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Abstract: We use algorithmic learning and statistical methods over a form fre-
quency list (compiled from the Hungarian web corpus) to investigate variation in
Hungarian verbal inflection. Our aims are twofold: (i) to give an adequate descrip-
tion of this variation, which has not been described in detail in the literature and
(ii) to explore the range and depth of lexical attractors that potentially shape this
variation. These attractors range from closely related ones, such as the shape of
the word form or the behaviour of the verb’s paradigm, to broad ones, such as the
behaviour of similar verbs or the phonotactics of related verb forms. We find that
verbal variation is predominantly determined by similarity to related verb forms
rather than by word shape or by word frequency. What is more, the effect of sim-
ilarity is better approximated using inflected forms as opposed to base forms as
points of comparison. This, in turn, supports a richmemorymodel of morphology
and the mental lexicon.

Keywords: morphophonology, language variation and change, similarity, fre-
quency, Hungarian

Morphophonological variation is generally driven by stylistic or social factors

Q1

(see e.g. Tagliamonte & Baayen 2012). Beyond these factors, such variation also
uncovers parts of linguistic structure where exponents are underdetermined –
where, in a way, multiple solutions are available for the same problem. In these
cases, one may encounter otherwise unseen attractor biases including segmental
co-occurrence preferences (see Frisch et al. 2004) or the pull of related forms
showing similar behaviour (see Krott et al. 2001). (In a dynamical system, an
attractor is a part of the state space towards which the system tends to evolve, see
e.g.Milnor 1985.) Variation effectively revealswider aspects of linguistic structure.
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English stress placement offers a simple example of such attractor biases
affecting variation. Primary stress on the noun stem is preserved as second-
ary stress when the stem is combined with a stressed suffix, such as ‘-ation’
(accrédit – accrèditátion; imágine – imàginátion). If this secondary stress would
surface adjacent to the suffixed form’s primary stress, it typically moves (consérve
– cònservátion; confírm – cònfirmátion).

For certain stems, where these patterns clash, secondary stress placement is
variable. Secondary stress either shifts from its original position, or occurs adja-
cent to primary stress (condénse – còndensátion / condènsátion). (Examples are
from Pater’s (2000) analysis of English stress placement.) While the larger picture
is more complex, here we can say that words like ‘condensation’ reveal competing
biases in the language.

In this paper, we explore variation in a class of Hungarian verbs. We identify
an underdetermined pattern of suffixation, and look at the various attractors
that come into play in variant selection. The focus is on the lexical aspects of
variation, using the underdetermined pattern to shed light on the structure of
the mental lexicon. We look at (i) specific lexical attractors that follow from a
given verb’s paradigm, (ii) broader attractors that follow from generalizations
across verbal paradigms, and (iii) even broader ones that hold over the entire
lexicon.

Instances of variation in morphophonology provide useful insight into the
organization of word-formation patterns in language (Bybee 1985) and the struc-
ture of themental lexicon (Hay & Baayen 2005; Pierrehumbert 2012). Our aims are
(i) to give an adequate description of this Hungarian verbal pattern, one that can
be generalized to similar verbal inflection patterns, and (ii) to draw inferences on
the overall structure of the mental lexicon.

We use a webcorpus to approximate the ambient language, and an instance-
based learning algorithm and hierarchical generalized linear regression to model
lexical attractors. The resultingmodel does not provide an exhaustive description
of morphophonological variation in Hungarian. It does, however, offer a heur-
istic tool to study lexical structure: it points us to attractors that are relevant to
variation and provides a measure of their relative importance.

Q2

1 Lexical representation and variation in the
community

Variation in the speech community is the sum of variable individual behaviours.
In turn, individual variation is both influenced by patterns in the ambient
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language and the structure of the individual’s mental lexicon. That is, variable
behaviour, community-level patterns, and lexical organization are all connected
to each other.

Psycholinguistic research shows that individual linguistic behaviour is
shaped by lexical organization. Word forms are primed by related forms (Grainger
et al. 1991) and the strength of the prime reflects structural relatedness (Gonner-
man et al. 2007; this effect is less clear for affixal primes, see Dominguez et al.
2010; Duñabeitia et al. 2011). Word length and lexical neighbours have also been
shown to affect word activation (see Grainger 1990; Carreiras et al. 2006).

Individual behaviour is also influenced by patterns in the speech community.
This can be seen in studies of sociolinguistic variation (Labov 2011). For example,
individual style shifting follows the established patterns of formal and informal
language use in the community. Language use in the community determines the
frequency and predictability of words in the ambient language (the linguistic
patterns that the listener encounters day to day), which are reflected in the
individual’s linguistic behaviour (Rumelhart & McClelland 1986; Bresnan et al.
2007).

Conversely, lexical organization affects patterns in the speech community.
Types of sound change are influenced by similarity between words, analogy
shapesmorphological change, and gangs of similar words aremore prone to resist
change in general (Paul 1880/1995; Wang 1969; Bybee 1995; Cuskley et al. 2014).

What follows is that lexical organization and community-level variation are
interrelated. For a given linguistic pattern, there is a trade-off between individual
biases and community-level conventions (see e.g. Christiansen & Kirby 2003; for
a trade-off based treatment of word length and word use, see Kirby et al. 2015).

Models of language recognize this relationship by assuming that certain pat-
terns of community-level use (such as word predictability) are represented in the
individual’s mental lexicon. There is an extensive literature on this topic that we
cannot cover in detail (but see e.g. Skousen 1989; Bybee 1995; Colé et al. 1997;
Baayen 2007 for some discussion). In this paper, we focus on the depth and
resolution of these representations.

Morphophonological processes are, to some degree, reflections of this lexical
organization (Hay & Baayen 2005; Rácz et al. 2015). They are probably not best
modelled using a purely lexical approach, but it is clear that they rely on lexical
organization to a large degree (Albright 2009; Hayes & Wilson 2008; Pierrehum-
bert 2016). Observed morphological patterns cannot be based on exhaustive lists
of form-meaning pairs, nor can they be described purely in terms of abstract rules.

This claim raises some interesting questions about the relationship between
patterns in the language community and the individual’s lexicon. Which aspects
of community-level variation is represented in the speaker’s lexicon?What degree
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of detail is available to the speaker as they select a variable morphophonological
exponent? In short, what are the relevant lexical attractors of variation?

One way to approach these questions is to take an example of community-
level morphophonological variation and test a range of lexical attractors as
potential predictors of this variation. If a lexical attractor is useful in explain-
ing how the pattern behaves at the community level, then it is likely available
for individuals who are ultimately responsible for community-level variation. In
a way, individual behaviour mirrors community behaviour. It has been demon-
strated that a wide array of lexical attractors are active in morphophonology (see
e.g. Dąbrowska 2008; Myers & Li 2009, for an overview, see Rácz et al. 2016).
As a consequence, morphophonology provides an ideal testing ground for the
relationship of community-level and individual-lexical variation.

In what follows, we address this relationship in two steps. We use an opera-
tionalization which relies on a corpus to model community-level use and lexical
attractors, and we investigate the relationships between them through a range of
exploratory methods that include category learning and numeric prediction. This
approach does not favour hypothesis testing, but works very well in generating
hypotheses about the structure of the mental lexicon.

