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Abstract 50 

Neuromedin U (NMU) is a highly conserved endogenous peptide that is involved in a wide range of 51 

physiological processes such as regulation of feeding behavior, the stress response and nociception. 52 

The major limitation to use NMU as a therapeutic is its short half-life. Here, we describe the 53 

development of a set of novel NMU-analogs based on NMU-8, by introducing unnatural amino acids 54 

into the native sequence. This approach shows that it is possible to generate molecules with increased 55 

potency and improved plasma stability without major changes of the peptidic nature or the 56 

introduction of large conjugates. When compared to the native NMU-8 peptide, compounds 16, 18 and 57 

20 have potent agonist activity and affinity for both NMU receptors. Selectivity towards NMUR1 was 58 

observed when the Phe residue in position 4 was modified, whereas higher potencies at NMUR2 were 59 

found when substitutions of the Pro residue in position 6 were executed. To study the effect of the 60 

modifications on the proteolytic stability of the molecules, an in vitro stability assay in human plasma 61 

at 37 °C was performed. All analyzed analogs possessed an increased resistance against enzymatic 62 

degradation in human plasma resulting in half-lifes from 4 min for NMU-8, up to more than 23 h for 63 

compound 42.  64 
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Graphical abstract 65 
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Highlights 67 

• Insertion of unnatural amino acids in NMU-8 leads to stable and selective ligands 68 

• Potent NMUR ligands can be found by substitution of the Tyr1 residue of NMU-8 69 

• NMUR1 selectivity can be achieved by modification of Phe in position 4 70 

• Replacement of the Pro6 residue shifts the selectivity towards NMUR2  71 

• Biodegradation profiles are studied in human plasma 72 

Keywords 73 

Neuromedin U (NMU), NMU-8, Neuromedin U receptor agonists, plasma stability 74 

Abbreviations 75 

1’Nal, 1’-naphtylalanine; 2’Nal, 2’-naphtylalanine; 7-OH-Tic, 7-hydroxy-L-1,2,3,4-76 

tetrahydroisoquinoline-3-carboxylic acid; ACN, acetonitrile; AUC, area under the curve; CNS, central 77 

nervous system; Dap, α,β-diaminopropionic acid; DCM, dichloromethane; DIC, diisopropyl 78 

carbodiimide; DIPEA, N,N-diisopropylethylamine; DMEM, Dulbecco’s Modified Eagle Medium; 79 

DMF, dimethylformamide; DMSO, dimethyl sulfoxide; Dmt, 2’,6’-dimethyltyrosine; EC50, half 80 

maximal effective concentration; Emax, maximal effect; FA, formic acid; Fmoc, 9-81 

fluorenylmethyloxycarbonyl; GPCR, G protein-coupled receptor; HBSS, Hanks Balanced Salt 82 

Solution; HEK, human embryonic kidney; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 83 

acid; HOBt, 1-hydroxybenzotriazole; HPLC, high performance liquid chromatography; IC50, half 84 

maximal inhibitory concentration; IP3, inositol triphosphate; MS, mass spectrometry; NMU, 85 

neuromedin U; NMUR, neuromedin U receptor; Oic, octahydroindole carboxylic acid; PEG, 86 

polyethylene glycol; rt, room temperature; SAR, structure activity relationship; sc, subcutaneous; 87 

SPA, scintillation proximity assay; SPPS, solid phase peptide synthesis; TBTU, 2-(1H-Benzotriazole-88 

1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate; TES, triethylsilane; TFA, trifluoroacetic acid; Tic, 89 

1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid.   90 
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Introduction 91 

Neuromedin U (NMU) was initially discovered in porcine spine by Minamino et al. in 1985 and 92 

named after its uterus stimulating activity [1]. Following its discovery, NMU was isolated from 93 

different species and found to occur in two active forms, a 23 or 25 amino acid long peptide and a 94 

truncated version of 8 or 9 amino acids, which is generated by cleavage at the C-terminus of the longer 95 

NMU sequence.  96 

 97 

Figure 1. Human, rat and mouse NMU. The residues marked in red and the C-terminal amidation are 98 

entirely conserved in mammalian species. The sequences are elongated with asterisks to align similar 99 

amino acid residues. [Double column Figure]  100 

A remarkable homology, in particular at the C-terminus, can be observed between the different 101 

isoforms of NMU in different species (Figure 1). Across all mammals the C-terminal amidated 102 

heptapeptide (Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2) is entirely conserved, which implies that this is an 103 

important part for its biological functioning [2, 3]. The NMU peptide is widely distributed in the body, 104 

both in the periphery and centrally, with the highest levels in the gastrointestinal tract and the 105 

hypothalamus and anterior pituitary gland of the brain [4-6]. NMU plays a role in different 106 

physiological processes such as smooth muscle contraction, blood pressure, regulation of the stress 107 

response, feeding and energy homeostasis, nociception and immune regulation [3]. It exerts its effects 108 

via two G protein-coupled receptors (GPCRs), NMUR1 and NMUR2. NMUR1 is particularly found in 109 

the periphery, whereas NMUR2 is mainly expressed in the central nervous system (CNS) [2, 3]. Since 110 

NMU interacts with the regulation of feeding behavior, exerting anorexigenic effects [7], there has 111 

recently been a lot of interest in the development of NMUR agonists for the treatment of diabetes and 112 

obesity, major health concerns for modern society [8, 9]. Moreover, NMU-deficient mice become 113 

obese with age and these NMU-/- mice are characterized by an increased body weight and adiposity, 114 

hyperphagia, and a decrease in locomotor activity and energy expenditure [10]. Conversely, mice 115 

overexpressing NMU are leaner than wild type animals and are characterized by hypophagia and an 116 

improved glucose tolerance [11].  117 
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 118 

Figure 2. Structure and sequence of NMU-8 [single column Figure] 119 

Several novel NMU-analogs have been synthesized over the past years. Like many other naturally 120 

occurring peptides, NMU has a typical short half-life of less than 5 min after subcutaneous (sc) 121 

injection [12]. To unveil critical amino acid residues and to develop potent peptidergic NMU-analogs 122 

with improved stability, Hashimoto et al. performed a first structure activity relationship (SAR) study 123 

on isolated chicken smooth muscle preparations with the NMU-8 peptide (Figure 2). D-amino acid 124 

substitutions revealed two non-competitive antagonists, namely [D-Pro6]-NMU-8 and [D-Leu3,D-125 

Pro6]-NMU-8 [13]. The introduction of acyl groups, such as an acetyl, benzoyl and propionyl moiety, 126 

to the N-terminus led to the discovery of peptides with an increased contractile activity [14]. 127 

Additional SAR studies on the peripheral avian NMU receptors [15-17] and the synthesis of selective 128 

hexapeptide agonists [18-20] revealed the importance of the C-terminal Pro-Arg-Asn-NH2 segment for 129 

activation of both receptors.  130 

Selectivity towards NMUR1 could be obtained by introducing Trp or 2’naphtylalanine (2’Nal) at 131 

position 3 (Leu in the natural sequence) and selectivity towards NMUR2 was reported when Arg5 was 132 

replaced by an α,β-diaminopropionic acid (Dap) residue. Further elaboration of this SAR study 133 

resulted in a NMUR2 selective hexapeptide agonist, namely 3-cyclohexylpropionyl-Leu-Leu-Dap-134 

