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Synthesis and Biological Evaluation of Paclitaxel Conjugates 

Involving Lysosomally Cleavable Linkers and αVβ3-Integrin 

Ligands for Tumor Targeting 

Paula López Rivas,[a] Ivan Ranđelović,[b] André Raposo Moreira Dias,[a] Arianna Pina,[a] Daniela 

Arosio,[c] Jószef Tóvári,[b] Gábor Mező,[d] Alberto Dal Corso,[a] Luca Pignataro,[a] Cesare Gennari*[a,c] 

Abstract: Two cyclo[DKP-RGD]-PTX (PTX = paclitaxel) and two 

cyclo[RGDfK]-PTX conjugates containing the lysosomally 

cleavable Gly-Phe-Leu-Gly (GFLG) linker were synthesized and 

compared to two cyclo[DKP-RGD]-Val-Ala-PTX conjugates. The 

conjugates were evaluated for their ability to inhibit biotinylated 

vitronectin binding to the isolated αvβ3 receptor, retaining good 

binding affinity, in the same nanomolar range of the free ligands. 

Cell viability assays were performed for the six conjugates in the 

αvβ3+ U87 and in the αvβ3– HT29 cell lines. Loss of potency was 

observed for all the conjugates, attenuated by the presence of a 

tetraethylene glycol (PEG-4) spacer. A good Targeting Index (TI 

= Relative Potency in the αvβ3+ U87 / Relative Potency in the 

αvβ3– HT29) was displayed by the conjugates, in particular by 

cyclo[DKP-RGD]-PEG-4-Val-Ala-PTX 9 (TI = 533). This 

conjugate was tested in the αvβ3+ U87 cell line in the presence 

of 50-fold excess free cyclo[DKP-RGD] ligand 2. In this 

competition experiment, a fivefold decrease of the conjugate 

cytotoxicity was calculated, suggesting that the conjugate is 

possibly internalized by an αvβ3 integrin-mediated process. 

Introduction 

Cytotoxic drugs are characterized by a limited clinical efficacy in 

the cure of cancer due to a narrow therapeutic window, which 

means that the difference between the Maximum Tolerated 

Dose (MTD) and the Minimum Effective Dose (MED) is very 

small.[1] One of the approaches to overcome this limitation is to 

increase the selectivity of the cytotoxic agents by conjugation to 

tumor-targeting devices, which leads to less severe side effects 

and to the requirement of lower quantities.[2] To date, Antibody-

Drug Conjugates (ADCs) have been successfully used for this 

objective, combining humanized or chimeric antibodies with 

cytotoxic drugs, that allow the selective delivery of the antitumor 

agent into antigen-positive malignant cells. Indeed, four ADCs 

have been introduced into the market: the well-known KadcylaTM 

(azo-trastuzumab emtansine) and AdcetrisTM (brentuximab 

vedotin) and the recently approved MylotargTM (gemtuzumab-

ozogamycin) and BesponsaTR (inotuzumab ozogamicin).[1, 3 ] 

However, several drawbacks are associated to this antibody 

targeting approach: high manufacturing costs, low tissue 

diffusion, possible immune system-induced alteration of the drug 

efficiency, etc..[ 4 ] As an alternative, Small Molecule-Drug 

Conjugates (SMDCs) have emerged in the last decades, 

combining small receptor binders with cytotoxic agents. Just as 

in ADCs, also in SMDCs the choice of a proper linker system is 

crucial to avoid premature drug release in the blood stream and 

to achieve selective release of the payload at the tumor site. 

One of the possible receptors that can be targeted by SMDCs is 

integrin αVβ3. This heterodimeric transmembrane receptor is 

overexpressed in the blood vessels of several human cancers 

(breast cancer, glioblastoma, pancreatic tumor, prostate 

carcinoma) but not in the healthy tissues.[ 5 ] Integrin αVβ3 

recognizes the tripeptide Arg-Gly-Asp (RGD)[ 6 ] and for this 

reason a number of peptides and peptidomimetics containing 

this sequence and displaying high binding affinity to the receptor 

(in the low nanomolar range) have been prepared.[7] Many of 

these RGD-peptidomimetics – such as, for example, 

cyclo[RGDfK] 1 (Figure 1) – have been used for the preparation 

of tumor-targeting drugs and imaging agents.[ 8,9] In this context, 

our research group has developed a series of cyclic RGD 

ligands containing a diketopiperazine scaffold (DKP),[7d-f] among 

which cyclo[DKP-RGD] 2 (Figure 1) showed a very good binding 

affinity and selectivity for integrin αVβ3 (Table 1). As a further 

step, compound 3 (Figure 1) – i.e. an analog of ligand 

cyclo[DKP-RGD] 2 bearing a primary amino group[ 10 ] – was 

synthesized and conjugated to different drugs through various 

types of linker.[10,11] In an initial attempt, we connected ligand 

cyclo[DKP-RGD] to paclitaxel (PTX) through an ester linkage, 

but the construct obtained suffered from limited stability in 

plasma.[10] We then connected ligand cyclo[DKP-RGD] to 

paclitaxel (PTX) through a more stable carbamate linkage and 

the lysosomally cleavable Val-Ala (VA) dipeptide linker,[ 12 ] 

