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Summary 58 

• Auxin gradients are sustained by series of influx and efflux carriers whose 59 

subcellular localization is sensitive to both exogenous and endogenous factors. 60 

Recently the localization of the Arabidopsis thaliana auxin efflux carrier PIN-61 

FORMED (PIN) 6 was reported to be tissue specific and regulated though 62 

unknown mechanisms.  63 

• Here, we used genetic, molecular and pharmacological approaches to 64 

characterize the molecular mechanism(s) controlling the subcellular localization of 65 

PIN6.  66 

• PIN6 localizes to endomembrane domains in tissues with low PIN6 expression 67 

levels such as roots, but localizes at the plasma membrane (PM) in tissues with 68 

increased PIN6 expression such as the inflorescence stem and nectary glands. 69 

We provide evidence that this dual localization is controlled by PIN6 70 

phosphorylation and demonstrate that PIN6 is phosphorylated by mitogen-71 

activated protein kinases (MAPKs) MPK4 and MPK6. The analysis of transgenic 72 

plants expressing PIN6 at PM or in endomembrane domains reveals that PIN6 73 

subcellular localization is critical for Arabidopsis inflorescence stem elongation 74 

post-flowering (bolting). In line with a role for PIN6 in plant bolting, inflorescence 75 

stems elongate faster in pin6 mutant plants than in wild-type plants.  76 

• We propose that PIN6 subcellular localization is under the control of 77 

developmental signals acting on tissue specific determinants controlling PIN6-78 

expression levels and PIN6 phosphorylation. 79 

 80 

Key words: Arabidopsis thaliana, auxin, bolting, inflorescence, stem 81 

 82 

  83 
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Introduction 84 

Plant developmental plasticity involves the activity of series of plant hormones which 85 

modulate stem cell fate activity during plant development (Wolters & Jurgens, 2009; 86 

Rodriguez et al., 2010). The plant hormone auxin plays a crucial role in this process 87 

as it coordinates the patterning of the plant body plan, including the establishment of 88 

apical–basal (Friml et al., 2003), radial (Bjorklund et al., 2007; Suer et al., 2011; 89 

Ameres & Zamore, 2013), and proximal–distal axes (Sabatini et al., 1999; Cai et al., 90 

2014) and the determination of cell fate by positional information (Ditengou et al., 91 

2008; Finet & Jaillais, 2012). Auxin is polarly transported by auxin influx and efflux 92 

carriers [(AUXIN RESISTANT 1/ Like AUX1 (AUX/LAX)) family (Ugartechea-Chirino 93 

et al., 2010), ABCB/multi-drug resistance/P-glycoprotein (ABCB/MDR/PGP)(Paponov 94 

et al., 2005; Geisler & Murphy, 2006), and PIN-FORMED (PIN) proteins (Paponov et 95 

al., 2005)]. These proteins have been suggested to coordinate the patterning of the 96 

plant body plan (Sabatini et al., 1999; Friml et al., 2003; Bjorklund et al., 2007; 97 

Ditengou et al., 2008; Cai et al., 2014).  98 

PAT relies on the proper subcellular localization of PIN proteins. PIN1, PIN2, PIN3, 99 

PIN4 and PIN7 are targeted to the plasma membrane (PM) and they cycle between 100 

the PM and endosomal compartments (Geldner et al., 2001). PIN8 localizes to the 101 

endoplasmic reticulum (ER) membranes (Mravec et al., 2009; Dal Bosco et al., 2012; 102 

Ding et al., 2012; Simon et al., 2016), while PIN5 and PIN6 localize to both the ER 103 

and PM (Ganguly et al., 2014; Simon et al., 2016). PIN5 was proposed to mediate 104 

auxin flow from the ER lumen to the cytosol (Mravec et al., 2009), while PIN8 and 105 

PIN6 were proposed to export auxin in the opposite direction (Ganguly et al., 2010; 106 

Dal Bosco et al., 2012; Ding et al., 2012). Together these studies suggest that PM-107 

targeting of PIN-proteins probably depends on some tissue and/or cell specific 108 

determinants. Although it is unclear which mechanisms regulate PIN5 and PIN6 dual 109 

localization, it can be envisaged that PIN5 and PIN6 may be post-translationally 110 

modified prior their ultimate subcellular targeting, suggesting that these proteins are 111 

no longer recognized by the sorting machinery responsible for their retention in 112 

endomembrane domains. Phosphorylation is the most common post-translational 113 

modification involved in signal transduction. Three protein kinase families have been 114 

shown to phosphorylate PIN proteins: (i) D6 PROTEIN KINASE (D6PK) regulates 115 

auxin transport by phosphorylation of PIN1, PIN2, PIN3, PIN4 and PIN7 (Shen et al., 116 

2015); (ii) PINOID (PID) kinase and SERINE/THREONINE PROTEIN 117 
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PHOSPHATASE 2A (PP2A) antagonistically affect phosphorylation of the PIN 118 

hydrophilic loop, which is important for polar targeting of PM-located PIN proteins 119 