Our emphasis is on the relative strength of variants in a given instance of vari-
ation, rather than the ontologically much more diffuse question of why certain
forms are stable while others show variation in the first place.

2 The problem space

2.1 The CVC/CC class of Hungarian verbs

In what follows, we use a concatenative terminology to describe the problem
space: suffixation in Hungarian verbal inflection. This terminology is adequate to
give a simple description of Hungarian verbal suffixation. (It makes no commit-
ments over either the individual’s model of Hungarian verbal inflection or the
description of Hungarian inflection in its entirety.) We loosely follow the Leipzig
Glossing rules (Bickel et al. 2008) in our examples (verb indefiniteness is not
marked).

We can describe Hungarian verbal inflection as the concatenation of suffixes
to stems, where the mechanisms of concatenation depend on the shape of the
stem and the category of the suffix. Suffixes can be analytic, quasi-analytic, or
synthetic.Analytic suffixes (C-) are always consonant-initial, regardless of the final
segment(s) of the stem. However, some suffixes show C/V alternation: synthetic
suffixes (V-) are vowel-initial after consonant-final stems, whereas quasi-analytic
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suffixes (C/V-) are consonant-initial when the stem ends in a single consonant
but vowel-initial after cluster-final stems (Rebrus 2000). For the purposes of this
description, it suffices to say that quasi-analytic suffixes are variably C- or V-initial
(C/V-).

Inflection then depends on (i) whether the stem ends in a consonant cluster
(CVC/CC) and (ii) whether the specific suffix is analytic (C-), synthetic (V-), or
quasi-analytic (C/V-).

On one hand, if a quasi-analytic suffix is attached to a CC-final stem, a
linking vowel appears between the stem and the suffix (e.g. [hord] + [n6] = [hord-

6n6], ‘carry-3SG.COND’). A CVC-final stem and a quasi-analytic suffix can combine
without a linking vowel (e.g. [a:pol] + [n6] = [a:pol-n6], ‘nurse-3SG.COND’).

On the other hand, for a class of stems, the vowel of the stem-final CVC
sequence does not appear when the stem is followed by a V-initial suffix (e.g.
[søpør] + [øk] = [søpr-øk], ‘sweep-1SG.IND’). The stem vowel is, at least in some
stems, lexically specified and the linking vowel is determined by vowel harmony.
This means that the behaviour of concatenated forms is partly phonological and
partly lexical. In sum, stem and suffix combinations vary according to the pres-
ence of a linking vowel and the variability of the final stem vowel. Our focus is on
the variable stem vowel (see below).

Table 1 provides a schematic outline of these classes using a representative
set of verbal suffixes (for an overview, see Lukács et al. 2010). The table shows a
set of representative verbs (rows) across a set of representative suffixes (columns);
suffix type (no suffix / V-initial / C-initial / C/V-initial) is indicated in the header.

From top to bottom: (1) The stable class always has a stem vowel irrespective
of the suffix. (2) The weak class loses the stem vowel when followed by a V-initial
suffix (as in the 1SG.IND) but retains it when followed by a C-initial suffix (as in
the 3SG.IMP or the 3SG.COND). (3) The variable class behaves similarly to (2) in
that the stem loses the vowel when followed by a V-initial suffix. However, for
C/V- suffixes (where both variants of the suffix are available in this stem class),

Table 1: Hungarian verb classes.

Class 3SG.IND 1SG.IND 3SG.IMP 3SG.COND Gloss
(no suf.) (V-suf.) (C-suf.) (C/V-suf.)

1 Stable a:pol a:polok a:poljon a:poln6 nurse
2 Weak Søpør Søprøk Søpørjøn SøpørnE sweep
3 Variable fyrdik fyrdøk fyrødjøn fyrødnE/fyrdEnE bathe
4 No vowel hord hordok hordjon hord6n6 carry
5 Defective Siklik Siklok *Sikljon Sikl6n6 slide
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these stems allow for two repair strategies: the stem vowel is maintained or a link-
ing vowel is added between the stem and the suffix. This variation can be seen
in the 3SG.COND. (4) The no vowel class contains stems that end in a consonant
cluster that is never broken up by a vowel, irrespective of the suffix. These stems
either use no linking vowels (with analytic suffixes, as e.g. 3SG.IMP) or opt for a
linking vowel between stem and suffix (as e.g. in 3SG.COND). Finally, (5) defective
stems tend to end in consonant clusters of increasing sonority, which cannot be
broken up by a vowel (unlike in classes 2 or 3). When they combine with analytic
suffixes, which do not allow for a linking vowel between stem and suffix (such
as the 3SG.IMP), the derived form cannot be repaired in any way, resulting in a
paradigmatic gap.

Verbs in classes (3,5) all take the suffix ‘-ik’ in 3SG.IND. This suffix is only
present for a subclass of Hungarian verb forms. The ‘-ik’ suffix favours a CC variant
of the form.

This paper focusses on Class (3), the class of CVC/CC verbs. These verbs
show variation between two repair strategies if they are combined with C/V-
initial suffixes. These forms either follow classes (1-2) and behave like CVC-final
verbs, or follow classes (4-5) and behave like CC-final verbs. As suggested by
the example in Table 1 ( fyrødnE / fyrdEnE ), a single stem can show variation,
even with the same suffix. The aim of this paper is to account for the pro-
cess that generates the observed CVC/CC variation in Class (3) in the speech
community.

It is important to note that the 3SG.IND form of CVC/CC verbs shows very
little variation and is almost always of the CC form (followed by the V-initial
3SG.IND suffix ‘-ik’, obligatory for this class though not for all verbs). Only a few
counterexamples exist in the corpus, such as [t6jte:kzik] / [t6jte:kozik] ‘throw a
tantrum-3SG.IND’ or [doha:ñzik]/ [doha:ñozik] ‘smoke-3SG.IND’.

2.2 Identifying attractors of the CVC/CC class

In Section 1, we set out to test the scope of active lexical attractors using variation
in the speech community. Here, we focus on variation in a corpus of Hungarian,
reflecting community-level use to see which patterns of variation in the corpus
are likely to be represented by the individual. Our focus is restricted to forms that
show CVC/CC variation; the question of why certain forms remain stable has been
reserved for future work. The restricted approach does, to some extent, provide
an answer to this broader question.

We propose four sets of lexical attractors of CVC/CC verb variation:
phonotactic, across-paradigm, within-paradigm, and form-specific.
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Phonotactic attractors Thewidest attractors are generalizations that hold across
all words in the Hungarian lexicon – phonotactic patterns. CVC/CC variation
interacts with phonotactics. It effectively avoids CCC clusters, which are typic-
ally (though not uniformly) broken up at morphological boundaries (as well as
mostmonomorphemic forms) in theHungarian lexicon. This avoidance ofmarked
clusters suggests a link with the phonotactics; that is, variation might respond to
stochastic restrictions on consonant clusters across the entire lexicon.We can test
for this by seeing whether phonotactic aspects of these clusters affect variation in
a robust way.

One phonotactic aspect of consonant clusters is their sonority. It is, in the
most neutral terms, the set of cross-linguistic preferences of consonants when
they occur adjacent to each other – in various constituent parts of the syllable,
as well as heterosyllabically (Clements 1990). Falling sonority is more typical of
clusters in syllable-final positions, while rising sonority is more likely to indicate
a syllable-initial or a heterosyllabic position.