obtaining a cyclo[DKP-RGD]-VA-PTX conjugate.[11b,13] With the 

latter compound, cell viability assays were run in which a cell 

line expressing integrin αvβ3 (αvβ3+) was compared with an αvβ3 

non-expressing isogenic cell line (αvβ3–). In these experiments, 

the cyclo[DKP-RGD]-VA-PTX conjugate[11b,13] showed a fairly 

effective integrin targeting [Targeting Index (TI) up to 9.0], 

although the potency was slightly reduced compared to free 

PTX.[11b] In another contribution from our group, the VA linker 
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was also exploited for the development of cyclo[DKP-RGD] 

conjugates with α-amanitin.[11e] Recently, we also explored the 

use of reductively cleavable disulfide linkers, synthesizing a 

cyclo[DKP-RGD]-SS-camptothecin conjugate[11d] which, however, 

did not show any targeting due to the low stability of the α,α-

unsubstituted disulfide bond in the cell medium.[14] 

Figure 1. A: ligand cyclo[RGDfK] (1). B: ligand cyclo[DKP-RGD] (2) and its 
functionalized version (3). 

Table 1. Inhibition of biotinylated vitronectin binding to the isolated αvβ3 and 

αvβ5 receptors. 

Ligand Structure IC50 (nM)
[a] 

αVβ3 IC50 (nM)
[a] 

αVβ5 

1 cyclo[RGDfK] 1.4 ± 0.2 117.5 ± 7.8 

2 cyclo[DKP-RGD] 4.5 ± 1.1 149 ± 25 

[a] IC50 values were calculated as the concentration of compound required for 

50% inhibition of biotinylated vitronectin binding as estimated by GraphPad 

Prism software. All values are the arithmetic mean ± the standard deviation 

(SD) of duplicate determinations. 

Following the promising preliminary results outlined above,[11b] in 

this paper we report a more systematic study on the RGD 

conjugates bearing intracellularly cleavable peptide linkers. 

Taking conjugate cyclo[DKP-RGD]-VA-PTX[11b,13] as a reference, 

we set to assess the influence of the SMDC’s different moieties 

on integrin binding and cell viability. As shown in Figure 2, 

keeping the PTX-self-immolative spacer system unchanged, we 

modified in turn: i) the peptide linker; ii) the spacer connecting 

the linker to the ligand; iii) the ligand itself. In conjugates 4-7 

(Figure 3) we selected the well-known lysosomally cleavable 

tetrapeptide Gly-Phe-Leu-Gly (GFLG), that has been used in 

several different delivery systems,[15] as alternative to the VA 

linker (present in conjugates 8 and 9). To replace the glutarate 

spacer (present in conjugates 4, 5 and 8), we used a PEG-4 

chain connected to a triazole ring formed by the CuAAC “click” 

reaction[16] (conjugates 6, 7 and 9). Finally, in conjugates 5 and 7 

the well-known and easy-to-prepare ligand cyclo[RGDfK][17] was 

employed as replacement for ligand cyclo[DKP-RGD]. 

 
Figure 2. Synopsis of the RGD ligand-PTX conjugates used for the studies 
reported in this paper. 

 

 
Figure 3. PTX conjugates: cyclo[DKP-RGD]-GFLG-PTX (4), cyclo[RGDfK]-GFLG-PTX (5), cyclo[DKP-RGD]-PEG-4-GFLG-PTX (6), cyclo[RGDfK]-PEG-4-GFLG-
PTX (7), cyclo[DKP-RGD]-VA-PTX (8) and cyclo[DKP-RGD]-PEG-4-VA-PTX (9). 



 

 

 

 

 

Results and Discussion 

While conjugates 8[11b] and 9[18 ] (featuring the VA linker) had 

already been prepared in our laboratory, the synthesis of 

compounds 4-7 is reported here. In these new SMDCs, PTX is 

connected to the C-terminus of the GFLG linker through a para-

aminobenzyl carbamate (PABC)-N,N’-dimethylethylenediamine 

self-immolative spacer, while the N-terminus of the tetrapeptide 

is connected to the integrin ligand (either cyclo[DKP-RGD] or 

cyclo[RGDfK] 1, Scheme 1) with a spacer, see Scheme 2. The 

series is formed by two pairs of analogs (4 / 6 and 5 / 7) differing 

only for the spacer, which can be a glutarate (compounds 4 and 

5) or a triazole-tetraethylene glycol (PEG-4, compounds 6 and 

7). Integrin receptor competitive binding assays (Table 2) and 

cell viability assays (Table 3) were performed for the new GFLG 

conjugates (4-7) and for the VA conjugates 8 and 9 (Figure 

3).[11b,18] Additionally, a competition experiment was performed 

(Table 4), in which the αVβ3+ U87 cell line was treated with 

conjugate 9 in the presence of 50-fold excess free ligand 

cyclo[DKP-RGD] (2). 