(Michniewicz et al., 2007); and (iii) the recently characterized mitogen-activated 120 

protein kinase (MAPK) pathway, which consists of the MKK7-MPK6 complex that 121 

phosphorylates PIN1 serine 337 (S337) and impacts the polar localization of PIN1, 122 

thereby modifying shoot branching (Jia et al., 2016).  123 

In the present study, we aimed at characterizing the molecular mechanism(s) 124 

controlling PIN6 subcellular localization. Our study reveals that both PIN6 gene 125 

expression level and PIN6 phosphorylation modulate PIN6 subcellular localization in 126 

Arabidopsis. Functional analysis of two phosphorylation sites, T392 and T393, which 127 

were reported to be phosphorylated in vivo in Arabidopsis suspension cells treated 128 

with bacterial elicitor flagellin (Benschop et al., 2007), reveals that these sites play a 129 

key role in PIN6-ER exit and regulate root and root hairs growth, as well as 130 

inflorescence stem development. We demonstrate that PIN6 is phosphorylated by 131 

both MPK4 and MPK6 in vitro, although T393 is not phosphorylated by these 132 

kinases. Finally, the analysis of transgenic plants expressing PIN6 predominantly at 133 

PM or in ER reveals a critical role for PIN6 subcellular localization on inflorescence 134 

stem elongation post flowering. Hence, over-expressing a PIN6 mutant protein 135 

(T392V-T393V) that is retained in the ER-PIN6 does not affect inflorescence stem 136 

growth, while over-expressing native PIN6 or its PM-localized phosphomimetic 137 

mutant (T392E-T393E) drastically repressed plant growth and delayed bolting. In line 138 

with a role for PIN6 in plant bolting, the inflorescence stems elongated faster in pin6 139 

mutant plants than in wild-type plants. We conclude that PIN6 may act as a gate 140 

keeper ensuring that Arabidopsis plants efficiently develop the inflorescence stem at 141 

the appropriate, possibly environmentally determined time. 142 

 143 

Materials and Methods  144 

Materials and growth conditions 145 

Arabidopsis thaliana (L.) Heynh. Columbia (Col-0) and Landsberg erecta (Ler) 146 

ecotypes were used. All T-DNA insertion lines as well as transgenic lines are 147 

described in Methods S1.  Seeds were surface sterilized and sown on solid 148 

Arabidopsis medium (AM) (2.3 g/L MS salts, 1% sucrose, 1.6% agar–agar, 5 mM 2-149 

(N-morpholino)ethanesulfonic acid (MES) sodium salt (Sigma, Steinheim, Germany), 150 
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pH 6.0, adjusted with HCl). After vernalization for 2 days at 4°C, seeds were 151 

germinated under a long-day period (16 h light, 8 h darkness) at 22°C. The same 152 

growth conditions were applied in a phytochamber when plants were grown in soil. 153 

 154 

Pharmacological treatments 155 

For vesicular trafficking experiments, BFA (Invitrogen B7450) was used as previously 156 

described (Geldner et al., 2001) with slight modifications: plants were incubated in 25 157 

µM BFA (60 min). β-Estradiol was dissolved in 100% ethanol and added to AM 158 

without exceeding an ethanol concentration of 0.1%.  159 

Free IAA level determination 160 

Approximately 15 mg (fresh weight) of 5 mm root sections was homogenized and 161 

extracted for 16 h in methanol (Methods S2) 162 

 163 

Generation of the PIN6 antibody  164 

AtPIN6 cDNA (nucleotides 177-396) corresponding to the antigen peptide was 165 

inserted into the pET-28a(+) expression vector (Novagen). After expression in the 166 

Escherichia coli Rosetta strain (Novagen), the His6-tagged recombinant protein was 167 

affinity purified according to the Qiagen manual (Qiagen) and confirmed by SDS-168 

polyacrylamide gel electrophoresis (PAGE). The antigen peptide included in the 169 

PAGE slice was used to immunize a rabbit (Eurogentec). The polyclonal antiserum 170 

was affinity purified against the recombinant AtPIN6 peptide as previously described 171 

(Hasumura et al., 2005). 172 

 173 

Detection of PIN6 by western blot 174 

Proteins were extracted from 10, 3-week-old flower buds using extraction buffer 175 

containing 50 mM Tris-HCl, 10 mM EDTA, 2 mM EGTA, 0.1% SDS, 1 mM DTT, 10 176 

µM protease inhibitor cocktail, 0.01 mM MG132 and 0.1 mM PMSF. After 177 

centrifugation at 10,000 rpm at 4°C for 15 min, the supernatant containing total 178 

protein was collected, and the protein concentration was measured using the Thermo 179 

Scientific Pierce Micro BCA Assay according to the manufacturer’s instructions. After 180 

protein denaturation at 42°C in 5x Laemmli buffer (1:4), 7.4 mg/ml protein samples 181 

were separated on a 10% SDS-PAGE gel and then transferred to a nitrocellulose 182 

membrane. Blots were probed with a rabbit anti-PIN6 polyclonal antibody (1:1200), 183 

and PIN6 signal was detected with an HRP-conjugated anti-rabbit antibody (1:5000) 184 