We expect that the sonority slope of the consonant cluster will influence CVC/CC
variation (Siptár & Törkenczy 2000). That is, CC sequences with a more falling
slope will be less likely to be broken up, because these sequences are more likely
to occur stem-finally across the Hungarian lexicon.

Though the theoretical and empirical validity of sonority as a concept is
often criticized (see Harris 2006), it still provides a useful approximation of broad
patterns that hold across the lexicon.

A second aspect of consonant clusters is homorganicity. Most members of the
stable CC class in Hungarian have homorganic clusters (e.g. [kEzd] ‘start-3SG.IND’,
[t6rt] ‘hold-3SG.IND’, [a:ld] ‘bless-3SG.IND’). This trend can reflect a more general
tendency that homorganic clusters avoid breaking up. (This pattern would be
further complicated by the behaviour of geminates, but no geminates occur in
the cluster in CVC/CC verbs.)

Across-paradigm attractors Generalizations across the general class of verbs
constitute a narrower set of attractors. We can think of these as generalizations
over across-paradigm similarity within this general class. The variable behaviour
of CVC/CC verbsmaps onto the stable behaviour of two sets of verbs in Hungarian.
One set consistently shows CVC behaviour in the relevant exponents, and the
other shows consistent CC behaviour. (These are classes 1–2 and 4–5 in Table 1.)
A given CVC/CC verb will be similar to both CVC and CC verbs.

This formal (as opposed to semantic) similarity across verb classes constitutes
an attractor of variation (see Bybee & Slobin 1982; Dawdy-Hesterberg & Pierre-
humbert 2014), which leads us to expect specific CVC/CC verbs to move towards
the verb classes to which they are more similar.
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We expect that CVC/CC verbs that are overall more similar to CVC verbs will
show more CVC behaviour, while those that are more similar to CC verbs will show
more CC behaviour.

Assuming an effect of across-paradigm similarity, our account needs to fur-
ther specify the basis of across-verb similarity in the respective verbal paradigms.
Similarity between verb classes can be based on basic forms in the paradigm, as
in Albright & Hayes (2003) or Hahn & Nakisa (2000). Alternatively, similarity can
be also based on inflected forms. The use of inflected forms commits us to a rich
memory model of the mental lexicon, in which inflected forms are also available
as bases of similarity-driven processes (Johnson 2006; Rácz et al. 2015).

Within-paradigm attractorsWe can consider this trade-off betweenmodel com-
plexity and available information specifically within the verb’s paradigm. On the
one hand, the most frequent form in the verb’s paradigm is usually the 3SG.IND. It
can be seen as the prominent basic form of the paradigm (see Baayen et al. 1997;
Blevins 2001; Booij 1999). Variable CVC/CC verbs form the 3SG.IND with a CC stem
and the V-initial suffix ‘-ik’. CC variants of CVC/CC forms will be more similar to
this basic form. On the other hand, most variable CVC/CC forms are, in fact, CVC
forms, because of an overall skew of C/V-initial suffixes to be C-initial. As a con-
sequence, CVC variants of CVC/CC forms will be more similar to these suffixed
forms.

We expect that the token frequency of the 3SG.IND and the range of variation
across V-initial suffixes will affect CVC/CC variation – a more frequent base form
results in more CC forms, a wider range of suffix variation results in more CVC
forms.

Word-specific attractors Finally, we define certain attractors as specific to the
verb form itself. These should have an effect on the extent to which the CVC/CC
form preserves the stem. Compound verbs are verbs that have a lexicalized pre-
verbal particle (such as [fEl-h6ngzik] ‘become audible, lit. up-sound’).We expect
these forms to have more CVC versus CC forms.

Verbs that have a free stem should also have stronger stem identity compared
to verbs that have no recognizable free stems. For example, [a:r6m-lik] ‘flow-
3SG.IND’ has the nominal stem [a:r6m] ‘flow’. The noun form can be seen in the
verbal stem. In contrast, [boml-ik] ‘decay-3SG.IND’ has no similar pair: the stem
(*[boml]) is not attested in itself. What follows is that we expect that verbs with
free stems will have more CVC versus CC forms.

Most CVC/CC verbs are intransitive. Therefore, we expect that transitive verbs
will also have more CVC forms. Since CC forms make the stem harder to identify if
it is shorter (László Kálmán, p.c. see also Rácz & Rebrus 2012), we also expect a
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correlation between the length of the stem and CVC/CC variation. As a result, we
expect a higher ratio of CC forms for these verbs.

Most of our attractors, such as token frequency, word length, or the struc-
ture of the lexical neighbourhood, are common in studies of lexical variation.
Our aim is to offer a taxonomy of lexical attractors based on attractor spe-
cificity, as we believe that the extent to which these various factors contribute to
CVC/CC variation in Hungarian morphology is indiciative of how inflected forms
are processed, stored, and organized in Hungarian. The mechanics of Hungarian
inflection are, in turn, relevant for broader theoretical approaches to inflectional
morphology and its relationship to the mental lexicon.

3 Analysis

3.1 Data source

We approximate variation in the speech community using a frequency dictionary
derived from the HungarianWebcorpus (Trón et al. 2006). The dictionary is based
on a version of the corpus that is morphologically analysed (Trón et al. 2005)
and morphologically disambiguated on the inflection level (Halácsy et al. 2007).
Using an online corpus comes with limitations as the data do not closely reflect
spoken language (Rácz et al. 2016). At the same time, the corpus is very large and
covers a range of written registers, both formal and informal (1.48 billion words
unfiltered/589 million words fully filtered by a morphological parser).

Our query of varying CVC/CC verbs is restricted in two ways.

Suffixes We selected five C/V-initial suffixes that are frequent enough to carry
substantial CVC/CC verb variation. This allows us to balance the resulting dataset
across a limited number of suffixes that do not vary widely in frequency of use
across verb stems, rendering multi-level modelling feasible. The five suffixes are
listed in Table 2.

Table 2: The five C/V-initial suffixes with [a:r6mlik] ‘flow-3SG.IND’.

Function C-variant V-variant CVC example CC example
3SG.COND -nA -AnA a:r6moln6 a:r6ml6n6

3PL.IND -nAk -AnAk a:r6moln6k a:r6ml6n6k

INF ni -Ani a:r6molni a:r6ml6ni

3PL.PAST.IND -tAk -OttAk a:r6molt6k a:r6mlott6k

2SG.IND -tOk -OtOk a:r6moltok a:r6mlotok
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In the annotations, ‘A’ represents front-harmony ([6] ∼ [E]), ‘O’ represents
rounding harmony ([o] ∼ [ø] ∼ [E]).

Verbs The CVC/CC class is a fuzzy set. We chose 111 that have a variable-
final vowel in the stem (according to our speaker intuitions1). The envelope of
true variation is considerably narrower than these verbs, so that it is unlikely
that we missed large parts of the varying vocabulary. We excluded verbs that
are defective (e.g. [h6ñ6tlik] ‘decline-3SG.IND / *[h6ñ6toljon] ‘decline-3SG.IMP’),
stems that show a semantic split between the CVC and the CC form (e.g. [fEnEkEl-

hEt] ‘ground/spank-3SG.MOD’ – see [fEnEklik] ‘ground’ / [fEnEkEl] ‘spank’ ), and
four stems that were identified as nouns by the parser (e.g. [Elh6ngzott6k] ‘what
has been said-3PL.IND / 3PL.ADV’).

