [22]. The input layer con-
sisted of 7 616 neurons. The output layer was a linear one, with
one neuron for each MGC-LSP feature and one for the gain. We
also trained separate DNNs for each of the output features, sim-
ilar to that in [10] to see which approach is better. The feature
space reduction methods allowed us to present five consecutive
images as input to the DNN, while the size of input layer did not
change, meaning that the number of parameters in the network
remained the same as before.

3. Discussion
Our system is quite similar to that of Jaumard-Hakoun et al. [10]
in the sense that we are using a 2D ultrasound input to predict
spectral coefficients of a vocoder, and the prediction is based on
deep neural networks. Their paper was the inspiration for using
11 050 Hz to sample the speech signal and 12-order MGC-LSP
coefficients.

We expect that the feature selection strategies presented in
sections 2.4 and 2.5 are superior compared to those that just use
raw ultrasound data. We also hypothesize that using multiple
consecutive images as input can increase the accuracy of the
regression. We tested these hypotheses in the following experi-
ments.

4. Experimental results
4.1. Objective measurements

To objectively measure the performance of the DNNs we chose
two widely used metrics, namely the Normalized Mean Square
Error (NMSE) and R2. As the training target values varied at
different scales, we had to use the normalized version of MSE,
otherwise the output having the largest range (in our case, the
gain) would have dominated the MSE error. Furthermore, as
the NMSE just measures the distance between predictions and
the expected outputs, we also used the (mean)R2 metric, which
measures how well the predictions fit the expected curves.

Table 1 lists the NMSE and (mean) R2 values got for the
different approaches tested (note that our goal is to minimize
NMSE and maximizeR2). It is clear that training a shared DNN

Table 1: NMSE and mean R2 scores on the development set

Type NMSE Mean R2

DNN (separate models) 0.409 0.597
DNN (joint model) 0.384 0.619
DNN (feature selection (max.), 20%) 0.441 0.562
DNN (feature selection (avg.), 20%) 0.442 0.561
DNN (Eigentongue, 20%) 0.432 0.577
DNN (feature sel. (max.), 5 images) 0.380 0.625
DNN (feature sel. (avg.), 5 images) 0.388 0.615
DNN (Eigentongue, 5 images) 0.402 0.608

model for all 13 parameters was beneficial, as our predictions
were more accurate this way using both metrics. When retain-
ing only 20% of the attributes, we can see an increase in the
error. The two correlation-based feature selection techniques
behave very similarly, while the Eigentongue approach proved
to be slightly better. Yet, when we utilize the preceding and
subsequent two images as well, the Eigentongue feature set be-
comes the worst of the three tested methods. Overall, we see
that using our correlation-based feature selection approach and
ranking the pixels by the maximum of their correlation values,
we can slightly outperform the baseline approach that used the
whole actual ultrasound image. Of course, our final aim is to
produce the parameters which lead to the most naturally sound-
ing speech, hence we used our objective metrics (NMSE and
R2) primarily to reduce the list of models which would be eval-
uated by subjective listening tests.

4.2. Subjective listening tests

In order to determine which proposed system is closer to natural
speech, we conducted two online MUSHRA (MUlti-Stimulus
test with Hidden Reference and Anchor) listening tests [23].
The advantage of MUSHRA is that it allows the evaluation
of multiple samples in a single trial without breaking the task
into many pairwise comparisons. Our aim was to compare the
natural sentences with the synthesized sentences with the base-
line, the proposed approaches and a benchmark system. In the
benchmark system, the natural F0 and gain parameters were
used, whereas the other 12 spectral features were constant (ex-
tracted from a /swa/ vowel). In the tests, the listeners had to
rate the naturalness of each stimulus in a randomized order rel-
ative to the reference (which was the natural sentence), from 0
(highly unnatural) to 100 (highly natural).

For the first test, 10 sentences were randomly chosen which
were not included in the training of the DNNs. We chose six
types of the DNN configurations listed in Table 1. Together
with the natural, benchmark, and vocoded samples, 90 utter-
ances were included in the test (1 speaker · 9 types · 10 sen-
tences). For the second test, 15 sentences were chosen, but only
with the following approaches: ’DNN (joint model)’ , ’DNN
(Eigentongue, 5 images)’, and ’DNN (feature selection (maxi-
mum), 5 images)’. Altogether, 90 utterances were included (1
speaker · 6 types · 15 sentences). The samples of the listening
test are available online: http://smartlab.tmit.bme.
hu/interspeech2017_ssi.

4.2.1. Results of listening test #1

The first test was performed by the authors of the paper, in or-
der to pre-select the potentially best approaches for the main
listening test. The means and standard deviations of the natu-
ralness results are shown in Table 2. The ’DNN (joint model)’
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Table 2: Naturalness scores of listening test #1

Type Mean Std.dev.
Natural 98.00 3.56
Benchmark 0.47 1.40
Vocoded 67.92 15.90
DNN (separate models) 31.80 13.86
DNN (joint model) 33.60 15.14
DNN (feature selection (max.), 20%) 29.40 11.70
DNN (Eigentongue, 20%) 29.50 12.98
DNN (feature sel. (max.), 5 images) 35.30 16.59
DNN (Eigentongue, 5 images) 33.02 13.32

outperformed the ’DNN (separate models)’, indicating that it is
more useful to train one neural network with all the data, rather
than separate neural nets for the 13 MGC-LSP spectral features.
Independent of the feature selection method (correlation-based
and EigenTongue), using several consecutive ultrasound frames
always resulted in more natural synthesized sentences. These
trends are similar to those found in the objective measurements.