Page 7 of 33

Manuscript submitted to New Phytologist for review



For Peer Review

 

 

7 

 

(Agrisera). Plasma membrane H+-ATPase was used as a control for equal loading. 185 

Signal detection was performed with a Fujifilm ImageQuantTM LAS 4000 CCD 186 

camera using Super Signal West Pico Chemiluminescent substrate.  187 

 188 

Immunolocalization  189 

Plants were fixed with 4% paraformaldehyde in PBS (pH 7.3) and used for whole-190 

mount in situ immunolocalization as previously described (Friml et al., 2004).  191 

 192 

Whole mount in situ hybridization  193 

In situ detection of PIN6 mRNA in Arabidopsis seedling root tips was performed as 194 

previously described (Riegler et al., 2008; Begheldo et al., 2013).  195 

 196 

Quantitative RNA analysis 197 

PIN6 expression was assessed using semi-quantitative RT-PCR (PIN6 mRNA in 6-198 

day-old PIN6ox plants) or qRT-PCR for PIN6 expression throughout the plant 199 

lifespan (Methods S4). 200 

 201 

Microscopy and image post processing  202 

Histological detection of β-glucuronidase (GUS) activity was performed as previously 203 

described (Scarpella et al., 2004). Fluorescent proteins were analyzed as described 204 

in Methods S4. All images were assembled using Microsoft PowerPoint 2013. 205 

 206 

Kinase assay 207 

To test whether PIN6 in phosphorylated by MPK4 or MPK6, the hydrophilic loop (HL: 208 

residues 156-430) of PIN6 cDNA was amplified and cloned into pGEM-T Easy vector 209 

(Promega), and the sequence was verified. A non-phosphorylatable mutant HL 210 

version (T226A, T242A, S286A, T304A, T320A, S326A, S337A, and T393A; 211 

positions according to the full-length PIN6 protein) was synthetized by GenScript. 212 

The variant where T393 of the putative MAPK phosphosites is wild type was 213 

generated by inserting the sequence corresponding to A156-D352 from the mutant 214 

clone (including T226A, T242A, S286A, T304A, T320A, S326A and S337A) into the 215 

WT construct. For in vitro transcription/translation, the HL sequence variants were 216 

subcloned into the pEU3-NII-GLICNot vector with ligation-independent cloning 217 

(Bardoczy et al., 2008). In vitro mRNA synthesis was carried out using a 218 
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TranscriptAid T7 High Yield Transcription Kit (Thermo Scientific) according to the 219 

manufacturer’s instructions. Cell-free translation was completed using a 220 

WEPRO7240H Expression Kit (Cell Free Sciences, Japan). To activate His-tagged 221 

MPK4 and MPK6 when included in the phosphorylation assay solution, mRNA 222 

encoding constitutively active myc:MKK1 and myc:MKK4, respectively, were also 223 

added to the translation mixture as described (Nagy & Meszaros, 2014). 224 

In vitro-translated His6-AtMPK4 and His6-AtMPK6 proteins were purified by affinity 225 

chromatography using TALON Magnetic Beads (Clontech), while in vitro-translated 226 

wild-type and mutant GST-PIN6loop variants were purified by affinity chromatography 227 

using Glutathione Magnetic Beads (Thermo Scientific)(Nagy & Meszaros, 2014). For 228 

kinase assays, 300 and 100 ng of in vitro-translated, affinity-purified substrate and 229 

kinase were used, respectively. As an activity control, 10 µg myelin basic protein 230 

(MBP) was used as a generic MAPK substrate (not shown). The assay was carried 231 

out in 20 mM HEPES, pH 7.5, 100 µM ATP, 1 mM DTT, 15 mM MgCl2, 5 mM EGTA 232 

and 5 µCi [γ-32P]ATP with bead-bound GST-PIN6loop variants as substrates for 30 233 

min at room temperature and then stopped by the addition of Laemmli SDS buffer. 234 

Samples were fractionated by SDS-PAGE. The gel was fixed, stained with 235 

Coomassie blue, dried and analyzed by autoradiography. 236 

 237 

Results  238 

PIN6 expression level is variable and increases highly during plant bolting  239 

PIN6 was reported to be located at the plasma membrane and in the ER in different 240 

cells and organs (Simon et al., 2016), suggesting this dual localization may depend 241 

on some tissue and/or cell specific determinants. To gain insight on regulation of 242 

PIN6-localization, we first performed a quantitative RT-PCR analysis to ascertain 243 