As we note in Section 1, we aim to focus on forms that do show variation.
Therefore, we introduced one numeric threshold: each verb had to have at least
one CVC form and one CC form with any suffix in Table 2. Since missing forms are
likely due to data scarcity (these are low token frequency forms), we opted for a
lexical definition of defectiveness and a low-frequency threshold for inclusion in
the dataset.

Data size Our semantic and frequency restrictions reduce the sample size to
44,164 instances of 163 CVC/CC variants of 39 verbs. The number of all possible
CVC/CC pairs of the 39 verbs with five suffixes is 39 ∗ 6 = 195.

In all type counts below, we include the CVC and CC variants of all suffixed
forms of all verbs – 195 variant pairs – and set the token frequency of unattested
variants to 0. (See in Table 3.)

Calculating odds ratios for CVC/CC verbs Since the Webcorpus parser tends to
regard CVC and CC forms as separate lemmata, we calculate lemma frequency for

Table 3: Attested variant pairs of [a:r6mlik] in the sample.

Stem Suffix CVC form CC form CVC freq CC freq Odds log_odds
a:r6mol -nAk a:r6moln6k a:r6ml6n6k 69 593 0.12 –2.14
a:r6mol -tAk a:r6molt6k a:r6mlott6k 19 172 0.12 –2.16
a:r6mol -nA a:r6moln6 a:r6ml6n6 14 42 0.35 –1.05
a:r6mol -tOk a:r6moltok a:r6mlotok 0 0 1.00 0.00
a:r6mol -ni a:r6molni a:r6ml6ni 75 161 0.47 –0.76

1 All three authors are native speakers of Educated Colloquial Hungarian, a language variant
named by the third author.



Attractors of variation 11

1

5

10

15

20

25

30

35

40

the verbs by hand. Lemma frequency is strongly correlated with the frequency of
the 3SG.IND (r = 0.54).

Following Janda et al. (2010), we calculate the odds of the CVC variant over
the CC variant for each suffixed form, by adding 1 to both frequencies and then
calculating the odds in order to avoid dividing by zero. We use logged odds in the
analysis. Table 3 shows the variants of [a:r6mlik] ‘flow-3SG.IND’ in the sample.

3.2 Operationalizing attractors of the CVC/CC class

We operationalized the attractors discussed in Section 2.2 as the following pre-
dictors:
1. phonotactic: sonority, homorganicity
2. across-paradigm: 3PL.IND form’s similarity to stable CVC verbs and to stable CC

verbs
3. within-paradigm: frequency of 3SG.IND, lemma frequency of verb, type fre-

quency of attested C/V-initial suffixed forms
4. word-specific: is the form a compound?, is a free base attested?, is the verb

intransitive?, length of base in syllables

Phonotactic predictors For each verb, we tag the two consonants in the final
CVC/CC cluster as hetero- or homorganic and calculate a sonority slope based
on their relative sonority. The sonority of a given segment ranged from 1 (high
sonority: the glide [j]) to 8 (low sonority: voiceless stops). The sonority of the pair
is the sonority of the first segment subtracted from the sonority of the second
segment. This means that a high value describes a falling slope of sonority (such
as [jk]), while a low value describes a rising slope of sonority (such as [tr]).
Clusters with a high value tend to prefer syllable codas, clusters with a low value
tend to prefer syllable onsets.

Across-paradigm predictors Our expectation is that variable verbs behave like
stable verbs to which they are more similar in form . The relevant classes are
covered in Section 2.1. One class of verbs is stable CVC and takes C-initial vari-
ants of C/V-initial suffixes. Another class is stable CC and takes V-initial variants
of C/V-initial suffixes. If a CVC/CC verb is more similar to stable CVC verbs, it will
behave more like a stable CVC verb, whereas, if it is more similar to stable CC
verbs, it will behave more like a stable CC verb.

The similarity argument seems circular if we focus only on the morpheme
boundary between stem and suffix. In this case, e.g. a CC verb will be a CC verb
by virtue of not breaking up the cluster in suffixed forms.
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However, similarity holds across the entire form – CVC/CC stems have quan-
tifiable similarity to stable CVC versus CC stems. At the same time, we want a
similarity-based account to be based on real forms and not posit abstract stems or
base forms as points of comparison. Extant forms of CVC/CC verbs, on the other
hand, are either CVC or CC.

One way around this is to pick a suffixed form that occurs both in the CVC and
in the CC forms and that is frequent enough so that a similarity-based model will
cover a large part of the potential parameter space.

We select the 3PL.IND, a frequent suffixed form that shows CVC/CC variation,
and compare the 3PL.IND of variable CVC/CC forms to stable CVC and CC forms.
We do so with both the CVC and the CC variants, separately. This is schematized
in Table 4.

Table 4: Sources and targets in across-paradigm analogy.

Target Source
Type CVC/CC verbs Stable CVC Stable CC
CVC a:r6moln6k a:poln6k

CC a:r6ml6n6k hord6n6k

We can fit a learning algorithm that is trained on two source sets: stable CVC and
stable CC verbs. It takes CVC/CC verbs as test forms and assigns category mem-
bership in either the stable CVC or the stable CC class for each CVC/CC verb. The
algorithmwill also assign a weight to its judgement. The result is a distancemeas-
ure that quantifies where a given CVC/CC form is between stable CVC and stable
CC verbs, in terms of similarity of form.

We use the generalized context model (GCM) to determine the similarity
between the verb stems in the sample and stable CVC and CC verbs in the
language. The GCM takes a target form and compares it to individual training
forms in two categories (in our case). It calculates the similarity between the
target and the individual training forms based on the edit distance:

'ij = exp (–dij/s)p

In the equation above, 'ij represents the similarity between form i and form
j, while dij is the edit distance between the two forms. s and p are free paramet-
ers, here set to s = 0.3 and p = 1. The parameter s determines how quickly the
similarity decreases as the distance between the forms increases. When p is set
to 1, as here, the similarity function is an exponential, rather than a Gaussian
function of the edit distance.
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The GCM calculates a summed distance of the target form to the category.
The overall similarity SiCJ of a test form i to a set CJ is calculated by summing the
similarity 'ij of each member j of class CJ to the test form i, and dividing by the
summed similarity 'ij of each member k of class CK (the class of all stored forms)
to the test form i. If all stored forms are grouped in two sets, similarity to one
group is complementary with similarity to the other group. Therefore, if a verb’s
similarity to stable CVC verbs is 0.4, then its similarity to stable CC verbs is 0.6, as
the target verbs are either stable CVC or stable CC. This calculation is summarized
in the following equation.

SiCJ =
∑

j∈CJ 'ij∑
k∈CK 'ik

We adapted the GCM from the framework of Nosofsky (1990) to compare word
forms in the R language (R Core Team 2016). This algorithm has been widely and
successfully used in linguistic categorization tasks (Krott et al. 2001; Albright &
Hayes 2003; Dawdy-Hesterberg & Pierrehumbert 2014).