Pro-Arg-Asn-NH2 [18]. Although a selective agonist of NMUR1 was described by Takayama et al. as 135 

well, this analog (i.e. 2-thienylacetyl-Trp-Phe(4-F)-Arg-Pro-Arg-Asn-NH2) still activated NMUR2 to 136 

an important extent [19]. A further finetuning of this molecule led to the discovery of a potent 137 

NMUR1 selective hexapeptide agonist by replacing Phe(4-F) with a (αMe)Trp [20]. 138 

Additionally, other novel analogs based on the truncated form of NMU, such as small lipidated NMU-139 

analogs [21] and PEGylated NMU-8 [22], were already described to have potent anorectic and anti-140 

obesity effects. Several molecules based on the long version of NMU were synthesized as well, 141 

including a NMU-25 conjugate with human serum albumin [23], a PEGylated NMU-25 derivative 142 

[24] and lipidated NMU-25 analogs [25]. These molecules were reported to display potent and long-143 

lasting effects on food intake when peripherally administered in mice. Altogether, NMU holds a great 144 

therapeutic promise. 145 
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In this study, we describe the synthesis and in vitro evaluation of a series of peptidergic NMU ligands, 146 

based on the naturally occurring NMU-8, as lead molecule. Although not naturally occurring in 147 

human, NMU-8 was used as a lead since this peptide has the same C-terminal amino acid sequence as 148 

human (h) NMU-25, and acts as a full agonist on the hNMURs without a loss in potency [26]. A first 149 

set of analogs consisted of peptides with modifications described in literature on one hand and new 150 

peptidergic ligands on the other hand. This approach allowed to verify if the previous reported activity 151 

profiles on chicken crop smooth muscle preparations are similar when analyzed in the commonly used 152 

human embryonic kidney 293 (HEK293) cell line. In a second set of NMU-analogs, steric bulk, 153 

conformational constraints and ‘peptoid’ residues were introduced with the aim of developing peptides 154 

with NMUR subtype selectivity, improved pharmacokinetics and enhanced proteolytic stability. The 155 

effect of the introduced modifications on the affinity and activity at NMUR1 and NMUR2 was 156 

evaluated on HEK293 cells transiently expressing one of these receptors. The effect of some key 157 

modifications on the half-life of the analogs was determined in an in vitro stability assay with human 158 

plasma.   159 
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Material and Methods 160 

Chemicals 161 

2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate (TBTU), N,N-162 

diisopropylethylamine (DIPEA), dimethylformamide (DMF), 4-methyl-piperidine, dichloromethane 163 

(DCM), 1-hydroxybenzotriazole (HOBt), diisopropylcarbodiimide (DIC), bromoacetic acid, dimethyl 164 

sulfoxide (DMSO), triethylsilane (TES), acetonitrile (ACN), fetal bovine serum and poly-D-lysine 165 

were obtained from Sigma Aldrich (Saint Louis, Missouri, USA). Acetic anhydride, diethylether and 166 

Pd/BaSO4 were purchased from Millipore, Merck (Darmstadt, Germany). Trifluoroacetic acid (TFA) 167 

was obtained from Fluorochem Ltd (Hadfield, UK). All amino acids were purchased from Iris Biotech 168 

GmbH (Marktredwitz, Germany). Tritium gas was from Technobexport (Moscow, Russia). 169 

Dulbecco’s Modified Eagle Medium (DMEM) with GlutaMAX TM, Opti-MEM with GlutaMAXTM and 170 

Hanks Balanced Salt Solution (HBSS) were products from Gibco, Life Technologies (Carlsbad, 171 

California, USA). Lipofectamine 2000 was from Invitrogen (Carlsbad, California, USA). Myo-[2-172 

3H(N)]inositol, Scintillation Proximity Assay (SPA)-yttrium silicate beads solution and Micro-Scint 20 173 

were purchased from Perkin Elmer (Waltham, Massachusetts, USA). Human plasma was obtained 174 

from the Belgian Red Cross (Leuven, Belgium). Formic acid (FA) was purchased from J.T. Baker 175 

(Center Valley, Pennsylvania, USA). 176 

General 177 

Analytical high performance liquid chromatography (HPLC) was carried out on an Agilent 1100 178 

HPLC system with ChemStation for LC 3D software (Discovery® BIO Wide Pore RP C18 column, 15 179 

cm × 2.1 mm, 3 µm from Supelco, Bellefonte, Pennsylvania, USA). Gradient elution took place using 180 

water with 0.1 % TFA and ACN with 0.1 % TFA as mobile phases. UV-detection was carried out at 181 

215 nm. Peptides were purified using a preparative HPLC apparatus from Gilson with Unipoint 182 

software package (Discovery® BIO Wide Pore C18 column, 25 cm × 21.2 mm, 5 µm from Supelco). 183 

The same mobile phases were used as for analytical HPLC and UV detection was carried out at 215 184 

nm as well. Mass spectrometry (MS) was performed on a Micromass Q-Tof micro spectrometer with 185 

electrospray ionization. Data collection and spectrum analysis were executed with Masslynx software. 186 

Peptide synthesis 187 

All peptides were manually synthesized by the 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid 188 

phase peptide synthesis (SPPS) on Rink Amide AM resin (ChemImpex, 0.45 – 0.60 mmol g−1). For 189 

standard couplings, Fmoc-protected amino acids (3 equiv) were sequentially coupled with TBTU (3 190 

equiv) and DIPEA (9 equiv) for 1 h at room temperature (rt) in DMF. Fmoc deprotection was carried 191 

out in a two-step manner (5 min and 15 min) by treating the resin with a 20% (v/v) 4-methyl-192 

piperidine solution in DMF. After each coupling and Fmoc deprotection, the resin was washed 193 
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thoroughly with DMF (3x) and DCM (3x). Amino acids containing an unprotected phenol in their side 194 

chain [7-hydroxy-L-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (7-OH-Tic) and 2’,6’-195 

dimethyltyrosine (Dmt)] were coupled for 45 min at rt using a 2-fold excess of the Fmoc-protected 196 

amino acid, HOBt (2 equiv) and DIC (2 equiv) in DMF. The same coupling conditions were in that 197 

case used until completion of the peptide sequence, as well as when hydroxyl-containing ‘peptoid’ 198 

residues were present in the sequence. 199 

N-substituted glycines were prepared on the solid support using the following method: after Fmoc 200 

deprotection, bromoacetylation of the amine was performed by adding 20 equiv of bromoacetic acid 201 

and 25 equiv of DIC in DMF for 1 h. This mixture was filtered off and the resin was washed as 202 

described above. Next, 20 equiv of the primary amine was added to the resin in DMSO and mixed for 203 