PIN6 expression throughout the Arabidopsis lifespan. As previously shown by 244 

qualitative pPIN6:GUS analysis (Nisar et al., 2014), PIN6 is expressed during both 245 

vegetative and reproductive plant growth phases (Fig. 1a) with highest PIN6 mRNA 246 

levels in developing inflorescence stems (Fig. 1a). This observation was confirmed by 247 

analysis of pPIN6::GUS plants where PIN6 expression was present in elongating 248 

inflorescence stems (Fig.Fig. S1b). These results are in agreement with publicly 249 

available data sets (Ismagul et al., 2014; Ivanova et al., 2014) and indicate that PIN6 250 

expression is under the control of developmental signals during bolting. Cross-251 

sections from the inflorescence stem of pPIN6:GUS plants showed PIN6 expression 252 
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in xylem parenchyma cells (Xpc), the fascicular cambium (Fc) and the interfascicular 253 

fiber tissues (IF) (Fig. S1f). Altogether, these observations show that PIN6 is 254 

ubiquitously expressed during Arabidopsis life span. The fact that PIN6 expression is 255 

increasing during plant bolting and stays relatively high in the stem, suggests a role 256 

of PIN6 in processes controlling both longitudinal and radial differentiation, 257 

particularly during bolting.  258 

 259 

PIN6 is localized at the PM in the shoot apical meristem, hypocotyl and 260 

inflorescence stem 261 

To visualize PIN6 subcellular localization, we generated a polyclonal anti-PIN6 262 

antibody. In agreement with a recent report (Simon et al., 2016), PIN6 displayed dual 263 

localization in endomembrane domains and at the PM. We used the anti-PIN6 264 

antibody to detect PIN6 at the root tip, the plant organ with the lowest PIN6 265 

expression levels. PIN6 was visible in the endomembrane compartments of the 266 

epidermis and cortex cell files (Fig. 1B), the tissues in which PIN6 mRNA were low 267 

(Fig. 1a, Fig. S1E). However, in other tissues such as inflorescence stem vascular 268 

cells (Nisar et al., 2014), vegetative leaves and flower primordia, which displayed 269 

higher PIN6 mRNA levels, PIN6 was detected at the PM co-localized with PIN1 (Fig. 270 

1a,c,d,f,g). To test the quality of the anti-PIN6 antibody, we performed both western 271 

blot analysis using the pin6-5 mutant and immunolocalization using both the pin6-5 272 

and pin6-6 mutants (Fig. S2b). PIN6 was recognized by the anti-PIN6 antibody in WT 273 

plants but as expected not in the mutants. This suggests that pin6-5 and pin6-6, 274 

which were previously described as knock-down mutants at the mRNA level, are 275 

indeed null mutants at the protein level. This confirms that this antibody can be 276 

considered specific for PIN6. However, additional higher and lower molecular weight 277 

proteins were detected in both WT and pin6-5 knock-out plants, which probably 278 

resulted in the background signals which were observed in the immunolocalization 279 

images (Fig. S2d-f, non-specific nuclear signals are indicated with an asterisk in WT 280 

and pin6 knock-outs).  281 

These data show that tissues with low PIN6 expression display PIN6 in 282 

endomembrane domains, while PIN6 is at the PM in tissues with higher PIN6 283 

expression. This suggests that the dual localization of PIN6 may be dependent on 284 

PIN6 expression level. To substantiate this correlation, we extended our analysis to 285 

other plant tissues reported to have strong PIN6 expression, such as nectary glands 286 

Page 10 of 33

Manuscript submitted to New Phytologist for review



For Peer Review

 

 

10 

 

(Ludwig-Muller, 2014; Turi et al., 2014). Observation of plants expressing the 287 

pPIN6:GFP-PIN6 construct revealed that the GFP signal co-localized almost perfectly 288 

at the PM with the endosome tracker/PM-marker FM4-64 (Pearson’s correlation 289 

coefficient in co-localized volume (PCCCV)=0.97, with a value of 1 representing a 290 

perfect correlation) (Fig. 2a-e). In contrast, very limited co-localization with the ER 291 

marker Rhodamine B (Zhang et al., 2014) (PCCCV=0.26) was observed in both the 292 

median and lateral nectary glands (Fig. 2f-h). Taken together, these data support our 293 

hypothesis that the PM localization of PIN6 most likely depends on the PIN6 294 

expression level. Analysis of the PIN6-subcellular localization in nectary glands also 295 

revealed basally (toward the root) localized GFP-PIN6, presumably exporting auxin 296 

out of nectary glands, thus supporting the idea that nectary glands could be potential 297 

sources of auxin (Aloni et al., 2006) (Fig. 2i,j).  298 

 299 

PIN6 is targeted to the PM upon PIN6 overexpression  300 

To confirm the relationship between PIN6 expression level and PIN6 subcellular 301 

localization, we generated transgenic lines overexpressing the PIN6 genomic 302 

sequence with (GFP-PIN6ox) or without (PIN6ox) a GFP tag and driven by the 303 

constitutively active CaMV35S promoter. The non-tagged construct was used to 304 

confirm that GFP does not affect PIN6 sub-cellular localization. We visualized PIN6 305 

subcellular localization in GFP-PIN6ox and PIN6ox plants and analyzed its impact on 306 

root and shoot growth. PIN6 overexpression increased the PIN6 mRNA level and 307 

thus the PIN6 protein level (Fig.3a and  Fig. S2b); both GFP-tagged and non-tagged 308 