 

Synthesis 

Synthesis of compounds 1 and 14 

The linear protected RGDfK ligand [Fmoc-Asp(OtBu)-D-Phe-

Lys(Boc)-Arg(Pbf)-Gly-OH 11, Scheme 1] – precursor of 

cyclo[RGDfK] 1 – and the Fmoc-protected GFLG linker 14 

(Scheme 2) were synthesized manually by solid phase peptide 

synthesis (SPPS) on 2-chlorotrityl chloride resin using the Fmoc 

protocol (see the Supporting Information). Cleavage from the 

resin (using a 8:1:1 CH2Cl2/MeOH/AcOH mixture for 2 h) 

followed by precipitation in water led to the protected peptides 

11 (Scheme 1) and 14 (Scheme 2), which were used in the next 

step without purification. 

 
Scheme 1. Synthesis of ligand 1. Reagents and conditions: a) i. Fmoc-Gly-OH 
(1 equiv.), iPr2NEt (3 equiv.), 1:1 CH2Cl2/DMF, 2 h, r.t.; ii. Capping with 7:2:1 
CH2Cl2/MeOH/iPr2NEt; b) i. Fmoc-deprotection: 2% DBU, 2% piperidine, DMF, 
1 h; ii. Fmoc-AA-OH (3 equiv.), HOBt (4 equiv.), DIC (4 equiv.), 2 h; conditions 
(b) are repeated for the coupling of every amino acid of the sequence; c) 8:1:1 
CH2Cl2/MeOH/AcOH, 2 h, precipitation in water; d) DMF, 20% piperidine, 2 h; 
e) 6:4:4 iPr2NEt/BOP/HOBt, 1 mM concentration in DMF, 24 h, precipitation in 
5% NaHCO3; f) TFA/thioanisole/EDT/phenol/TIS, 3 h. DBU = 1,8-
Diazabicyclo[5.4.0]undec-7-ene; AA = amino acid; BOP = (benzotriazol-1-
yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; DIC = N,N’-
diisopropylcarbodiimide; EDT = 1,2-ethanedithiol; TIS = triisopropylsilane. 

 

Compound 11 was treated with piperidine to remove the Fmoc 

protecting group and the resulting free amino acid 12 was 

cyclized in the presence of a 6:4:4 iPr2NEt/BOP/HOBt mixture in 

DMF to give compound 13.  The cyclization reaction was run 

under diluted conditions (1 mM) to avoid possible intermolecular 

side reactions. The protecting groups of 13 were removed with a 

TFA/thioanisole/EDT/phenol/TIS cocktail to give pure 

cyclo[RGDfK] (1) after purification using preparative HPLC. 
 

Synthesis of conjugates 4-7 

The cyclo[DKP-RGD]-GFLG-PTX and the cyclo[RGDfK]-GFLG-

PTX conjugates (compounds 4-7) were synthesized as shown in 

Scheme 2. The Fmoc-protected GFLG peptide 14 was coupled 

to 4-aminobenzyl alcohol with HOBt and N,N’-

diisopropylcarbodiimide (DIC), leading to the benzylic alcohol 15, 

which was activated with 4-nitrophenyl chloroformate and 

coupled to N-Boc-N,N’-dimethylethylenediamine to yield 

compound 17. The latter served as a common intermediate for 

the synthesis of all the conjugates, either containing the 

glutarate or the PEG-4 spacer. In the first case, after Fmoc 

deprotection of 17 under basic conditions, the free amine was 

treated with glutaric anhydride to afford compound 18, that was 

activated as a N-hydroxysuccinimidyl ester and coupled either to 

functionalized cyclo[DKP-RGD] (3) or to cyclo[RGDfK] (1) at 

controlled pH to afford intermediates 19a and 19b. The latter 

compounds were later Boc-deprotected with trifluoroacetic acid 

(TFA) and coupled to 2’-(4-nitrophenoxycarbonyl)paclitaxel,[11b] 

giving the final conjugates 4 and 5. 

For the synthesis of the conjugates containing the PEG-4 spacer, 

compound 17 was Fmoc-deprotected and coupled to 4-

pentynoic acid in the presence of HATU, HOAt and iPr2NEt to 

give alkyne 20, which was later Boc-deprotected with TFA and 

coupled with 2’-(4-nitrophenoxycarbonyl)paclitaxel affording 

compound 21. Finally, this compound was subjected to copper-

catalyzed azide-alkyne cycloaddition (“click” reaction) with either 

cyclo[DKP-RGD]-PEG-4-azide (22a)[18] or cyclo[RGDfK]-PEG-4-

azide (22b), prepared in two steps from ligands 3 and 1, 

respectively (see the Supporting Information). The click reaction 

gave the final conjugates 6 and 7. 