1 h to introduce the side chain [27]. After insertion of the side chain, further peptide assembly was 204 

continued as described above.  205 

Acetylation of the N-terminus was performed with acetic anhydride (10 equiv) and DIPEA (5 equiv) 206 

in DMF for 1 h. When unprotected reactive side chains were present, the acetylation was executed for 207 

30 min with half of the standard amounts, more precisely 5 equiv of acetic anhydride and 2.5 equiv of 208 

DIPEA. Cleavage from the resin and side chain deprotection were performed with TFA/TES/water 209 

(95/2.5/2.5 v/v/v) at rt for 3 h. The resulting cleavage mixture was evaporated to remove the TFA. The 210 

residue was next added to cold diethylether and centrifuged for 3 min at 3000 rpm. The precipitate was 211 

redissolved in a mixture of water and ACN (1/1 v/v) and lyophilized. Finally, the crude peptide was 212 

purified by preparative reversed phase HPLC (RP-HPLC) and lyophilized again. The structure of the 213 

pure product was confirmed by high-resolution MS (HRMS). The purity of all peptides was more than 214 

95% according to HPLC analysis. 215 

Tritium labeling of NMU-8 216 

Iodogen (0.92 µmol) was dissolved in 200 µL CH2Cl2 and the solution was evaporated to dryness 217 

under nitrogen in a reaction vial. NMU-8 (0.69 µmol) was dissolved in 1 mL of 50 mM Na2HPO4 218 

buffer pH 7.0 and the solution was added to the freshly prepared iodogen film. 2 µmol of NaI in 50 219 

mM Na2HPO4 buffer pH 7.0 was added and the mixture was stirred at rt for 1 min. Next, the solution 220 

was removed and mixed with 125 µL of 2 mg/mL Na2S2O5 in 50 mM Na2HPO4 buffer pH 7.0. The 221 

resulting solution was purified by RP-HPLC (Vydac 218TP54 column (250 x 4.6 mm, 5 µm) with a 222 

yield of 0.8 mg (73%)). For the tritium labeling, [Tyr1(3’-I)]-NMU-8 was dissolved in 200 µL DMF 223 

containing 1 µL of trimethylamine and the solution was reacted with 3H2 gas in the presence of 224 

PdO/BaSO4 (10% Pd) catalyst for 2 h at room temperature. The catalyst was filtered off and the labile 225 

tritium atoms were removed with repeated evaporation from EtOH/water (1/1 v/v) solution. Finally, 226 

the tritium labeled peptide was purified by HPLC (Phenomenex Luna C18(2) column, 5 µm, Torrance, 227 

California, USA). The molar activity was determined with HPLC area under the curve (AUC) 228 
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measurement using a calibration curve of NMU-8, and was found to be 1.09 Tbq/mmol (29.4 229 

Ci/mmol). 230 

In vitro functional assay on NMUR1 and NMUR2 231 

An inositol triphosphate (IP3) SPA analysis was performed to study the functional activity of the novel 232 

NMU-analogs at NMUR1 and NMUR2, since both receptors are described to signal mainly through 233 

the Gαq/11 pathway [25, 28]. HEK293 cell cultures were maintained in DMEM with GlutaMAXTM, 234 

supplemented with 10 % fetal bovine serum, 180 units/mL of penicillin and 45 µg/mL streptomycin. 235 

These cultures were incubated at 37 °C with 10 % CO2 and a relative humidity of 95 %. The day prior 236 

to the transfection with NMUR1, HEK293 cells were seeded in transparent 96-well plates coated with 237 

poly-D-lysine with a density of 30 000 cells/well. Transfection was carried out by incubating the 238 

plates for 5 h with 10 ng of hNMUR1 plasmid and 0.15 µL of lipofectamine 2000 in Opti-MEM with 239 

GlutaMAXTM. An empty vector (pCMV) transfection was carried out as a negative control. One day 240 

after transfection, the HEK293 cells were incubated for 24 h with 5 µCi of myo-[2-3H(N)]inositol per 241 

well in DMEM with GlutaMAXTM. For the preparation of HEK293 cells expressing NMUR2, the 242 

calcium phosphate transfection method was used. The day prior to the transfection, HEK293 cells 243 

were inoculated in T175 flasks with a density of 6 000 000 cells in 20 mL of culture medium. The 244 

transfection mixture was prepared by dripping a solution of the hNMUR2 plasmid and calcium 245 

chloride (2 M) in tris-EDTA-buffer into 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 246 

buffered saline (2x). This mixture was slowly added onto the cells while holding the flask vertically. 247 

The HEK293 cells were incubated for 5 h at 37 °C. As a negative control, an empty vector (pcDNA) 248 

transfection was carried out. The day after the transfection, cells were seeded out in transparent 96-249 

well plates coated with poly-D-lysine with a density of 35 000 cells/well using culture medium 250 

supplemented with 5 µL myo-[2-3H(N)]inositol per mL. On the assay day, the plates were washed 251 

twice with HBSS and incubated during 30 min at 37 °C with 100 µL/well of 10 mM lithium chloride 252 

in HBSS. To each well, 5  µCi of a peptide solution was added and incubated for 60 min at 37 °C. 253 

After peptide stimulation, the cells were lysed with 50 µL/well of 10 mM FA on ice for 30 min. 35 µL 254 

of the lysates was transferred into white 96-well plates and 80 µL of SPA-yttrium silicate beads 255 

solution was added to each well. The plates were sealed and shaken for 30 min. After spinning the 256 

plates for 5 min at 1500 rpm, the decay was measured, with a delay of 8 h, during 2 min/well with the 257 

Topcount (Packard Instrument Company, Meriden, Connecticut, USA). Each NMU analog was tested 258 

in a concentration range of 10-5 to 10-11 M in at least 3 independent experiments using triplicates. 259 

Competitive binding assay at NMUR1 and NMUR2 260 

To evaluate the affinity of the novel NMU-analogs for the NMURs, a competitive binding study was 261 

performed with [3H]-NMU-8 as radioligand. Transfection of the HEK293 cells with hNMUR1 or 262 

hNMUR2 was carried out in the same ways as describe above for the functional assay with the only 263 
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difference that myo-[2-3H(N)]inositol was not added to the medium. On the assay day, the plates were 264 

washed twice with binding buffer (50 mM HEPES buffer at pH 7.5 supplemented with 5 g/L bovine 265 

serum albumin). 50 µL per well of binding buffer was added and incubated at 4 °C during 15 min. To 266 

each well, 5 µL of the peptide dilution series was added, followed by 50 µL of [3H]-NMU-8 (250 cpm, 267 

0.23 nM). The plates were incubated for 3 h at 4 °C. Afterwards, the plates were washed twice with 268 

binding buffer and 100 µL of Micro-Scint 20 was added to each well. The plates were sealed and 269 

gently shaken for 30 min. The decay was measured with the Topcount instrument. Each NMU analog 270 

was tested in a concentration range of 10-5 to 10-11 M in at least 3 independent experiments using 271 

triplicates. 272 

In vitro plasma stability 273 

An in vitro stability assay in human plasma was performed to study the effect of the introduced 274 

modifications on enzymatic stability. Prior to the stability test, selectivity of the assay, stability of the 275 

compound in the injection solvent, linearity, accuracy and precision of the method were investigated. 276 