PIN6 were detected at the PM, where they co-localized with FM4-64 (PCCCV=0.7) 309 

(Fig. 3e-h). In line with recent studies (Ganguly et al., 2010; Cazzonelli et al., 2013; 310 

Simon et al., 2016), the roots of both GFP-PIN6ox and PIN6ox plants were hairless 311 

and displayed a strong waving phenotype, suggesting that GFP insertion did not 312 

affect PIN6 functionality (Fig. 3b-d). More thorough inspection of the PIN6 sub-313 

cellular localization showed that PM-located PIN6 (PM-PIN6) exhibited polar 314 

localization in root cells similar to our observations in nectary glands (see above). In 315 

the cortex and stele cells, PIN6 co-localized basally with PIN1  (Fig. 3i and Fig. S3a). 316 

The PIN6 PM-localization was most striking in the epidermis For clarity, the epidermis 317 

cell file of the root meristematic zone was divided into two tiers (see Fig. 3i). 318 

Epidermal cell tier 1 represents cells located in the upper part of the meristematic 319 

zone, while tier 2 represents the lower part. The oldest cell of the most recent lateral 320 
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root cap cells (LRC) (solid white forward arrow in Fig. 3i) marks the limit between the 321 

two tiers. In tier 1, PIN6 localized apically (toward the shoot) similarly to PIN2, with a 322 

well-defined polarity in cells destined to elongate (Fig. 3i and Fig. S3b). In contrast, in 323 

tier 2, PIN6 localized laterally and basally, pointing progressively towards the 324 

quiescent centre (QC) and columella cells and presumably channeling auxin towards 325 

this region (Fig. 3i and  Fig. S3a). Indeed, PM-localized PIN6 perturbed auxin 326 

distribution in PIN6ox roots as confirmed by  both quantification of auxin levels and 327 

the expression of the auxin-sensitive DR5::GUS reporter fusion protein at the PIN6ox 328 

root tip (Fig. S3e-g) (Cazzonelli et al., 2013). 329 

 330 

PID regulates PIN6 polarity despite altered phosphosite occurrence 331 

The unique localization dynamics of PIN6 suggests that it is under the control of a 332 

unique regulatory mechanism. Phosphorylation has been already shown to be a key 333 

determinant of PIN localization, the best characterized mechanism is the regulation of 334 

PIN polarity by members of the AGCVIII protein kinase subfamily, PID and D6PK and 335 

their close paralogues. The main D6PK site of PIN1 (S271) is conserved in all long-336 

HL PINs, including PIN6 (S291) (Zourelidou et al., 2014). The three PID 337 

phosphorylation sites are similarly well conserved in long-HL PINs with the exception 338 

of PIN6, where the site corresponding to S252 of PIN1 is missing. Although PID is 339 

known to regulate polarity, not localization to the PM, we first tested whether this 340 

differential PID site composition can be associated with a differential regulation of 341 

PIN6 by PID. In PIDox plants, PIN1 polarity was shifted from the basal to the apical 342 

side in the stele (Friml et al., 2004), whereas the cytoplasmic localization of PIN6 in 343 

epidermal cells remained unchanged, implying that PID does not bring about PM 344 

translocation of PIN6 (Fig. S5a-c) (Friml et al., 2004; Rasmussen et al., 2015). 345 

Furthermore, we crossed PIN6 overexpression (PIN6ox) and PINOID-overexpression 346 

(PIDox) plant materials. Similarly to PIN6ox plants, PIN6 was localized to PM in 347 

PIDoxPIN6ox plants, but the PM-PIN6 basal localization in the stele shifted, similarly 348 

to PIN1 (Fig. S5g-i). Moreover, the basal localization of PM-PIN6 in tier 2 epidermal 349 

cells also shifted, whereas the apical localization of PIN6 in tier 1 epidermal cells did 350 

not (in 100% of plants tested, n>15; compare Fig. 3i and Fig. S5d-f with Fig. S5g-i). 351 

These results imply that similarly to other PINs, PID plays a role in polarity regulation 352 

of PIN6, however its ER to PM translocation is regulated by other means. 353 
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Threonine-phosphorylation sites 392 (T392) and 393 (T393) are involved in PIN6 354 

localization at the PM 355 

A phosphoproteomic assay in Arabidopsis yielded PIN6 phosphopeptides from 356 

suspension-cell-derived PM vesicles (Benschop et al., 2007). In that study, PM-357 

localised PIN6 protein was shown to be phosphorylated at both or either of the two 358 

adjacent threonine residues at positions T392 and T393 in the hydrophilic loop 359 

(Benschop et al., 2007). These phosphorylation sites are partially conserved among 360 

PIN6-like proteins in other species (Fig. S6b). Remarkably, these residues are not 361 

conserved in other members of the PIN family (Fig. S6b), raising the possibility of a 362 