For this specific categorization problem, we create a training class of stable
CVC and CC verbs using a list of 3PL.IND forms in the Hungarian Webcorpus with
a token frequency of 10 or higher. We exclude the 111 potential CVC/CC verbs
involved in creating our target sample. We exclude a small set of suppletive forms,
as well as forms that can be seen both as complex forms or separate lexical
entries (such as [bE-fy:t-EnEk] ‘heat-3PL.IND.PFV’, cf. [fy:t/EnEk]) ‘heat-3PL.IND’),
and forms that end in the irregular derivational suffix [i:t] (such as [l6pi:t-6n6k]

‘squash-3PL.IND’).
This approach results in a combined training set of 5,916 3PL.IND forms, 555

CC, 5,361 CVC. (TheWebcorpus frequency dictionary has 6,423 3PL.IND forms with
a token frequency of 10 or higher. There are 207,136 verb types in the frequency
dictionary in total with a token frequency of 10 or higher.)

We create two test sets. Both are based on the 39 CVC/CC verbs in the sample.
One set consists of the CVC forms of the 3PL.IND. The other set consists of the CC
forms.

Take the example of [h6jlik] ‘bend-3SG.IND’. We can take 3PL.IND forms and
then calculate the overall similarity of the CVC or the CC form of the verb
to stable CVC and CC verbs. The CVC form of ‘bend-3PL.IND’ is [h6joln6k]. Its
similarity is 0.593 to stable CVC 3PL.IND forms (e.g. [sErEpElnEk] ‘act-3PL.IND’; [dol-

gozn6k] ‘work-3PL.IND’) versus stable CC forms (e.g. [tErmEstEnEk] ‘grow-3PL.IND’;
[h6l:6ts:6n6k] ‘be audible-3PL.IND’). The CC form is [h6jl6n6k]. Its similarity is to
stable CVC versus CC is 0.589.
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The two values tilt toward the more populous stable CVC class. Overall, the
similarity weight based on CVC [h6joln6k] is higher than the weight based on CC
[h6jl6n6k]. If we interpret these values across all 39 verbs and compare them to
the odds of the suffixed forms, we can determine which measure of similarity is a
better predictor of the ratio of their CVC/CC forms.

We fit the GCM using both simple edit distance and distance based on
segmental similarity between the forms. We found that the former yields better
predictions and report calculations based on edit distance in the paper.

Within-paradigm predictors We use the lemma frequency of the verb and the
token frequency of the 3SG.IND in the Webcorpus to approximate the ‘strength’ of
the stem/base form. In order to assess the strength of the inflected forms in the
paradigm, we create another predictor of morphological behaviour: the number
of existing CVC or CC suffixed forms for each verb. This ranges between 2 (our
minimum threshold) and 12 (an attested CVC and CC form for each six suffixed
form), as it provides an approximation of the diversity of the verb form’s CVC/CC
variability across suffixes.

Word-specific predictors For each verb, we calculate syllable count by counting
the vowels in the stem, that is, the 3SG.IND minus the ‘-ik’ suffix. We hand-
annotate verbs to determine whether they are compounds and whether they are
transitive or intransitive. We use the Webcorpus to determine whether the verb
stem is attested in itself – noting whether or not the verb has a free stem. Again,
we define the stem as either the 3SG.IND without the ‘-ik’ suffix, or else, if there
is a recognizable derivational suffix present (as in [doha:ñ-z-ik] ‘smoke-3SG.IND’,
from [doha:ñ] ‘tobacco’), the nominal stem preceding this suffix.

4 Modelling

We use the R statistical environment for our analysis (R Core Team 2016) and cre-
ate plots using the effects package (Fox et al. 2009) and ggplot (Wickham 2009).

Twelve specific predictors are defined based on sections 2.2 and 3.2: sonor-
ity, homorganicity, the 3PL.IND form’s similarity to stable CVC verbs, its similarity
to stable CC verbs, frequency of 3SG.IND, lemma frequency of verb, type frequency
of attested C/V-initial suffixed forms, whether the form is a compound, whether
a free base is attested, whether the verb is transitive, and length of base in
syllables.
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Our aim was to compare these predictors in a model of CVC/CC variation,
effectively predicting the log odds of CVC and CC forms of the 39 verbs with the
five suffixes.

The main problem with an exploratory study of this kind is that the factors
which determine variation are correlated. For instance, the token frequency of
the 3SG.IND and the lemma frequency of the verb will be very similar across verbs
(in our data, r = 0.66).

To assess the extent of multicollinearity across predictors, we fit a mixed-
effects logistic regressionmodel predicting the odds ratio of CVC/CC, using all the
predictors defined in Section 3, centralized, with the addition of a stem and a suf-
fix random intercept, using the LME4 package in R (Bates et al. 2015). The kappa
coefficient of this model is 6.74, which indicates moderate collinearity between
predictors (see Baayen 2008).

This means that we cannot immediately co-opt the method used by Janda
et al. (2010) and test predictor strength in a generalized linear mixed-effects
model. While mixed-effects models are robust at handling nested data with pre-
dictor collinearity (Gelman & Hill 2007; Jaeger 2008), correlations across predict-
ors can undermine modelling assumptions when such a diverse set of predictors
is used. While top-down stepwise model selection would allow us to remove col-
linear variables, this method is criticized for either amplifying variation or, worse,
generating significant trends out of noise (see Flom & Cassell 2007).

In order to further justify the choice of predictor variables in our final model,
we fit a regression tree with random effects on the data, with all our predictors,
using the REEMtree package (Sela & Simonoff 2011). REEMtree fits a large num-
ber of regression trees on the data using various combinations of the predictor
variables. We can extract the importance of the predictor variables across these
iterations to gain a sense of how robust they are in predicting the outcome. We
fit the model with the 12 predictors, along with a verb form and a suffix random
intercept, using 100,000 iterations.

Figure 1 shows the most important predictor variables across all iterations.
The most important predictor is the across-paradigm similarity of the verb’s
CVC 3PL.IND form to stable CVC or CC verbs ( cvc_weight_nak). This is the
[a:r6moln6k] form in Table 4. It is followed by the token frequency of the 3SG.IND
(log_3sgind_freq), the similarity of the verb’s CC 3PL.IND form to stable CVC or
CC verbs (the [a:r6ml6n6k] form in Table 4) (cvc_weight_anak), and the verb’s
lemma frequency (log_lemma_freq). The relevance of the remaining the predict-
ors is diminished: the number of quasi-analytic suffix types attested (n_q_types),
the verb’s syllable count (syl_count), whether the verb is intransitive, the sonor-
ity of the consonant cluster, and whether the verb is a compound appear to not
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Figure 1: Variable importance in the regression trees.

contribute much. Whether the verb has a free stem and whether the consonant
cluster is homorganic have very little relevance.

We next fit a second mixed-effects logistic regression model on the dataset.
Themodel predicts the log odds ratio of the CVC over the CC variant of the suffixed
forms. Again, the counts of these variants are not independent – they are grouped
under both the 39 verb stems and the 5 suffixes. The model accounts for the lack
of independence by containing a random intercept for verb and for suffix. This
approach largely follows Janda et al. (2010).

In selecting the predictors for this model, we relied on variable importance in
the regression trees to build a model bottom-up, starting with the most important
variable, and adding subsequent ones.