 

Integrin receptor competitive binding assay 

Conjugates 4-9 were evaluated for their ability to inhibit 

biotinylated vitronectin binding to the isolated αVβ3 and αVβ5 

receptors. The calculated half-maximal inhibitory concentrations 

(IC50) are listed in Table 2. Screening assays were performed by 

incubating the immobilized integrin receptor with solutions of the 

cyclo[DKP-RGD]-paclitaxel and cyclo[RGDfK]-paclitaxel 

conjugates at different concentrations (10-12-10-5 M) in the 

presence of biotinylated vitronectin (1 µg mL-1) and measuring 

bound vitronectin. Table 2 shows that conjugates 4-9 retain 

good binding affinity and high selectivity for αvβ3 integrin, with 

IC50 values in the nanomolar range, only slightly worse 

compared to those obtained for the free ligands (see Table 1, 

compounds 1 and 2). These results prompted us to proceed with 

cell viability assays. 

 

 

 

 

 



 

 

 

 

 

Scheme 2. Synthesis of conjugates 4-7. Reagents and conditions: a) HOBt, DIC, 4-aminobenzyl alcohol, DMF, overnight; b) 4-nitrophenylchloroformate, pyridine, 
4:1 THF/DMF, 2 h; c) N-Boc-N,N’-dimethylethylenediamine, iPr2NEt, THF, overnight; d) i. piperidine, DMF, 4 h; ii. glutaric anhydride, DMAP, iPr2Net, DMF, 
overnight; e) i. DIC, NHS, DMF; ii. 3 (for 19a) or 1 (for 19b), 1:1 DMF/PBS (phosphate-buffered saline, pH 7.3-7.6), overnight; f) i. TFA, CH2Cl2; ii. 2’-(4-
nitrophenoxycarbonyl)PTX, iPr2NEt, DMF, overnight; g) i. piperidine, DMF, 4 h; ii. 4-pentynoic acid, HATU, HOAt, iPr2NEt, DMF, overnight; h) 22a or 22b, CuSO4·5 
H2O, sodium ascorbate, DMF/H2O. DIC = N,N’-diisopropylcarbodiimide; DMAP = 4-dimethylaminopyridine; NHS = N-hydroxysuccinimide; PTX = paclitaxel. 

Table 2. Inhibition of biotinylated vitronectin binding to the isolated αvβ3 and 

αvβ5 receptors. 

Compound Structure IC50 (nM)
[a] 

αVβ3 IC50 (nM)
[a] 

αVβ5 

4 
cyclo[DKP-RGD]-

GFLG-PTX 54.8 ± 14.0 > 1000
[b]

 

5 
cyclo[RGDfK]-

GFLG-PTX 62.6 ± 10.9 649 ± 136 

6 
cyclo[DKP-RGD]-
PEG-4-GFLG-PTX 42.4 ± 7.4 > 1000

[b]
 

7 
cyclo[RGDfK]-PEG-

4-GFLG-PTX 12.1 ± 2.0 473 ± 25 

8 
cyclo[DKP-RGD]-

VA-PTX 13.3 ± 3.6
[c]

 924 ± 290
[c]

 

9 
cyclo[DKP-RGD]-
PEG-4-VA-PTX 14.8 ± 3.9

[d]
  > 1000

[b]
 

[a] IC50 values were calculated as the concentration of compound required for 

50% inhibition of biotinylated vitronectin binding as estimated by GraphPad 

Prism software. All values are the arithmetic mean ± the standard deviation 

(SD) of duplicate determinations. [b] Biotinylated vitronectin binding was not 

completely inhibited in the concentration range tested. [c] See ref. [11b]. [d] 

See ref. [18]. 

Cell viability assays 

The antiproliferative activity of conjugates 4-9 was evaluated in 

two cell lines expressing different levels of αVβ3 integrin. U87 

cells (human glioblastoma) were selected as αVβ3+, while HT29 

cells (human colorectal adenocarcinoma) were used as αVβ3–. 

The expression of αVβ3 integrin on the cell membrane was 

assessed by flow cytometry (see the Supporting Information), 

and the results were in good agreement with the literature.[19] 

Both cell lines were treated for 96 hours[ 20 ] with different 

concentrations of free PTX and conjugates 4-9 and the cell 

viability was evaluated with the MTT assay. 