The NMU analogs were dissolved in water and consecutive dilutions were prepared with the same 277 

solvent. An aqueous peptide solution was spiked in human plasma (10/90 v/v), which was incubated at 278 

37 °C, with a final plasma concentration of 112 µM.  Samples were taken at selected time points, 279 

depending on the analyte (Supporting Information, Table S1), by transferring 100 µL of the spiked 280 

plasma into a test tube and stopping the degradation process by adding 300 µL of methanol with 0.1% 281 

(v/v) FA (4 °C). Suspensions were vortexed for 15 s and kept at 4 °C for 30 min. After centrifugation 282 

at 14 000 rpm for 15 min, 100 µL of the supernatant was diluted with 100 µL of water in the injection 283 

vial. Samples were stored in the autosampler (4 °C) prior to injection. Analysis was performed on a 284 

Dionex Ultimate 3000 gradient RP-HPLC system using water/ACN/FA (95/5/0.1 v/v/v) and 285 

ACN/water/FA (95/5/0.1 v/v/v) for elution (CORTECS C18+, 2.1 x 150 mm, 2.7 µm column from 286 

Waters, Milford, Massachusetts, USA). For the calculation of the peptide half-life, only points with an 287 

AUC higher than the AUC of the lowest standard were used. The concentrations were calculated by 288 

use of the calibration curve and transferred to a semi-log chart presenting the log concentrations as a 289 

function of time. To study the fragmentation profile, the samples were transferred to the LC-MS 290 

system and the degradation products were identified by analyzing the m/z ratio of all peaks of the 291 

spectrum. 292 

Data analysis and statistical evaluation 293 

Graphical representations and statistical evaluation were carried out with GraphPad Prism software 294 

(San Diego, California, USA). EC50 values were determined by nonlinear regression using sigmoidal 295 

dose-response curve fit. Calculation of the IC50 values was performed as well with sigmoidal dose-296 

response curve fitting (variable slopes). Microsoft® Office Professional 2010 Excel was used for 297 

calculations of the peptide half-life.  298 
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Results and Discussion 299 

Peptide synthesis  300 

The truncated NMU-8 was taken as lead structure for the synthesis of all analogs, since it is a naturally 301 

occurring form of the neuropeptide, of which the C-terminus is considered to be the critical part of the 302 

peptide for receptor activation [3]. All targeted peptides were synthesized by Fmoc-based SPPS on 303 

Rink Amide AM resin (vide supra) using TBTU as coupling reagent. The N-substituted glycines (the 304 

so-called ‘peptoid’ residues) in peptides 31 - 38 were prepared using the solid phase submonomer 305 

method [27]. Amino acids with an unprotected phenol in their side chain (7-OH-Tic, Dmt) were 306 

coupled using DIC/HOBt in order to prevent O-acylation. For these analogs, as well as for the 307 

hydroxyl-containing peptoids, the remaining peptide sequence was assembled using the DIC/HOBt 308 

mediated couplings. No difficulties were observed to couple Fmoc-Leu-OH to the secondary amine of 309 

the peptoid residues. All peptides were purified to greater than 95% purity by RP-HPLC, and their 310 

structure was confirmed by HRMS (Table S2, supporting information). The tritium labeled NMU-8 311 

which was required for the radioligand displacement experiments, was obtained by first iodination of 312 

NMU-8 [29], to Tyr(3’-I)-NMU-8, followed by catalytic reduction with an excess of tritium gas. The 313 

crude [3H]-NMU-8 was purified by RP-HPLC resulting in the radioligand with a radiochemical purity 314 

of more than 98% and with a specific activity of 1.09 TBq/mmol (29.4 Ci/mmol). 315 
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Table 1. Sequences and in vitro activity and affinity of the literature based NMU-8 analogs (first generation) on hNMUR1 and hNMUR2. [double column] 316 

hNMUR1 hNMUR2    Selectivity 

Potency Affinity Potency Affinity IC 50 NMUR2/ 
  Sequence EC50 (nM)  Emax (%) IC 50 (nM)   EC50 (nM)  Emax (%) IC50 (nM)   IC50 NMUR1 

1 H-Tyr-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 38.9  100.0 0.78 30.8 100.0 1.7 2 

2 Ac-Tyr-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 0.51 111.3 0.29 0.71 100.0 2.0 7 

3 H-Tyr-Phe-Leu-Phe-Ala-Pro-Arg-Asn-NH2 709.4 57.1 - 391.0 68.1 - - 

4 Ac-Tyr-Phe-Leu-Phe-Ala-Pro-Arg-Asn-NH2 274.6 61.0 - 242.2 75.5 - - 

5 H-D-Tyr -Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 18.6 71.3 - 34.3 103.7 - - 

6 Ac-D-Tyr -Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 8.1 57.4 - 6.2 99.0 - - 

7 H-Tyr-Phe-Leu-Phe-Arg-D-Pro-Arg-Asn-NH2 3171 73.1 1167 1079 110.7 802.9 0.7 

8 Ac-Tyr-Phe-Leu-Phe-Arg-D-Pro-Arg-Asn-NH2 2271 71.0 844.4 2002 80.9 1365 2 

9 H-Tyr-Phe-D-Leu-Phe-Arg-D-Pro-Arg-Asn-NH2 NA NA 775.5 2495 98.4 6132 8 

10 Ac-Tyr-Phe-D-Leu-Phe-Arg-D-Pro-Arg-Asn-NH2 NA NA 3755 NA NA 1089 0.3 

11 H-Tyr-Phe-Leu-Phe-Arg-Pro-D-Arg -Asn-NH2 683.7 56.6 - 616.1 131.1 - - 

12 Ac-Tyr-Phe-Leu-Phe-Arg-Pro-D-Arg -Asn-NH2 343.4 64.1 - 382.3 138.8 - - 

13 3-cyclohexylpropionyl-Leu-Leu-Dap-Pro-Arg-Asn-NH2 NA NA 4286 3.8 91.9 43.9 0.01 

14 3-cyclohexylpropionyl-Leu-Leu-Dap-D-Pro-Arg-Asn-NH2 NA NA 18320   926.3 100.4 10700   0.6 
 317 

Modifications compared to the native NMU-8 sequence (1) are marked in bold. EC50 values are calculated based on the IP3 SPA data. Emax is the percentage of the maximum 318 

response at 10-5 M compared with the NMU-8 response at the same concentration. IC50 values are calculated based on the competitive binding assay. Receptor selectivity is 319 

expressed as the ratio of the IC50 value for NMUR2 over the IC50 value for NMUR1 of each NMU-analog. NA: not applicable, no agonist activity up to 10-6 M. -: not 320 

determined. 321 
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Biological evaluation of the first set of NMU-analogs 322 