PIN6-specific regulation through their phophorylation. In order to test this hypothesis 363 

both T392 and T393 were converted by site-directed mutagenesis to valine, an amino 364 

acid that cannot be phosphorylated (PIN6T392EVT393V) or to glutamic acid, which 365 

mimics constitutive phosphorylation (PIN6T392E/T393E). Driven by a β-estradiol-366 

inducible promoter, the intact PIN6 gene (PIN6ox-i) and the mutated versions were 367 

separately introduced into WT plants. When grown in the presence of β-estradiol, the 368 

roots of PIN6ox-i and PIN6T392E/T393E plants were dramatically affected in comparison 369 

to the roots of WT and PIN6T392V/T393V plants (Fig. 4a-d, top panel). PIN6ox-i and 370 

PIN6T392E/T393E plants developed hairless agravitropic roots (Fig. 4a-d, middle panel). 371 

Consistent with this, confocal microscope images revealed that, as for PIN6ox plants 372 

(Fig. 3i), PIN6 localized basally at the PM in PIN6ox-i root tip epidermal cells (Fig. 4b, 373 

lower panel). In PIN6T392E/T393E plants, the GFP signal also localized to the PM but 374 

was non-polar (Fig. 4c, lower panel; Video S1). Altogether, these data indicate that 375 

the presence of PIN6 at the PM of epidermal cells, and not necessarily its polarity, is 376 

sufficient to perturb both the root gravity response and root hair development. In 377 

contrast, PIN6T392V/T393V plants were indistinguishable from WT plants, and the GFP 378 

signal was mainly visible in the ER, where it co-localized with the ER marker 379 

rhodamine B hexyl (PCCCV=0.65) (Fig. 4d and Fig. S7a; Video S2). It is known that 380 

PM-localized PINs are sensitive to the fungal toxin brefeldin A (BFA), which blocks 381 

PIN protein recycling, while ER-PINs are BFA resistant (Mravec et al., 2009). 382 

Accordingly, upon BFA treatment, PIN6T392E/T393E co-localized with FM4-64 in BFA 383 

compartments, while PIN6T392V/T393V localization was not affected, thus confirming 384 

their respective subcellular localizations (Fig. S7b-c). These data demonstrate that 385 

T392 and T393 phosphorylation sites are crucial the translocation of PIN6 to the PM.  386 

 387 
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PIN6 hydrophilic loop is phosphorylated by MPK4 and MPK6 but T393 is not a 388 

MAP kinase phosphorylation site 389 

In order to predict putative kinase(s), which may mediate T392/T393 phosphorylation, 390 

we screened the PIN6 protein sequence by using the Eukaryotic Linear Motif (ELM) 391 

database (Dinkel et al., 2016). This search resulted in a total of 59 predicted 392 

phosphorylation sites targeted by eight types of kinases. In the region of interest 393 

T393 was identified as a MAPK phosphorylation site, while no putative kinase was 394 

associated with T292. T393 is one of eight potential proline-directed MAPK 395 

phosphorylation sites in PIN6 HL (T226, T242, S286, T304, T320, S326, S337, and 396 

T393) suggesting that PIN6 may be phosphorylated by MAP-kinase(s). In plants, 397 

MAPK pathways are central regulators of various stress responses and 398 

developmental processes (Rodriguez et al., 2010; Xu & Zhang, 2015). In particular, 399 

MPK6 of Arabidopsis, the best studied plant MAP kinase, has been reported to 400 

specifically regulate developmental processes such as lateral root development and 401 

plant height (Jia et al., 2016), processes also shown to be altered in pin6 mutants 402 

(Cazzonelli et al., 2013; Simon et al., 2016). MPK4, another well-characterized plant 403 

MAPK is involved in defense regulation, with mpk4 mutants displaying severe 404 

dwarfism and altered cell division and microtubule dynamics. Based on this 405 

information we first tested whether PIN6 is phosphorylated by MPK4 and MPK6 using 406 

in vitro kinase assays (Fig. 5). 407 

The incorporation of radiolabeled phosphate in the hydrophilic loop (HL) of PIN6 in 408 

the presence of activated MPK4 or MPK6 indicates that this protein is phosphorylated 409 

by both kinases (Fig. 5). As a negative control, all eight MAPK phosphorylation 410 

residues (S or T) were replaced with the non-phosphorylatable amino acid alanine 411 

(T226A, T242A, S286A, T304A, T320A, S326A, S337A, and T393A in PIN6-mut8), 412 

which results in the loss of MAPK-mediated phosphorylation (Fig. 5). Faint, residual 413 

phosphorylation of the mutant proteins by MPK6 indicates weak, unspecific 414 

phosphorylation on non-cognate residues, probably related to the strong activity of 415 

MPK6. These results confirm MAPK-mediated phosphorylation of PIN6. In order to 416 

test whether T393 is one of the residues actually phosphorylated by these MAPKs we 417 

tested specific phosphorylation of T393 by using a septuple mutant, where T393 is 418 

wild type (i.e. T226A, T242A, S286A, T304A, T320A, S326A, S337A; PIN6-mut7). 419 

Neither MPK4 nor MPK6 phosphorylated PIN6 on T393 (Fig. 5), suggesting that this 420 

residue is not a genuine MAP kinase site. These data reveal complex regulation of 421 
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PIN6 by at least two MAPK pathways, but also indicate that the modification of 422 