The calculated IC50 values are shown in Table 3. All the 

conjugates proved less potent than free PTX in both cell lines.[21] 

Interestingly, the conjugates containing the PEG-4 spacer (6, 7 

and 9) proved 2.4-6.2 times more potent in the αVβ3+ U87 cell 

line than the conjugates bearing the glutarate spacer (4, 5 and 

8). This might be due to improvement of the water solubility and 

flexibility provided by the tetraethylene glycol spacer, which is 

known to facilitate binding to the receptor.[22] For all conjugates, 

the Relative Potencies (RP = IC50 PTX / IC50 Conjugate) in the 

αVβ3+ U87 cell line are 1-2 orders of magnitude higher than in 

the αVβ3– HT29 cell line. This means that the loss of potency of 

the conjugates with respect to PTX is higher when there is no 

αVβ3 receptor in the cell line. Accordingly, we observed good 

Targeting Indexes (TI = RP in the αVβ3+ U87 / RP in the αVβ3– 

HT29) throughout the series (TIs = 30-45, for compounds 4-8), 

with compound 9 displaying the best value (TI = 533). 

 

Table 3. Evaluation of anti-proliferative activity of free PTX and PTX 

conjugates 4-9 in U87 and HT29 cell lines. 

 IC50 (nM)
[a]

    

Comp. U87 (αVβ3+) HT29 (αVβ3–) RPU87
[b]

 RPHT29
[c]

 TI
[d]

 

PTX 32.66 ± 21.81 1.82 ± 1.85 1 1 1 

4 2031 ± 454 3413 ± 983 0.01608 0.00053 30 

5 1250 ± 293.6 2692 ± 676 0.02613 0.000692 38 

6 854.7 ± 165.1 1979 ± 252 0.03821 0.0009196 42 

7 506.2 ± 113.6 1272 ± 156 0.06452 0.001431 45 

8 2686 ± 589 6452±1723 0.01216 0.0002821 43 

9 432.6 ± 129.3 12840 ± 2730 0.07550 0.0001417 533 

[a] IC50 values were calculated as the concentration of compound required 

for 50% inhibition of cell viability. Both cell lines were treated with different 

concentrations of PTX and compounds 4-9 during 96 hours. The samples 

were measured in triplicate; [b] Relative Potency in U87 cell line (RPU87): IC50 

PTX in U87/ IC50 Conjugate in U87; [c] Relative Potency in HT29 cell line 

(RPHT29): IC50 PTX in HT29/ IC50 Conjugate in HT29; [d] Targeting Index (TI): 

RPU87/RPHT29. 



 

 

 

 

 

 

To determine whether the observed targeting is mediated by an 

integrin binding and internalization process, a competition 

experiment was carried out in the αVβ3+ U87 cell line. Conjugate 

9 was tested in the presence of 50-fold excess free ligand 

cyclo[DKP-RGD] (2), with the aim of blocking integrins on the 

cell surface (see Table 4). 

Table 4. Competition experiments of conjugate 9 in the presence of 50-fold 

excess cyclo[DKP-RGD] (2) in U87 cell line. 

# Compound(s) 
IC50 (nM)

[a] 

U87 (αVβ3+) 
Inhibition 
Ratio

[b]
 

Corrected  
Inhibition 
Ratio

[c]
 

1 cyclo[DKP-RGD] (2) 
342.8 · 10

3
 ± 

94.7 · 10
3
 

- - 

2 PTX 32.66 ± 21.81 - - 

3 
PTX + 50-fold excess 
cyclo[DKP-RGD] (2) 

10.66 ± 4.8  0.33 1 

4 9 432.6 ± 129.3 - - 

5 
9 + 50-fold excess 
cyclo[DKP-RGD] (2) 

717.5 ± 216.3 1.66 5.03 

[a] IC50 values were calculated as the concentration of compound required for 

50% inhibition of cell viability. Both cell lines were treated with different 

concentrations compounds 9 in the presence of 50-fold excess cyclo[DKP-

RGD] (2) during 96 hours. The samples were measured in triplicates; [b] 

Inhibition Ratio = (IC50 Compound + 50-fold excess 2) / IC50 Compound; [c] 

Corrected inhibition Ratio = [(IC50 Compound + 50-fold excess 2) / IC50 

Compound] / [(IC50 PTX + 50-fold excess 2) / IC50 PTX]. 

As expected, the free ligand cyclo[DKP-RGD] (2) proved 

scarcely toxic (Table 4, entry 1: IC50 = 343 · 103 nM = 343 μM), 

but induced a distinct change in cell morphology and cell 

detachment. In the presence of excess cyclo[DKP-RGD] (2), 

PTX showed a threefold increased toxicity (Table 4, cf. entry 3 

and entry 2). On the contrary, with conjugate 9 the presence of 

excess free ligand 2 induced a moderate increase of IC50 (Table 

4, cf. entry 5 and entry 4). Taking into account the effect 

produced by excess ligand 2 onto free PTX, a fivefold decrease 

of the conjugate cytotoxicity is calculated (Corrected Inhibition 

Ratio, see Table 4, entry 5), which might suggest that 

internalization is mediated by the αVβ3 integrin receptor. 