Model selection was informed by goodness of fit and the conceptual frame-
work of the study. To select for goodness of fit we relied on the variance inflation
factor, the Akaike information criterion, and model comparison using ANOVA in
model selection. We included relevant random slopes in the final model. In terms
of the conceptual framework, our aimwas to investigate phonotactic, across-, and
within-paradigm, and word-specific attractors in determining CVC/CC variation.
To consider these attractor types in a unified framework, we chose the most rel-
evant predictor from each category to include in our model, irrespective of its
stand-alone robustness.

This means that some of the predictors explain little variation in the data,
but such a non-parsimonious model is not problematic given that the collinearity
issues have been addressed.
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5 Results

Our final model predicts CVC/CC variation based on four predictors. These are
the across-paradigm similarity of the verb’s CVC 3PL.IND form to stable CVC or
CC verbs; the token frequency of the 3SG.IND; whether the verb stem is mono-
or pollysyllabic; and the sonority slope of the consonant cluster. This model
captures the relative importance of our attractor groups: phonotactic, across-
paradigm, within-paradigm, and word-specific attractors. Not all of these are
robust predictors of CVC/CC variation.

The marginal r2 of the model is 0.28, the conditional r2 is 0.74 (following Nak-
agawa & Schielzeth 2013). The kappa coefficient of this model with all predictors
centred is 2.9, a considerable improvement on themodel with all predictors (6.74).

The fixed-effect estimates of the model can be seen in Table 5. Given the
exploratory character of the analysis, we do not calculate p values for the
estimates. It is, however, clear that the explanatory power of the predictors varies
greatly.

Table 5: Estimated effects and standard errors, logistic model.

Estimate Standard error z value
(Intercept) –5.43 1.66 –3.27
cvc_weight_nak 4.10 1.66 2.47
log_3sgind_freq –0.20 0.21 –0.98
polysyllabicTRUE 2.74 0.88 3.11
Sonority –0.15 0.18 –0.87

The model intercept is not very meaningful in and of itself – it describes
a word with a raw frequency of 1, for instance. Across-paradigm similarity
(cvc_weight_nak) and word length (whether the word is mono- or polysyllabic)
are robust predictors of CVC/CC variation, whereas phonotactics, specifically son-
ority, and the logged frequency of the 3SG.IND (log_3sgind_freq) are not very
relevant. A number of predictors are missing from the model. These either raise
collinearity issues, have low explanatory value (as shown by the regression tree
analysis), or are conceptually less interesting. For example, whether the word is a
compound is a word-specific predictor of variable behaviour. As such, it is strongly
correlated with and is far less relevant than word length.

5.1 Relevance of predictor groups

Using groupings outlined in Sections 2.2 and 3.2, we now look at each predictor
in the regression model.



18 P. Rácz et al.

1

5

10

15

20

25

30

35

40

Phonotactic predictors Figure 2 shows the overall effect of sonority on the prob-
ability of a CVC form (to a CC form) in the model, with estimated standard error
(left) and average predictions for verb forms (right).

Figure 2: Sonority and CVC/CC probability across stems in the model.

Sonority (x-axis) has a negative relationship with the ratio of CVC versus CC forms
(y-axis). Sonority slopes are never drastically rising in the clusters in the sample
– sequences like [tr] or [kl] are not typical of the CVC/CC class. High values of son-
ority (that is, sonority difference) refer to clusters with a steeply raising sonority
slope, like [tl] or [gr]. Low values of sonority refer to clusters with a less steep or
a negative slope, like [ml] or [rz], respectively. These latter clusters are broken up
more often.

The direction of the sonority effect is contrary to our expectations outlined
in Section 2: clusters of rising sonority are less likely, rather than more likely,
to be broken up. At the same time, the estimate has a large amount of error,
which means that in this model sonority has very little effect. We can add that
the other phonotactic predictor, homorganicity, has not been pre-selected as a
relevant predictor.

This indicates that the role of phonotactics in our model of CVC/CC variation
is negligible. If lexical attractors operate on variable CVC/CC forms, then their
locus must lie elsewhere.

Across-paradigm predictors The predictor cvc weight ‘nak’ in Table 5 is a spe-
cific measure of similarity. It expresses the distance of the 3PL.IND form to stable
CVC verbs, as compared to stable CC verbs. When it combines with CVC/CC verbs,
the 3PL.IND suffix is [-n6k]with CVC forms (e.g. [a:r6mol-n6k], ‘flow-3PL.IND’) and
[-6n6k] with CC forms (e.g. [a:r6ml-6n6k], ‘flow-3PL.IND’). We built two models of
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similarity, one based on the CVC form and one based on the CC form. These each
provided a measure of similarity.

The measure that remains relevant in this model is the one based on the CVC
rather than CC form of the CVC/CC verb: cvc weight ‘nak’ (as opposed to cvc weight
‘anak’). The similarity effect is shownby Figure 3, which displays the overall effect
of similarity to stable CVC verbs – as opposed to stable CC verbs – on the probab-
ility of a CVC form (versus a CC form) in the model, with estimated standard error
(left) and average predictions for verb forms (right).

The similarity effect is in line with our expectations outlined in Section 2: a
variable verb’s similarity to stable verb classes affects its pattern of variation.

Figure 3: Similarity and CVC/CC probability across stems in the model.

A variable verb’s similarity to stable verb classes will affect variation. This is
a robust finding of the analogical learning literature (Bybee & Slobin 1982;
Rumelhart & McClelland 1986; Skousen 1989). Our result corroborates this. It is
noteworthy that the variable process in this case is essentially low-level allo-
morph selection resulting in a CVC or CC form. Similarity has been highlighted
as a relevant factor in such low-level processes, as in Dutch linking vowels (Krott
et al. 2001) or English hiatus resolution (Soskuthy 2013).

At the same time, the analogical learning literature generally posits the base
form as the target of analogical processes. The base form, the 3SG.IND, of CVC/CC
verbs has a V-initial suffix [-ik], and, as a consequence, is almost always CC. (Only
six stems in our sample are attested with a CVC 3SG.IND, all with low token fre-
quency.) It is the various other C-initial suffixes that result in a CVC form. In our
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model of similarity, the CVC form is a better target than the CC form – this strongly
suggests that similarity operates across a range of inflected forms.

This, in turn, indicates that some inflected forms are available in the men-
tal lexicon and exert an influence on variable behaviour in verbal inflection (see
Stemberger & MacWhinney 1986; Alegre & Gordon 1999; Lindsay et al. 2012).

In terms of attractor biases, the model suggests that patterns of similarity
across verbs are important in predicting CVC/CC variation, whereas more general
phonotactic patterns are not. While general phonotactics and word similarity are
not statistically independent, the model supports the importance of the latter
over the former.

Within-paradigm predictors Figure 4 shows that there is a negative relation-
ship between the frequency of the 3SG.IND form and the verb’s CVC/CC ratio. This
result is in line with the expectations in Section 2: more frequent verbs are more
likely to be realized with CC variants. However, the error of the estimate is very
large, which indicates that token frequency has negligible influence on CVC/CC
variation.

Figure 4: Token frequency of the 3SG.IND and CVC/CC probability across stems in the model.

The lemma frequency of the verb and the type frequency of suffixed variants are
not pre-selected as relevant predictors in the model.