According to the results, we selected 3 out of the 6 fea-
ture representation approaches for a second listening test. The
goal of the second test was to rank the three best DNN-based
approaches of listening test #1 with a larger number of subjects.

4.2.2. Results of listening test #2

Altogether 23 listeners participated in the main test (20 females,
3 males). All of them were native speakers of Hungarian, and
21 of them were university students. The subjects were between
19–32 years (mean: 21 years). The authors did not participate
in the main test. On average the whole test took 15 minutes
to complete. The MUSHRA scores of the listening test are
presented in Fig. 3 for the natural, benchmark, vocoded refer-
ence, and the three DNN models. In general, ’Natural’ sen-
tences should yield 100% in MUSHRA type tests. However,
we were using 11 050 Hz sampling frequency even for the nat-
ural sentences, meaning that the lack of high-frequency com-
ponents was audible for the listeners. The ’Benchmark’ type
ranked the lowest, as these utterances were unintelligible. The
’Vocoded’ references achieved naturalness scores of 56%, as
a standard vocoder with impulse-noise excitation was used, and
this is clearly different from natural speech. The utterance types
in which the spectral features were predicted based on ultra-
sound were ranked around 30%, indicating that they are roughly
half-way between the vocoded references and the benchmark.

The ratings of the listeners were compared by Mann-
Whitney-Wilcoxon ranksum tests as well, with a 95% confi-
dence level, indicating that the DNN-based synthetic signals
significantly differ from the natural, benchmark, and vocoded,
but do not significantly differ from each other. However, Fig. 3
shows improvements in the ’DNN (Eigentongue, 5 images)’
representation compared to ’DNN (joint model)’. Also, ’DNN
(feature selection (max.), 5 images)’ was slightly preferred over
’DNN (Eigentongue, 5 images)’. This means that using feature
selection methods in combination with consecutive ultrasound
images was helpful in synthesizing more natural sentences. Ac-
cording to the preference of the subjects of the listening test,
the ’DNN (feature selection (maximum), 5 images)’ approach
ranked the best.

The subjects of the listening test were allowed to leave tex-
tual feedback. Some of them noted that they perceived various
artefacts on the samples, e.g. low-frequency distortions, robotic
voice, and a ’smudged’ feeling. Others wrote that most of the
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Figure 3: Results of the listening test #2 concerning natural-
ness. The errorbars show the 95% confidence intervals.

samples were intelligible, especially the shorter utterances.

5. Conclusions
Here, we described our initial experiments in articulatory-to-
acoustic mapping. Raw 2D ultrasound of the tongue was used
as input to a fully-connected feed-forward rectified deep neural
network. The DNNs had to predict Mel-Generalized Cepstrum
features in Line Spectral Pair representation, which was used
to synthesize speech with a vocoder. We investigated several
types and combinations of feature representations, including 1)
a baseline approach where a joint model was used to predict
all 13 MGC-LSP features, 2) separate models for predicting the
13 spectral features (as suggested by [10]), 3) two variants of a
correlation-based feature selection, 4) Eigentongue feature se-
lection to reduce the size of ultrasound images [20], and 5) the
feature selection methods combined with using several consec-
utive ultrasound frames.

We found that our hypothesis was supported by the eval-
uations: the representation that used five neighboring image
frames in combination with a correlation-based feature selec-
tion method was preferred both in terms of the Normalized
Mean Squared Error and by the subjects taking part in the lis-
tening experiments. Although we did not test intelligibility di-
rectly, the results of the current study are encouraging, as we
were able to convert raw tongue-ultrasound data (using the orig-
inal F0 estimate) to intelligible speech using deep neural net-
works. Mapping from articulatory data to F0 is a challenge, but
there has been some research on voiced/unvoiced prediction [7].

In the future, we plan to investigate other neural network
types (e.g. AutoEncoders and convolutional neural networks).
Adding multimodal articulatory data (e.g. video of the lips) is
also expected to increase the naturalness of synthesized sam-
ples. We also intend to use more advanced vocoders which
make the synthesized speech samples sound less robotic (e.g.
[24]). Finally, we intend to record silent speech (as suggested
by [9]) and study the differences compared to regular speech,
in terms of articulatory features. Our results may prove to be
useful for creating Silent Speech Interface applications.

6. Acknowledgements
Tamás Gábor Csapó was partly supported by the VUK (AAL-
2014-1-183) and the EUREKA / DANSPLAT projects. Tamás
Grósz was supported by the ÚNKP-16-3 New National Excel-
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