T392/T393 regulating PIN6 PM translocation is probably brought about by yet 423 

another type of protein kinase.  424 

 425 

PM-localized PIN6 represses plant growth  426 

To investigate the importance of PIN6 subcellular localization on plant development, 427 

we analyzed the phenotype of PIN6T392E/T393E and PIN6T392V/T393V plants grown in soil. 428 

Spraying plants with 100 µM ß-estradiol affected weakly the growth of Col-0 and 429 

PIN6T392E/T393E plants, but strongly retarded the growth of PIN6T392E/T393E and PIN6ox-i 430 

plants (Fig. S8a, b). Plants sprayed with water showed a similar elongation profile for 431 

the inflorescence stems of Col-0 and PIN6T392V/T393V, while PIN6T392E/T393E plants 432 

developed significantly smaller inflorescences. This result confirms the reported 433 

leakiness of the estradiol-inducible promoter (Kubo et al., 2013), as indicated by the 434 

GFP signal observed in the leaves of non-induced PIN6T392V/T393V and PIN6T392E/T393E 
435 

plants (Fig. S8c). ß-estradiol also affected weakly the growth of Col-0 and 436 

PIN6T392V/T393V plants, but it strongly delayed the growth of PIN6T392E/T393E 437 

inflorescence stems and completely suppressed the bolting of PIN6ox-i plants (Fig. 438 

S8d). Taken together, these data demonstrate the importance of T392 and T393 for 439 

the regulation of plant inflorescence stem elongation and indicate that the 440 

phosphorylation-dependent PM targeting of PIN6 negatively controls inflorescence 441 

stem development, while preventing this phosphorylation results in the ER retention 442 

of PIN6. These data also suggested a role for PIN6-dependent auxin distribution 443 

during the elongation of the inflorescence stem. 444 

 445 

Inflorescence stem elongation is accelerated in pin6 loss-of-function mutants 446 

In Arabidopsis thaliana, the floral transition (formation of an inflorescence meristem) 447 

marks the transition from the vegetative to the reproductive phase followed by 448 

elongation of the first internode, known as the bolting transition (Pritchard et al., 449 

2012). This process is influenced by hormones but underlying mechanisms still 450 

remain poorly understood. To explore how PIN6-dependent PAT modulates 451 

inflorescence stem development, we analyzed the pin6-5 (GK-430B01) and pin6-6 452 

(GK-711C09) T-DNA insertion lines (Supporting Information Fig. S2A; (Cazzonelli et 453 

al., 2013). We also analyzed two additional novel knock-out lines isolated from the 454 

Arabidopsis Genetrap collection in the Landsberg erecta (Ler) background 455 
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(Sundaresan et al., 1995) (referred to here as pin6-7 (GT7129) and pin6-8 456 

(GT6906)), in which T-DNA is inserted in the 4th and 5th introns, respectively 457 

(Supporting Information Fig. S2C). All pin6 mutants developed inflorescence stems 3-458 

5 times longer than wild-type (WT) inflorescence stems while having the same 459 

number of leaves. This phenotype suggests faster inflorescence stem elongation 460 

rather than early flowering (Fig. 6a-d).  461 

 462 

PIN6 overexpression delays inflorescence stem elongation 463 

In contrast to pin6 mutants and in line with previously published phenotypes 464 

(Cazzonelli et al., 2013), plants overexpressing PIN6 developed significantly shorter 465 

inflorescence stems (Fig. 6d). Compared to WT plants, these plants developed 466 

siliques relatively close to the base of the inflorescence stem (indicated with an arrow 467 

in Fig. S9a), suggesting that these plants were mature and capable of seed 468 

production but that inflorescence stem elongation was arrested (Fig. 6a-d). To 469 

confirm these results, we quantified the flowering time and the growth rates of WT, 470 

pin6-5 and pin6-5 complemented with GFP-PIN6 driven by the PIN6 native promoter 471 

(pPIN6:PIN6:GFP). In our conditions, all plants (WT, pPIN6:PIN6-GFP, pin6-5, and 472 

PIN6ox) flowered around the 28th day after sowing (DAS). However, although the 473 

apical flower was visible in PIN6ox and GFP-PIN6ox plants, inflorescence stem 474 

elongation required four additional days (Fig. 6e). WT and pin6-5 pPIN6:PIN6-GFP 475 

plants displayed accelerated growth starting on the 34th day (open arrow in Fig. 6e), 476 

but this acceleration occurred earlier in pin6-5 plants (closed arrow in Fig. 6e). Thus, 477 

six days after bolting, the growth rate of pin6-5 mutant inflorescences was 478 

approximately 2.42 cm/day versus 1.65 and 1.43 cm/day for WT and pin6-5 479 

pPIN6:PIN6-GFP plants, respectively (Fig. S9b), demonstrating the rapid growth of 480 