Conclusions 

The research reported in this article had the goal to investigate 

how the biological properties of integrin αvβ3-targeting SMDCs 

may vary depending on the type of ligand, spacer and linker 

employed, with a specific focus on the intracellularly cleavable 

peptide linkers. To this end, two cyclo[DKP-RGD]-GFLG-PTX (4 

and 6) and two cyclo[RGDfK]-GFLG-PTX conjugates (5 and 7) 

were synthesized, the members of each pair differing for the 

spacer between ligand and peptide linker (glutarate in 4 and 5, 

triazole-PEG-4 in 6 and 7). Together with the two cyclo[DKP-

RGD]-VA-PTX conjugates 8 and 9, compounds 4-7 were used in 

(i) binding tests on the integrin αvβ3 isolated receptor, and (ii) 

viability tests using U87 (αVβ3+) and HT29 cancer cells (αVβ3–). 

As a general trend, all conjugates showed low-nanomolar affinity 

for the integrin αVβ3 receptor and reduced potency compared to 

free PTX, with lower IC50 values being obtained using the αVβ3+ 

cells compared to the αVβ3– cells (TI in the 30-45 range for 4-8, 

TI = 533 for 9). While replacement of the cyclo[DKP-RGD] ligand 

moiety with cyclo[RGDfK] barely affected the SMDCs’ properties, 

the conjugates featuring a triazole-PEG-4 spacer proved 2.4-6.2 

times more potent against the αVβ3+ cell line than those bearing 

the glutarate spacer. Replacing the peptide linker impacted on 

the conjugates’ anti-proliferative effect in a non-easy-to-

rationalize manner. The decrease of potency observed when the 

best compound (9) was incubated with U87 cells in the presence 

of a large excess of free ligand cyclo[DKP-RGD] (2) suggests 

that the conjugate is possibly internalized by an integrin αVβ3-

mediated process. 

From these results it emerges that integrin αVβ3-targeted 

SMDCs can achieve promising TI values, although substantial 

improvements in terms of potency are needed in order for them 

to become therapeutically useful. To this end, modification of the 

spacer(s) and/or of the type of linker are being currently taken in 

consideration by our research group. 

Experimental Section 

All manipulations requiring anhydrous conditions were carried out in 

flame-dried glassware, with magnetic stirring and under a nitrogen 

atmosphere. All commercially available reagents were used as received. 

Anhydrous solvents were purchased from commercial sources and 

withdrawn from the container by syringe, under a slight positive pressure 

of nitrogen. The reactions were monitored by analytical thin-layer 

chromatography (TLC) using silica gel 60 F254 pre-coated glass plates 

(0.25 mm thickness). Visualization was accomplished by irradiation with 

a UV lamp and/or staining with Cerium/Molibdate reagent or ninhydrin. 

HPLC purifications and HPLC traces of final products were performed on 

Dionex Ultimate 3000 equipped with Dionex RS Variable Wavelength 

Detector (column: Atlantis Prep T3 OBDTM 5 m 19 × 100 mm; flow 15 

ml/min unless stated otherwise). The analysis of the integrals and the 

relative percentage of purity was performed with the software 

Chromeleon 6.80 SR11 Build 3161. Low resolution mass spectra (MS) 

were recorded on Thermo Finnigan LCQ Advantage (ESI source), Micro 

Waters Q-Tof (ESI source) and Bruker Daltonics Microflex LT (MALDI 

source) instruments. High-resolution mass spectra (HRMS) were 

performed with a Fourier Transform Ion Cyclotron Resonance (FT-ICR) 

Mass Spectrometer APEX II & Xmass software (Bruker Daltonics) – 4.7 T 

Magnet (Magnex) equipped with ESI source, available at CIGA (Centro 

Interdipartimentale Grandi Apparecchiature) c/o Università degli Studi di 

Milano. Freeze-drying: the products were dissolved in water and frozen 

with dry ice. The freeze-drying was carried out at least for 48 h at -50 °C 

using the instrument 5Pascal Lio5P DGT. 

Ligand cyclo[DKP-RGD] (2),[7e] its functionalized analog (3)[10] and N-

Boc-N,N’-dimethylethylenediamine[ 23 ] were prepared according to the 

literature. Also, conjugates 8,[11b] 9[18] and the activated drug 2’-(4-

nitrophenoxycarbonyl)paclitaxel[11b] were prepared as previously 

described. The synthesis and characterization of ligand cyclo[RGDfK] (1), 

the Fmoc-protected linker 14, intermediates 15-18, intermediate 20 and 

azide-ligands 22a and 22b are described in the Supporting Information. 

 

Cyclo[DKP–RGD]–Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (19a). 

Compound 18 (11 mg, 0.0119 mmol, 2 equiv.) was dissolved in DMF 

(500 µL) and cooled at 0 ºC under nitrogen. N-Hydroxysuccinimide (NHS, 

1.8 mg, 0.0155 mmol, 2.6 equiv.) and EDC.HCl (3.4 mg, 0.0179 mmol, 3 

equiv.) were added and the reaction was stirred at 0 ºC for a 5 min. The 

reaction was allowed to reach r.t. and stirred overnight under nitrogen 

atmosphere. Volatiles were then removed in vacuo and the crude was re-

dissolved in DMF (375 µL). A solution of compound 3 (5.2 mg, 0.006 



 

 

 

 

 

mmol, 1 equiv.) in phosphate buffer (375 µL, pH 7.5) was then added. 