Evaluation of the agonistic activities at the NMURs of the first set of NMU-analogs was performed in 323 

the present study on HEK293 cells transiently expressing hNMUR1 or hNMUR2 using an inositol 324 

triphosphate (IP3) SPA assay. The affinity of a selection of analogs for the NMURs was determined in 325 

these cells using competitive displacement with [3H]-NMU-8 as radioligand. Table 1 shows the results 326 

for the modified peptides (Supporting information, Table S3, for results presented as mean ± SEM).  327 

N-terminal acetylation 328 

It is reported that enzymatic degradation of the NMU-8 peptide mainly occurs via the N-terminus [14]. 329 

With the aim to develop NMU-analogs possessing an increased stability, N-terminal modifications 330 

were introduced in the peptide sequence. Sakura et al. described that acetylation of the N-terminal Tyr1 331 

leads to an increased resistance against proteolysis. Moreover, it has previously been shown that this 332 

modification led to an increase in contractile activity on chicken crop smooth muscle preparations 333 

[14]. In the present study, we evaluated Ac-NMU-8 (2) in an IP3 accumulation assay on HEK293 cells, 334 

an immediate read-out for receptor activation. The introduction of an acetyl group at the N-terminus 335 

(2) led to a more than 40-fold increase in potency on both NMURs (with EC50 values of 0.51 nM and 336 

0.71 nM for NMUR1 and NMUR2, respectively) when compared to the native NMU-8 (1) (EC50 = 337 

38.9 nM for NMUR1 and 30.8 nM for NMUR2). N-terminal acetylation of 1 did not alter the affinity 338 

for the NMURs. Acetylation of the N-terminus was systematically carried out in the current study, to 339 

present both the acetylated and non-acetylated form of all analogs, and led in general to an increase of 340 

the relative activity on both NMURs, when compared to the non-acetylated peptide.  341 

[Ala5]-NMU-8 342 

A previous study by Funes et al. reported a tool for shifting selectivity towards NMUR2 when 343 

replacing Arg5 by an Ala residue [30]. However, in our hands this modification (3) led only to a 344 

slightly increased selectivity for NMUR2 (EC50 for NMUR1= 709.4 nM and EC50 for NMUR2 = 345 

391.0 nM) instead of the 15-fold shift reported by Funes et al. The loss in potency, compared to 346 

NMU-8, came with partial agonism on both NMURs. N-terminal acetylation of this analog (4) 347 

increased the potency for both receptors, although activity remained low, as compared to NMU-8. 348 

However, partial agonists can be of therapeutic importance since they could be regarded as molecules 349 

exerting both agonistic, when low levels of the endogenous ligand is present, and antagonist effects, 350 

when present together with a full agonist competing for the same binding site [31].  351 

Chirality switches 352 

A D-amino acid scan of NMU-8 was performed by Hashimoto et al. and tested on isolated chicken 353 

crop smooth muscle preparations [13]. Inspired by the SAR studies which were performed in ‘the 354 

early days of NMU research’, we decided to synthesize some of these analogs and evaluate them on 355 
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cell cultures expressing the NMURs. [D-Tyr1]-NMU-8 was reported to enhance the contractile activity 356 

in the smooth muscle preparation, presumably due to an increased resistance to aminopeptidase-like 357 

degradation [13]. In our hands, replacing Tyr1 by D-Tyr led to peptide 5, and its acetylated form 6, 358 

with comparable potencies to NMU-8 for NMUR1 and NMUR2, although a decrease of its maximal 359 

effect (Emax, effect at 10-5 M compared with the response of the same concentration of NMU-8) on 360 

NMUR1 was observed (e.g., 57.4 % for 6). However, rather than an increase in potency compared to 361 

the parent peptide, a decreased potency was observed especially when comparing activities of the 362 

acetylated forms 6 versus 2. In the literature, [D-Pro6]-NMU-8 and [D-Leu3,D-Pro6]-NMU-8 were 363 

found to be weak non-competitive antagonists in chicken crop preparations [13]. We included both 364 

molecules and their N-terminal acetylated forms (compounds 7-10) in our study. These ligands indeed 365 

did not show potent agonistic activity in the in vitro cell-based assays. To further investigate if these 366 

molecules could act as antagonists on the NMURs, their ability to compete with radiolabeled agonist, 367 

[3H]-NMU-8, was evaluated. These compounds (7 – 10) all showed a 1000-fold, or even higher, 368 

decrease in affinity for NMUR1. On NMUR2, binding studies revealed a major loss in affinity, 369 

ranging from a 400 to more than 3000-fold decrease. These results demonstrate that these 370 

modifications lead to a loss in affinity and potency of the molecules. To our knowledge, no peptidergic 371 

antagonists for NMUR1 or NMUR2 have been proven to exert activity in vivo until now. This 372 

correlates with the observation that [D-Pro6]-NMU-8 failed to exert antagonistic activity in vivo [32]. 373 

However, a small molecule antagonist for NMUR2, R-PSOP, was reported by Liu et al [33]. 374 

Replacing Arg7 by D-Arg (11, 12) resulted in full agonists with an even higher intrinsic activity than 375 

NMU-8 on NMUR2 (Emax values of 131.1 % and 138.8 % for 11 and 12, respectively), but these 376 

analogs gave way to a decrease in potency on both receptors. However, these molecules still possessed 377 

similar potencies on NMUR1, as compared to the activity on NMUR2, they were only able to partially 378 

activate this receptor. Finally, Takayama et al described a selective NMUR2 receptor agonist, namely 379 

3-cyclohexylpropionyl-Leu-Leu-Dap-Pro-Arg-Asn-NH2 [18], which was resynthesized as compound 380 

13 together with the analog where Pro was replaced by D-Pro (14), in order to verify whether this 381 

could lead to selective NMUR2 receptor antagonism. Also in our hands, analog 13 acted as a selective 382 

NMUR2 agonist with a lower affinity but conserved potency on NMUR2 as compared to NMU-8. The 383 

additional D-amino acid substitution did not give rise to a NMUR2 selective antagonists as compound 384 

14 possessed a weak affinity and in consequence a low activity on both NMURs. 385 
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Table 2. Sequences and in vitro activity and affinity of the novel NMU-8 analogs (second set) for hNMUR1 and hNMUR2. [double column] 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 

 

Modifications 

compared to 

the native 

NMU-8 

sequence (1) 

are marked 

in bold. 