The lack of a type frequency effect indicates that the overall similarity of a
form to stable CVC versus CC verbs in the lexical space is more relevant than type
frequencies of its suffixed variants in determining variable behaviour.
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The lack of a token frequency effect runs counter to our expectation that
high token frequency forms to resist a shift to a majority pattern. This frequency
effect is well documented for a wide range of types of morphological variation
(see Bybee 1995). However, there is no obvious majority pattern within the set
of CVC/CC verbs: across-paradigm similarity to stable verb classes is far more
important than patterns of behaviour within the set. The lack of a clear majority
pattern is an important aspect of this morphological variation, one that we return
to in the discussion.

Word-specific predictors Verbs with longer stems prefer the CVC variant
(Figure 5). (This result is the reverse of our expectation in Section 2.) This pattern
indicates that longer forms tend to be even longer, contrary to broad correlations
between length and frequency that also hold in Hungarian (Zipf 1935; Németh &
Zainkó 2002).
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Figure 5: Stem length and CVC/CC probability across stems in the model.

A possible explanation of the positive effect of length is that the CVC variant pre-
serves the lexically specified vowel in the cluster, and, as a consequence, the stem
remains easier to identify. Identifiability is more important for verbs with a lower
token frequency that are harder to activate in the first place. Alternatively, we see
here a masked effect of morphology – longer verbs are more likely to have stems
that occur across the paradigm and, as a result, are more robustly represented.
At the same time, other word-specific predictors (e.g. whether or not the verb is a
compound, or whether it has a free stem) do not contribute meaningfully to the
model.
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5.2 Implications for lexical attractors

Our aim was to describe a set of variable verbs in Hungarian and identify a very
wide range of possible lexical attractors that can influence variation, ranging from
very general ones – such as phonotactic patterns – to very narrow ones – such as
the verb’s paradigm or word-specific information. We used algorithmic learning,
cluster analysis, and regression modelling to identify strong trends in our sample
within this range of complex and collinear attractors.

Results indicate that variation is governed by word-specific and across-verb
attractors. Polysyllabic verb stems are more likely to have CVC variants over CC
variants than monosyllabic ones in the sample. Variable verbs that are similar to
stable CVC verbs are more likely to behave like stable CVC verbs. The basis for this
similarity is, at least partially, the set of inflected forms.

We need to be mindful of existing caveats.
One issue is the model’s operationalization: Online language use, though

less formal than writing and a rich data source, is not a stand-in for the ambi-
ent language. Our restrictions result in a principled dataset, but are the results
of a series of analytical decisions. The way we operationalize lexical attract-
ors follows the pre-existing psycholinguistics and corpus linguistics literature,
but remains highly subjective. Our similarity-based model, in particular, makes
strong assumptions on lexical relations.

The other issue is the model’s interpretation: the attractor types we discuss
do not constitute disjunct sets. For example, it is trivially true that the across-
paradigm similarity of forms will be affected by general phonotactics, since all
forms conform to the phonotactics of the language. As a consequence, when we
argue that the phonotactics have a negligible effect on variation, this should be
interpreted in relation to the other factors we consider, such as similarity of form.

Still, our model presents a quantitative operationalization of a complex prob-
lem in morphophonological variation, provides data from a non-Indo-European
language, and offers insights into the mechanics of lexical variation. We have
shown that, in our Hungarian data, similarity across verbs is more important in
shaping CVC/CC variation than either broad phonotactic patterns or effects of the
verb’s frequency.

6 Discussion

We use concatenative terminology to describe CVC/CC variation in Hungarian
inflectional morphology. A concatenative model has tremendous difficulties
describing wider chunks of Hungarian morphology (Rebrus & Törkenczy 2011;
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Rácz & Rebrus 2012). However, it supplies a convenient metaphor to provide a
simple description of CVC/CC variation. This metaphor has been well-used by
linguists working with morphology since at least the time of Bloomfield (1926).

However, the corpus-based model proposed in this paper is not compatible
with a genuine concatenation approach. The model indicates the presence of lex-
ical attractors underlying variation. These attractors range from very broad ones,
such as stochastic phonotactic patterns in the language, to more specific ones,
such as the inflection behaviour of similar verbs.

The results have clear consequences for the description of the mental lex-
icon. The behaviour of variable CVC/CC verbs cannot be specified by rote, nor can
it be accounted for using abstract generalizations. Instead, CVC/CC verbs point
towards the relevance of the relationships between individual forms stored in the
lexicon.

Hungarian inflectional variation, then, is compatible with a theory of mor-
phology that posits a rich storage of forms, with connections between these forms
(Bybee 1985; Blevins 2006). Such a theory must emphasize relationships between
and within paradigms, driven by analogy and similarity (Milin et al. 2009;
Dawdy-Hesterberg & Pierrehumbert 2014). In this respect, our work shows close
parallels with similar research on languages with rich inflectional paradigms,
such as Finnish (Kidd & Kirjavainen 2011), Serbian (Mirković et al. 2011), or Polish
(Dąbrowska 2008).

The results lend themselves to four primary conclusions. First, they give
credit to a corpus-based heuristic which can be used to model community-level
variation. Second, they provide additional support for a rich memory model of
the mental lexicon. Third, they allow us to speculate on the amount of informa-
tion available in the mental lexicon, a question subject to widespread debate (see
e.g. Bresnan et al. 2007). Fourth, they inform our understanding of morphological
variation in Hungarian.

In ourmodel, the phonological shape of theword form, alongwith patterns of
similarity across words in the lexicon, influences variation. These aspects appear
to be stronger than simple measures of the word’s frequency or its base form.

Our model set sheds light on specific aspects of CVC/CC variation. CVC/CC
variation is unlike cases of morphological variation in which a majority pro-
ductive pattern competes with multiple minority patterns. This variation is not
productive, so it is predominantly affected by broader attractors (word shape and
similarity to stable lexical classes) rather than competition across forms in its own
class. This means that this exploratory analysis allows us to make predictions
for types of variation in the future: while productive patterns will be affected by
frequency, stable patterns will be shaped primarily by similarity.
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These results can only be generalized to a limited extent. For instance, an
entirely tree-based clustering analysis would have attributed more importance to
form frequency. What they allow us to do, however, is generate hypotheses on the
structure and influence of lexical structure on variation. These hypotheses can,
in turn, lead to stronger assumptions in the design and analysis of subsequent
corpus studies and psycholinguistics experiments.

Appendix

The list of stems in the data in 3SG.INDEF is, in orthographic form, contained in
Table 6. We consider both the CVC and the CC forms of the 3SG.INDEF – here, only
the CC form is printed. Table 7 lists, for each form, the most frequent CVC form in
the corpus. Table 8 lists, for each form, the most frequent CC form in the corpus.