During the first hours, the pH was kept in the 7.3-7.6 range by adding 

small aliquots of 0.2 M NaOH. The resulting solution was stirred overnight 

and then concentrated under vacuum. The crude residue was purified by 

semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% 

(CH3CN + 0.1% CF3COOH) to 25% (H2O + 0.1% CF3COOH) / 75% 

(CH3CN + 0.1% CF3COOH) in 15 min; tR (product): 10.5 min]. Yield: 1.41 

mg (15%) over 2 steps. HRMS (ESI+): m/z calcd. for 

[C68H96N17O18]
+:1438.712 [M+H]+; found: 1438.710; m/z calcd. for 

[C68H96N17NaO18]
+: 730.856 [M+Na]+; found: 730.851; m/z calcd. for 

[C68H95N17Na2O18]
2+: 741.840 [M+2Na]2+; found: 741.842. 

 

Cyclo[RGDfK]–Gly-Phe-Leu-Gly-N-[4-[[[(N-(Boc)-N,N’-

dimethylethylenediamine)carbonyl]oxy]methyl]phenyl] (19b). 

Compound 18 (13 mg, 0.016 mmol, 1.3 equiv.)  was dissolved in DMF 

(350 µL) and cooled at 0 ºC under nitrogen. NHS (2.8 mg, 0.024 mmol, 2 

equiv.) and DIC (3.7 µL, 0.024 mmol, 2 equiv.) were added and the 

reaction was stirred at 0 ºC for 5 min. The reaction was allowed to reach 

r.t. and stirred overnight under nitrogen atmosphere. Volatiles were then 

removed in vacuo and the crude was redissolved in DMF (750 µL). A 

solution of cyclo[RGDfK] 1 (10 mg, 0.012 mmol, 1 equiv.) in phosphate 

buffer (750 µL, pH 7.5) was then added. During the first hours, the pH 

was kept in the 7.3-7.6 range by adding small aliquots of 0.2 M NaOH. 

The resulting solution was stirred overnight and then concentrated under 

vacuum. The crude residue was purified by semipreparative HPLC 

[Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% 

CF3COOH) to 25% (H2O + 0.1% CF3COOH) / 75% (CH3CN + 0.1% 

CF3COOH) in 15 min; tR (product): 11 min]. Yield: 3.15 mg (17%) over 

two steps. MS (MALDI): m/z calcd. for [C68H99N16O17]
+: 1412.61 [M+H]+; 

found: 1412.2 (HCCA matrix); HRMS (ESI+): m/z calcd. for 

[C68H98N16NaO17]
+: 1433.719 [M+ Na]+; found: 1433.717; m/z calcd. for 

[C68H99N16Na2O17]
2+ 728.360 [M+ 2Na]2+; found: 728.355. 

 

General Procedure for the Boc-deprotection of compounds 19a, 19b 

and 20. 

A half volumen of TFA was added to a 0.03 M solution of intermediates 

19a, 19b or 20 in CH2Cl2 and the reaction was stirred at room 

temperature for one hour. The solvent was evaporated and then the 

CH2Cl2 was added twice to the residue followed by evaporation under 

vacuum each each time to afford the amine TFA salt. The crudes were 

frozen-dried and used without further purification. 

 

Alkyne-Gly-Phe-Leu-Gly-PTX (21). The TFA salt obtained from 

deprotection of compound 20 (7.5 mg, 0.0108 mmol, 1 equiv.) was 

dissolved in DMF (320 µL) and cooled at 0 ºC under nitrogen 

atmosphere. iPr2NEt (7.5 µL, 0.043 mmol, 4 equiv.) and 2’-(4-

nitrophenoxycarbonyl)paclitaxel (16.5 mg, 0.0162 mmol, 1.5 equiv.) were 

added in this order and the mixture was allowed to reach r.t. and stirred 

overnight. The reaction mixture was diluted with AcOEt and washed with 

a 1 M aqueous solution of KHSO4 (2 x) and brine (1 x). The organic 

phase was dried over Na2SO4, concentrated and purified by flash 

chromatography (eluent: 9:1 CH2Cl2/CH3OH) to afford pure 21. Yield: 

10.18 mg (60%). HRMS (ESI+): m/z calcd. for [C84H98N8O22Na]+: 

1593.669 [M+Na]+;  found: 1593.667; m/z calcd. for [C84H98N8O22Na2]
2+: 

808.329 [M + 2Na]2+; found: 808.328. 