EC50 values 

are calculated 

based on the 

IP3 SPA 

data. Emax is the 

percentage of the 

maximum response at 10-5 M 413 

compared with the NMU-8 response at the same concentration. IC50 values are calculated based on the competitive binding assay. Receptor selectivity is expressed as the ratio of the IC50 value for NMUR2 over the IC50 value for NMUR1 of each 414 

NMU- analog.415 

hNMUR1 hNMUR2    Selectivity 

Potency Affinity Potency Affinity IC 50 NMUR2/ 

  Sequence EC50 (nM)  Emax (%) IC 50 (nM)   EC50 (nM)  Emax (%) IC50 (nM)   IC50 NMUR1 

1 H-Tyr-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 38.9  100.0 0.78  30.8 100.0 1.7  2 

15 H-7-OH-Tic-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 5.5 103.5 0.086 3.5 115.3 21.4 249 

16 Ac-7-OH-Tic-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 5.1 99.3 0.037 13.4 115.8 12.3 332 

17 H-2'Nal-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 65.8 95.1 0.97 4.8 106.1 9.9 10 

18 Ac-2'Nal-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 1.6 90.9 0.88 1.6 83.9 5.6 6 

19 H-Dmt-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 10.4 95.0 0.34 0.83 100.7 4.3 13 

20 Ac-Dmt-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2 4.0 109.1 0.15 0.70 91.5 2.4 16 

21 H-Tyr-Phe-Leu-7-OH-Tic-Arg-Pro-Arg-Asn-NH2 94.5 94.6 8.6 624.3 109.1 1010 117 

22 Ac-Tyr-Phe-Leu-7-OH-Tic-Arg-Pro-Arg-Asn-NH2 12.3 88.1 1.2 192.6 86.1 330.8 276 

23 H-Tyr-Phe-Leu-1'Nal-Arg-Pro-Arg-Asn-NH2 41.4 101.1 0.31 225.7 109.8 370.5 1195 

24 Ac-Tyr-Phe-Leu-1'Nal-Arg-Pro-Arg-Asn-NH2 4.3 105.3 0.41 246.5 86.4 39.1 95 

25 H-Tyr-Phe-Leu-2'Nal-Arg-Pro-Arg-Asn-NH2 51.0 103.0 0.51 378.0 104.7 424.4 832 

26 Ac-Tyr-Phe-Leu-2'Nal-Arg-Pro-Arg-Asn-NH2 4.2 109.0 0.32 304.2 96.2 195.3 610 

27 H-Tyr-Phe-Leu-Dmt-Arg-Pro-Arg-Asn-NH2 77.9 96.1 1.6 1286 103.4 1649 1031 

28 Ac-Tyr-Phe-Leu-Dmt-Arg-Pro-Arg-Asn-NH2 7.7 104.4 0.36 3675 96.7 1857 5158 

29 H-Tyr-Phe-Leu-Oic-Arg-Pro-Arg-Asn-NH2 184.9 72.2 66.2 472.1 92.0 1546 23 

30 Ac-Tyr-Phe-Leu-Oic-Arg-Pro-Arg-Asn-NH2 93.0 83.1 68.6  1830 92.5 253.4  4 

31 H-Tyr-Phe-Leu-N(Benzyl)Gly-Arg-Pro-Arg-Asn-NH2 1053 73.7 46.3  1103 103.1 1403  30 

32 Ac-Tyr-Phe-Leu-N(Benzyl)Gly-Arg-Pro-Arg-Asn-NH2 172.2 73.6 83.1  1278 85.4 1019  12 

33 H-Tyr-Phe-Leu-N(4-OH-Benzyl)Gly-Arg-Pro-Arg-Asn-NH2 593.7 54.6 173.8  1407 69.4 1961  11 

34 Ac-Tyr-Phe-Leu-N(4-OH-Benzyl)Gly-Arg-Pro-Arg-Asn-NH2 191.7 60.1 27.9  2686 75.4 1813  65 

35 H-Tyr-Phe-Leu-N(Phenethyl)Gly-Arg-Pro-Arg-Asn-NH2 822.7 75.5 30.2  355.7 121.8 261.6  9 

36 Ac-Tyr-Phe-Leu-N(Phenethyl)Gly-Arg-Pro-Arg-Asn-NH2 138.9 83.1 62.9  250.0 99.9 316.1  5 

37 H-Tyr-Phe-Leu-N(4-OH-Phenethyl)Gly-Arg-Pro-Arg-Asn-NH2 574.4 57.6 100.1  382.2 94.3 428.9  4 

38 Ac-Tyr-Phe-Leu-N(4-OH-Phenethyl)Gly-Arg-Pro-Arg-Asn-NH2 216.6 60.6 3.9  339.2 80.7 206.9  53 

39 H-Tyr-Phe-Leu-Phe-Arg-Tic-Arg-Asn-NH2 5496 79.0 162.3  45.5 99.3 13.0  0.08 

40 Ac-Tyr-Phe-Leu-Phe-Arg-Tic-Arg-Asn-NH2 230.0 72.9 54.4  5.4 91.8 11.2  0.2 

41 H-Tyr-Phe-Leu-Phe-Arg-Oic-Arg-Asn-NH2 273.2 106.3 24.3   10.2 90.4 12.7  0.5 

42 Ac-Tyr-Phe-Leu-Phe-Arg-Oic-Arg-Asn-NH2 28.8 95.0 11.2  1.8 84.3 13.9   1 
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 416 

Figure 3. In vitro evaluation of the effect of Tyr1 substitution on receptor activation. IP3 accumulation 417 

assay performed on HEK293 cells, transiently expressing A) NMUR1 or B) NMUR2. C) Structures of 418 

the novel NMU-analogs 15, 16, 17, 18, 19 and 20. Data are shown as mean ± SEM (n=3). [double 419 

column] 420 

Biological evaluation of the second set of NMU-analogs 421 

Substitution of the N-terminal tyrosine residue  422 

To protect the peptides from cleavage by aminopeptidases, the N-terminus of NMU-8 was modified. 423 

Figure 3 gives an overview of the NMU-analogs with modification at the Tyr1 residue and their 424 

activity at NMUR1 and NMUR2. An analog wherein Tyr1 was replaced by 7-OH-Tic was synthesized 425 

together with the N-terminally acetylated peptide, to give compounds 15 and 16. Both molecules 426 

showed a very high, picomolar affinity for NMUR1, which is about ten times better than those of the 427 

parent compounds 1 and 2, whereas their affinity for NMUR2 decreased. In the activity assay, they 428 

were however non-selective, full agonists with a 15 % increase of the maximal effect at NMUR2 429 

(Table 2). When Tyr1 was replaced by 2’-naphtylalanine (2’Nal), a non-selective agonist for the 430 

NMURs (17) with similar affinity and potency as compared to compound 1 was found. The acetylated 431 

analog (18) however, is more potent than NMU-8 at NMUR1 and NMUR2, with a similar activity on 432 

both receptors and a 6-fold higher affinity for NMUR1 (Table 2 and Figure 3). Finally, a substitution 433 

by Dmt resulted in potent, but non-selective, NMUR agonists 19 and 20. They possessed a 434 

subnanomolar affinity for NMUR1, yet an increased potency on NMUR2 was observed.  435 

These modifications of the Tyr residue, namely replacement by 7-OH-Tic, 2’Nal or Dmt, led to the 436 

discovery of potent NMU-analogs. It indicates that the side chain hydroxyl function in this position is 437 

not important for receptor activation. However, an aromatic moiety should be present. Consequently, 438 
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when the N-terminus was acetylated, these analogs became even more potent on both receptors, 439 

presenting all an increased potency compared to NMU-8, with compound 16 as the only exception. It 440 

has an approximately 4-fold lower potency on NMUR2 than the analog with the free amine at the N-441 

terminus (15). However, it was equipotent on this receptor as compared with the native NMU-8 442 

peptide. All compounds (15 – 20) possessed higher affinity for NMUR1 although most molecules lead 443 

to an increased activity on NMUR2. 444 

 445 

Figure 4. In vitro evaluation of the effect of Phe4 substitution on affinity and receptor activation. A) 446 