A note on the orthography: á:[a:], é:[e:], a:[6], e:[E], ö:[ø], ü:[y], sz:[s], s:[S],
zs:[Z], ny:[ñ]

Table 6: List of verbs. ‘Form 3sg’ is the 3SG.IND form, ‘ikfreq’ is the frequency of the 3SG.IND, ‘cvc
freq total’ is the summed frequency of CVC forms, ‘cc freq total’ is the summed frequency of CC
forms, ‘cvc cc odds’ is the odds ratio, ‘gloss stem’ is the gloss of the stem.

form_3sg ikfreq cvc_freq_total cc_freq_total cvc_cc_odds gloss_stem
áramlik 2773 177 968 1.18 flow
bomlik 1746 16 960 1.02 decompose
botlik 493 9 343 1.03 toddle
burjánzik 247 32 117 1.28 burgeon
bűzlik 560 1 107 1.02 stink
döglik 381 29 302 1.10 perish
dohányzik 1314 2253 3 752.33 smoke
elhangzik 2545 192 1061 1.18 be voiced
feslik 18 3 19 1.21 peel
fogzik 21 6 3 3.33 tooth
fuldoklik 276 220 21 11.52 choke
hajlik 2439 919 1363 1.67 bend
haldoklik 821 161 18 10.00 die
hangzik 17253 474 5550 1.09 sound
hiányzik 29456 11538 346 34.35 be missing
hullámzik 722 126 218 1.58 wave
kiviláglik 728 2 20 1.15 light up
ködlik 25 1 16 1.12 fog

(continued)
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Table 6: (continued)

form_3sg ikfreq cvc_freq_total cc_freq_total cvc_cc_odds gloss_stem
lélegzik 862 1084 176 7.16 breathe
lúdbőrzik 11 7 2 5.00 get goosebumps
omlik 803 59 654 1.09 collapse
ömlik 1693 11 610 1.02 pour
oszlik 3818 27 1600 1.02 decompose
ötlik 460 5 118 1.05 occur
özönlik 229 7 716 1.01 surge
párzik 101 15 132 1.12 mate
patakzik 57 1 62 1.03 efflux
rajzik 91 6 183 1.04 swarm
romlik 5257 19 2480 1.01 degrade
sereglik 80 12 294 1.04 rally
szólamlik 13 1 3 1.67 voice
tajtékzik 81 12 15 1.87 tantrum
tündöklik 164 482 21 24.00 shine
ugrik 3620 12 3769 1.00 jump
vérzik 1248 479 24 21.00 bleed
viharzik 68 1 34 1.06 storm
világlik 146 20 21 2.00 lighten
virágzik 3133 814 250 4.26 bloom
viszonylik 172 2319 13 179.46 relate

Table 7: List of verbs with most frequent CVC form. ‘Form 3sg’ is the 3SG.IND form, ‘best cvc form’
is the most frequent CVC form of the verb, ‘freq cvc form’ is the frequency of this specific form,
‘gloss suffix’ is the gloss of the suffix, ‘gloss stem’ is the gloss of the stem.

form_3sg best_cvc_form freq_cvc_form gloss_suffix gloss_stem
áramlik áramolni 75 inf flow
bomlik bomolni 6 inf decompose
botlik botolnak 3 3pl.ind toddle
burjánzik burjánoztak 16 3pl.past burgeon
bűzlik bűzölni 1 inf stink
döglik dögölni 18 inf perish
dohányzik dohányozni 1493 inf smoke
elhangzik elhangoztak 89 3pl.past be voiced
feslik feseltek 1 3pl.past peel
fogzik fogaznak 4 3pl.ind tooth
fuldoklik fuldokolni 130 inf choke
hajlik hajolni 400 inf bend
haldoklik haldokolnak 72 3pl.ind die

(continued)
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Table 7: (continued)

form_3sg best_cvc_form freq_cvc_form gloss_suffix gloss_stem
hangzik hangoztak 201 3pl.past sound
hiányzik hiányoznak 7012 3pl.ind be missing
hullámzik hullámoztak 59 3pl.past wave
kiviláglik kivilágolnak 1 3pl.ind light up
ködlik ködölni 1 inf fog
lélegzik lélegezni 677 inf breathe
lúdbőrzik lúdbőrözni 4 inf get goosebumps
omlik omolnak 23 3pl.ind collapse
ömlik ömölni 4 inf pour
oszlik oszolni 11 inf decompose
ötlik ötölni 2 inf occur
özönlik özönölnek 4 3pl.ind surge
párzik pározni 14 inf mate
patakzik patakoznak 1 3pl.ind efflux
rajzik rajoznak 5 3pl.ind swarm
romlik romolni 9 inf degrade
sereglik seregeltek 4 3pl.past rally
szólamlik szólamolnak 1 3pl.ind voice
tajtékzik tajtékoznak 9 3pl.ind tantrum
tündöklik tündökölni 208 inf shine
ugrik ugornak 12 3pl.ind jump
vérzik vérezni 232 inf bleed
viharzik viharoznak 1 3pl.ind storm
világlik világolnak 8 3pl.ind lighten
virágzik virágoznak 378 3pl.ind bloom
viszonylik viszonyulnak 1339 3pl.ind relate

Table 8: List of verbs with most frequent CC form. ‘Form 3sg’ is the 3SG.IND form, ‘best cc form’ is
the most frequent CC form of the verb, ‘freq cc form’ is the frequency of this specific form, ‘gloss
suffix’ is the gloss of the suffix, ‘gloss stem’ is the gloss of the stem.

form_3sg best_cc_form freq_cc_form gloss_suffix gloss_stem
áramlik áramlanak 593 3pl.ind flow
bomlik bomlanak 710 3pl.ind decompose
botlik botlanak 168 3pl.ind toddle
burjánzik burjánzanak 76 3pl.ind burgeon
bűzlik bűzlenek 42 3pl.ind stink
döglik dögleni 136 inf perish
dohányzik dohányzani 2 inf smoke
elhangzik elhangzanak 937 3pl.ind be voiced

(continued)
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Table 8: (continued)

form_3sg best_cc_form freq_cc_form gloss_suffix gloss_stem
feslik feslenek 9 3pl.ind peel
fogzik fogzani 2 inf tooth
fuldoklik fuldoklani 11 inf choke
hajlik hajlanak 916 3pl.ind bend
haldoklik haldoklanak 11 3pl.ind die
hangzik hangzottak 3019 3pl.past sound
hiányzik hiányzanak 326 3pl.ind be missing
hullámzik hullámzanak 87 3pl.ind wave
kiviláglik kiviláglanak 12 3pl.ind light up
ködlik ködlenek 10 3pl.ind fog
lélegzik lélegzeni 144 inf breathe
lúdbőrzik lúdbőrzenek 2 3pl.ind get goosebumps
omlik omlanak 256 3pl.ind collapse
ömlik ömlenek 253 3pl.ind pour
oszlik oszlanak 1132 3pl.ind decompose
ötlik ötlenek 55 3pl.ind occur
özönlik özönlöttek 320 3pl.past surge
párzik párzanak 88 3pl.ind mate
patakzik patakzottak 35 3pl.past efflux
rajzik rajzanak 160 3pl.ind swarm
romlik romlottak 979 3pl.past degrade
sereglik sereglettek 174 3pl.past rally
szólamlik szólamlani 2 inf voice
tajtékzik tajtékzottak 8 3pl.past tantrum
tündöklik tündöklenek 14 3pl.ind shine
ugrik ugrani 2151 inf jump
vérzik vérzenek 9 3pl.ind bleed
viharzik viharzottak 18 3pl.past storm
világlik világlottak 11 3pl.past lighten
virágzik virágzanak 187 3pl.ind bloom
viszonylik viszonylanak 13 3pl.ind relate
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