 

Cyclo[DKP-RGD]-GFLG-PTX (4). The TFA salt obtained from 

deprotection of compound 19a (6.4 mg, 0.0041 mmol, 1 equiv.) was 

dissolved in DMF (470 µL) and cooled at 0 ºC under nitrogen 

atmosphere. iPr2NEt (3.6 µL, 0.0205 mmol, 5 equiv.) and 2’-(4-

nitrophenoxycarbonyl)paclitaxel (12.5 mg, 0.0123 mmol, 3.5 equiv.) were 

added in this order and the mixture was allowed to reach r.t. and stirred 

overnight. The crude was concentrated, and the residue was purified by 

semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% 

(CH3CN + 0.1% CF3COOH) to 0% (H2O + 0.1% CF3COOH) / 100% 

(CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 12.5 min]. Yield: 2.09 

mg (26%). MS (MALDI): m/z calcd. for [C111H137N18O31]
+: 2219.38 

[M+H]+; found: 2220.6 (HCCA matrix), 2219.1 (SA matrix); HRMS (ESI+): 

m/z calcd. for [C111H137N18O31Na]2+: 1120.480 [M+1H+Na]2+; found: 

1120.479; m/z calcd. for [C111H137N18O31Na2]
3+: 754.650 [M+1H+2Na]3+; 

found: 754.648. 

 

Cyclo[RGDfK]-GFLG-PTX (5). The TFA salt obtained from deprotection 

of compound 19b (2.5 mg, 0.00163 mmol, 1 equiv.) was dissolved in 

DMF (190 µL) and cooled at 0 ºC under nitrogen atmosphere. iPr2NEt (2 

µL, 0.0115 mmol, 7 equiv.) and 2’-(4-nitrophenoxycarbonyl)paclitaxel (5.8 

mg, 0.0057 mmol, 3.5 equiv.) were added in this order and the mixture 

was allowed to reach r.t. and stirred overnight. The crude was 

concentrated, and the residue was purified by semipreparative HPLC 

[Gradient: 100% (H2O + 0.1% CF3COOH) / 0% (CH3CN + 0.1% 

CF3COOH) to 0% (H2O + 0.1% CF3COOH) / 100% (CH3CN + 0.1% 

CF3COOH) in 20 min; tR (product): 13 min]. Yield: 1.22 mg (33%). MS 

(MALDI): m/z calcd. for [C111H140N17O30]
+: 2192,39 [M+H]+; found: 2193.4 

(HCCA matrix); 2194.1 (SA matrix); HRMS (ESI+): m/z calcd. for 

[C111H140N17O30Na]2+: 1106.993 [M+1H+Na]; found: 1106.991. 

 

Cyclo[DKP-RGD]-PEG-4-GFLG-PTX (6). Compound 21 (3.9 mg, 0.0025 

mmol, 1.5 equiv.) and 22b (1.7 mg, 0.0017 mmol, 1 equiv.) were 

dissolved in a degassed 1:1 water/DMF mixture (170 µL). Degassed 

aqueous solutions of  CuSO4 
. 5H2O (0.2 mg, 0.000835 mmol, 0.5 equiv.) 

and sodium ascorbate (0.198 mg, 0.001mmol, 0.6 equiv.) were added at 

room temperature and the mixture was stirred overnight at 30 ºC. The 

solution was concentrated, and the crude residue was purified by 

semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% 

(CH3CN + 0.1% CF3COOH) to 0% (H2O + 0.1% CF3COOH) / 100% 

(CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 12.5 min]. Yield: 

1.67mg (39%) over two steps. MS (ESI+): m/z calcd. for 

[C121H153N21O35Na2]
2+: 1253.81 [M+H]+, found 1254.06; MS (ESI-): m/z 

calcd. for [C121H151N21O35]
2-: 1229.8 [M-2H]2-, found 1230.0. 

 

Cyclo[RGDfK]-PEG-4-GFLG-PTX (7). Compound 21 (5 mg, 0.0032 

mmol, 1.5 equiv.) and 22a (1.84 mg, 0.0022 mmol, 1 equiv.) were 

dissolved in a degassed 1:1 water/DMF mixture (220 µL). Degassed 

aqueous solutions of  CuSO4 
. 5H2O (0.28 mg, 0.0011 mmol, 0.5 equiv.) 

and sodium ascorbate (0.26 mg, 0.00132mmol, 0.6 equiv.) were added 

at room temperature and the mixture was stirred overnight at 30 ºC. The 

solution was concentrated, and the crude residue was purified by 

semipreparative HPLC [Gradient: 100% (H2O + 0.1% CF3COOH) / 0% 

(CH3CN + 0.1% CF3COOH) to 0% (H2O + 0.1% CF3COOH) / 100% 

(CH3CN + 0.1% CF3COOH) in 20 min; tR (product): 13 min]. Yield: 4.13 

mg (76 %) over two steps. MS (MALDI): m/z calcd. for [C121H157N20O34]
+: 

2434.65 [M+H]+, found: 2436.0 (HCCA matrix); 2435.7 (SA matrix). 
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