IP3 accumulation assay performed on HEK293 cells, transiently expressing NMUR1. B) Competitive 447 

binding assay with [3H]-NMU-8 carried out on HEK293 cells, transiently expressing NMUR1. C) 448 

Structures of the novel NMU-analogs 24, 26 and 28.  Data are shown as mean ± SEM (n = 3). [double 449 

column] 450 

Introduction of unnatural amino acids in position 4 451 

Modifications of the Phe residue in position 4 were introduced to prevent the cleavage of the peptide 452 

at the biodegradation site Phe-Arg, which was proposed by Takayama et al. after in vitro stability 453 

assays in rat serum [19]. By replacing Phe4 by 7-OH-Tic, both the analogs with a free amine N-454 

terminus (21) and the acetylated form (22) were agonists on NMUR1. Compound 21 resulted in an 455 

agonist with a minor loss in affinity and potency on this receptor. On the other hand, its acetylated 456 

form (22) possessed an increased affinity and potency, as compared to NMU-8, although a loss of 457 

more than 10 % of the maximal agonist activity was observed (Table 2). On NMUR2, this 458 

modification led to a drop in affinity, and consequently the activity. Moreover, the maximal effect on 459 

NMUR2 decreased with more than 10 % for analog 22. When a bulky aromatic residue, 1’Nal (23) or 460 

2’Nal (25), was introduced in the sequence, full agonists were obtained for NMUR1 with similar 461 

potencies as NMU-8. When these analogs were acetylated at their N-terminus, to give compounds 24 462 
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and 26 respectively, potent agonists were found with a 10-fold higher activity at NMUR1 and an 463 

increased affinity. For these compounds (23 – 26), a loss in affinity and activity for NMUR2 was 464 

found. All potent NMUR1 selective NMU-analogs, obtained by modification of Phe4, are presented in 465 

Figure 4. When a bulky Tyr-analog was introduced in the position of Phe4 (i.e. by replacing Phe with 466 

Dmt to give 27), a NMUR1-selective agonist with a slightly diminished potency (EC50= 77.9 nM), as 467 

compared to NMU-8, was again obtained. The acetylated analog (28) showed a higher potency and 468 

affinity for NMUR1 (Figure 4). A last modification which was introduced in this position consisted of 469 

the replacement of Phe by octahydroindolecarboxylic acid (Oic), a residue that can be regarded as a 470 

saturated and constrained Phe surrogate. Unfortunately, both compounds 29 and 30, were 471 

characterized by a lower potency and affinity on both NMURs as compared to NMU-8.  472 

Importantly, these results reveal that the modification of Phe in position 4 can serve as a tool to obtain 473 

NMU-analogs with an increased selectivity for NMUR1. Moreover, it shows that a hydroxyl function 474 

in the side chain of Phe is tolerated since the NMUR1 activation is unaltered when Dmt was 475 

introduced. However, when Phe is replaced by 7-OH-Tic, a decrease in affinity for NMUR1 was 476 

found. This could be explained by the fact that an unfavorable conformational constraint is imposed, 477 

and hence that the side chain is forced in a less favorable position for binding to the NMURs [34]. 478 

Remarkably, this loss in affinity could be restored by the introduction of an acetyl group at the N-479 

terminus. Moreover, when Phe is replaced by Oic, the potency diminished even more due to a loss in 480 

affinity for the NMURs. 481 

N-substituted glycines in position 4 482 

A series of N-substituted glycines, the so-called ‘peptoid’ residues, was introduced in the NMU-8 483 

sequence to mimic the aromatic character of Phe, while aiming to protect the degradation site Phe-Arg 484 

by using another strategy than for the analogs of the previous section. Moreover, a shift of the side 485 

chain from the α-carbon to the nitrogen in neurotensin(8-13) has been shown to shift the receptor 486 

selectivity from NTSR1 to NTSR2 [35]. Hence, benzyl, 4-hydroxy-benzyl, phenethyl and 4-hydroxy-487 

phenethyl moieties were inserted instead of Phe4 in order to verify whether selectivity could be 488 

impacted. However, all NMU-analogs with a N-substituted Gly instead of Phe at position 4 489 

(compounds 31 – 38) resulted in weak agonists with a loss in potency and a lower Emax compared to 490 

our endogenous lead peptide NMU-8. Moreover, a decreased affinity for both NMURs was observed 491 

as well. It can be speculated that the backbone amide is necessary for receptor binding and activation. 492 

Another explanation for the loss of affinity and activity could be that the side chain is not aligned into 493 

the right position to favor binding and, subsequently, to exert an effect on the NMURs. Of note, to 494 

compensate for such an unfavorable shift of the side chains, the homologated phenethyl and 4-495 

hydroxy-phenethyl ‘side chains’ were applied, even though unsuccessfully. 496 

Substitution of the proline residue 497 
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The naturally constrained Pro6 residue was replaced by the conformationally constrained 1,2,3,4-498 

tetrahydroisoquinoline-3-carboxylic acid (Tic) residue. This bridged residue led to poor partial 499 

NMUR1 agonists (39 and 40), which possessed a decreased receptor affinity as compared to NMU-8. 500 

Although these analogs had a lower affinity for NMUR2 than compound 1, the non-acetylated peptide 501 

was able to fully activate NMUR2 with only a 4.5 fold higher EC50 value. Moreover, compound 40 502 

was found to have a 2-fold higher potency at NMUR2, but it was not able to fully activate the receptor 503 

(Emax = 91.8 %). Similarly to the insertion of Tic at this position, replacement of Pro by Oic led to a 504 

potent agonist (41) on NMUR2, even though it was already stated in literature that the Pro-Arg-Asn-505 

NH2 segment is critical for receptor activation [18]. Moreover, when this peptide was N-terminally 506 

acetylated (42), the NMU-8 potency was exceeded. On NMUR1, the substitution of Pro by Oic led to 507 

a full agonist with a 7-fold decrease in potency. However, when an acetylation was introduced at the 508 

N-terminus, the NMU-8 potency was restored. Both compounds 41 and 42 possessed a decreased 509 

affinity for the NMURs. Interestingly, modifications in this, previously described, critical part of the 510 

NMU-8 sequence show that other cyclic amino acids are tolerated in this region of the peptide. 511 

Substitution of Pro gave rise to molecules with an increased NMUR2 selectivity and high potency at 512 

this receptor subtype, which makes it an attractive tool to further develop receptor subtype selective 513 

analogs.  514 

In vitro plasma stability 515 

To evaluate the effect of the introduced modifications on the proteolytic stability of the NMU-analogs, 516 

in vitro degradation studies in human plasma at 37 °C were performed on a selection of the novel 517 

peptides. The percentage of the intact NMU-analog was measured over time by HPLC-UV analysis 518 

(Figure 5). Afterwards the samples were analyzed by means of MS and degradation profiles were 519 

studied (Figure 6). Depending on the stability of the peptide, samples were taken at different time 520 

points (Table S1).  521 

NMU-8 (1) was characterized by a short half-life of only 4.3 ± 0.2 min. It was rapidly degraded at its 522 

unprotected N-terminus where Tyr1 was cleaved from the sequence. Since acetylation of the N-523 

terminal amine was systematically performed on all NMU-analogs described in this study, the 524 

resistance to biological degradation of compound 2 was evaluated next. When an acetyl group was 525 

introduced at the N-terminus of the NMU-8 sequence, a more than 25-fold increase of the half-life 526 

(117.8 ± 0.7 min) was observed. The prior cleavage site Tyr1-Phe2 was protected by this N-terminal 527 

modification and degradation took place by cleavage of the peptide between the Phe2 and Leu3 528 

residues. Substitutions of the Tyr residue did not lead to a further increase of the enzymatic stability 529 

with calculated half-lifes of 109.8 ± 3.1 min, 128.8 ± 1.7 min and 154.5 ± 10.2 min for compounds 16, 530 

18 and 20, respectively.  531 
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 532 

Figure 5. Percentage of recovery of NMU-analogs in human plasma incubated at 37 °C. The 533 

experiments were performed in triplicate and the results are presented as mean ± SEM (n = 3). [single 534 

column Figure] 535 

Although introduction of a modified amino acid in position 1 gave rise to molecules with a similar 536 

half-life compared to Ac-NMU-8 (2), it was observed that the major cleavage site of compound 16 537 

was situated in the middle of the sequence, between Phe4 and Arg5. This position was proposed earlier 538 

to be an important biodegradation site [19]. Next, the peptide was cleaved further at the same position 539 

as described for compound 2, namely after Phe2. The NMU-analog 18 was characterized by the same 540 

major cleavage site as for 16, but the introduction of 2’Nal in the sequence led to stabilization of the 541 

labile Phe2-Leu3 segment. In a smaller extent the peptide was cleaved between Pro6 and Arg7. When an 542 

unnatural amino acid was introduced in position 4, e.g., Dmt instead of Phe for compound 28, a 2-fold 543 

increase of the half-life in human plasma was found, as compared to Ac-NMU-8 2 and an almost 60-544 

fold increase when it was compared to the native peptide 1. The major biodegradation site remained in 545 

the middle of the sequence, namely at Dmt4-Arg5, but the cleavage was significantly hampered via the 546 

replacement of Phe by Dmt at this position. As expected, the introduction of the ‘peptoid’ residues at 547 

Phe4 resulted into NMU-analogs with an increased resistance against proteolytic degradation. The 548 

stability assay revealed that compound 32 had a half-life of 837.4 ± 27.8 min (or 14.6 ± 0.8 h) in 549 

human plasma. When Phe4 was replaced by N(4-OH-phenethyl)Gly (38), it was even higher, namely 550 

1096.1 ± 56.1 min (18.3 ± 0.9 h). Moreover, the switch of Phe4 by N-substituted glycines changed the 551 

biodegradation profile. The major cleavage site moved towards the C-terminus of the peptide, more 552 

precisely between Arg7 and Asn8. A last subset of modifications which was used in this study, is the 553 

substitution of the Pro residue. When it was replaced by Oic to give 42, a molecule with a high 554 

resistance to enzymatic degradation was found. The half-life of analog 42 in human plasma was 555 

1426.1 ± 67.4 min or 23.8 ± 1.1h. The major degradation site for this analog was as well located 556 

between Arg7-Asn8. When considering the activity profile of compound 42, and taking its proteolytic 557 
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stability into account, this analog can be considered as a good lead for the development of potent and 558 

stable NMUR2 agonists.  559 

 560 

Figure 6. Cleavage sites of the NMU analogs after incubation in human plasma at 37 °C. The major 561 

biodegradation sites are indicated with dotted lines of which the numbers represent the order of 562 

cleavage.  563 

Previously, the stability of some NMU-based molecules was already reported in literature. Lipidation 564 

of NMU-8 markedly increased its half-life in mouse plasma as compared to hNMU [21]. Moreover, 565 

when the effect on proteolytic stability was studied of molecules without high molecular carriers, 566 

improved resistance towards degradation was observed as well. The selective NMUR1 agonist, 2-567 

thienylacetyl-Trp-(αMe)Trp-Arg-Pro-Arg-Asn-NH2, which was recently described by Takayama et al, 568 

possessed an improved in vitro serum stability with a half-life of approximately 180 min [20]. Here, 569 

we discovered molecules with plasma half-lifes up to 23 h. The potent NMUR1 agonist, compound 28, 570 

possessed a half-life of 253.5 ± 6.0 min. In the present study, human plasma was used for the 571 

determination of the biodegradation profiles. This does not allow direct comparison with the metabolic 572 

stability of 2-thienylacetyl-Trp-(αMe)Trp-Arg-Pro-Arg-Asn-NH2, which was studied in serum. 573 

Moreover, it was reported that the preferential biodegradation site of this NMUR1 selective agonist 574 

was located between the Arg and Asn residues and that the key enzyme, responsible for this cleavage, 575 

was found to be thrombin [20, 36]. The present study is giving more accurate information when 576 

compared to studies where experiments were performed with 25% rat or human serum [19, 20], since 577 

in plasma the inactive prothrombin is present, giving a closer representation of physiological 578 

conditions. 579 

 580 
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Conclusions 582 

A novel set of NMU-analogs was developed and characterized in vitro. The core sequence of the 583 

NMU-peptide, more precisely NMU-8, was taken as lead molecule for the SAR-study. Potent agonists 584 

(compounds 15 – 20), with equal activity on both NMURs, were obtained when the Tyr1 residue was 585 

modified, with affinities and activities in the nM range. Moreover, these peptides turned out to have an 586 

elevated resistance against proteolytic degradation, resulting in molecules with an increased half-life in 587 

human plasma. We demonstrated that substitution of Phe4 could serve as a tool for NMUR1 selectivity 588 

and improved plasma stability, which resulted in the discovery of potent NMU-analogs with increased 589 

NMUR1 selectivity and enhanced stability in human plasma, more precisely analog 24, 26 and 28. By 590 

synthesizing peptides with a modified Pro6 residue, an increased potency on NMUR2 was observed.  591 

Moreover, a remarkable effect on the enzymatic stability was found, going from 4 min for NMU-8 to 592 

approximately 24 h for 42. By evaluating the effect of D-amino acid substitution on receptor affinity, 593 

we demonstrated that the previously reported tool for antagonism led to a loss in affinity rather than 594 

antagonism. We believe that this novel set of NMU-analogs can have potential in the development of 595 

receptor selective NMU-based peptides with improved proteolytic stability.    596 
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• Insertion of unnatural amino acids in NMU-8 leads to stable and selective ligands 

• Potent NMUR ligands can be found by substitution of the Tyr1 residue of NMU-8 

• NMUR1 selectivity can be achieved by modification of Phe in position 4 

• Replacement of the Pro6 residue shifts the selectivity towards NMUR2  

• Biodegradation profiles are studied in human plasma 