pin6-5 plants and mutant complementation by the pPIN6:PIN6-GFP construct. 481 

Conversely, GFP-PIN6ox and PIN6ox inflorescence stem elongation was slower 482 

(only 0.25 and 0.13 cm/day, respectively (Fig. S9b)). The data also indicated that the 483 

accelerated growth of pin6 mutants is transient. Later, the WT and pin6-6 mutant (a 484 

trend visible in all mutants; not shown) growth rates became equal, while the PIN6ox 485 

growth rate remained approximately 50% lower (Fig. S9c,d). Taken together, these 486 

data demonstrate that PIN6 activity regulates inflorescence stem elongation and 487 

strongly suggest a role for auxin transport during plant bolting.  488 

 489 
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 490 

 491 

Auxin response is reduced in pin6 mutants 492 

Auxin transport capacities and auxin levels are crucial for shoot branching and 493 

vascular tissue development (Muller & Leyser, 2011; Peer et al., 2011; Bennett et al., 494 

2014). For example, a cambial auxin peak resulting from basipetally derived shoot-495 

apex auxin is essential for both primary and secondary growth (Bjorklund et al., 2007; 496 

Suer et al., 2011; Ameres & Zamore, 2013). To determine how PIN6 activity 497 

modulates auxin distribution and levels in bolting inflorescences, we used a 498 

pDR5:GFP reporter (Ottenschlager et al., 2003) to visualize auxin distribution and 499 

activity in inflorescence stems six days after bolting. In transverse sections 50 mm 500 

above the uppermost rosette leaf of the inflorescence stem of WT plants, the 501 

DR5:GFP signal was mainly visible in phloem and xylem parenchyma cells (Fig. 502 

7a,f,i). The DR5 signal was significantly lower in the pin6-5 mutant (T-test, P<0.05, 503 

n=10); in contrast, DR5 expression was significantly greater in PIN6ox plants (T-test, 504 

P<0.001, n=10) (Fig. 7b-d). In addition, radial development was reduced in PIN6ox 505 

plants but increased in pin6-5 plants (Fig. 7b-e). Consequently, pin6-5 DR5:GFP 506 

plants displayed a greater transversal stem surface area than DR5:GFP and 507 

PIN6oxDR5:GFP plants (T-test, P<0.001, n=10). In PIN6ox DR5:GFP plants, the 508 

number of xylem elements was significantly reduced and accompanied by ectopic 509 

development of xylem parenchyma cells (Fig. 7f-l; xylem parenchyma cells are 510 

indicated with a white arrow in Fig. 7i and k). Altogether, these data establish PIN6 as 511 

a key regulator of both the primary and secondary growth of Arabidopsis 512 

inflorescence stems and show that impaired PIN6 activity strongly affects the auxin 513 

response necessary for cambium proliferation and xylem differentiation (Hildebrandt 514 

& Nellen, 1992; Nina Theis & Manuel Lerdau, 2003; Suer et al., 2011).  515 

 516 

Discussion 517 

Previous studies revealed the importance of the auxin transporter PIN6 in several 518 

developmental processes, such as nectary development (Bender et al., 2013), leaf 519 

vein patterning (Sawchuk et al., 2013), and root and lateral root development 520 

(Cazzonelli et al., 2013; Simon et al., 2016). Recently, Simon and colleagues 521 

described the PM and ER subcellular localization of PIN6 and suggested its role in 522 

controlling auxin transport and homeostasis in auxin-mediated development (Simon 523 
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et al., 2016). In the present study, using genetic, molecular and pharmacological 524 

approaches, we characterized the mechanisms controlling PIN6 dual localization and 525 

uncovered a role for PIN6 during Arabidopsis inflorescence stem development. 526 

 527 

PIN6 subcellular localization is regulated by PIN6 gene expression levels 528 

It was reported that auxin can induce the PIN6 promoter in a tissue-specific manner 529 

(Cazzonelli et al., 2013). Hence when combined to the finding that high PIN6 530 

expression results in PM-targeting of PIN6, it is not surprising to find PIN6 expressed 531 

at the PM in tissues reported to contain high levels of auxin such as the tip of young 532 

leaves, young flowers, vascular tissue of the stem and nectary glands (Muller et al., 533 

2002; Benkova et al., 2003; Aloni et al., 2006; Cheng et al., 2006). We did not 534 

observe PIN6 at the PM of root cells, despite the fact that auxin is synthesized and 535 

accumulates at the root tip. This suggests that at the root tip, besides auxin levels 536 

other cell determinants probably modulate PIN6 abundance and therefore its 537 

localization. In contradiction with our data, GFP-tagged PIN6 driven by the PIN6 538 

native promoter was recently reported to localize at the PM in the Arabidopsis root tip 539 

(Simon et al., 2016), although whether this construct could rescue the described 540 

mutant phenotypes is not presented in that paper.  541 

 542 

T392/T393 phosphorylation sites modulate PIN6 subcellular localization 543 

PINOID (PID) kinase and SERINE/THREONINE PROTEIN PHOSPHATASE 2A 544 

(PP2A), were reported to be involved in the reversible phosphorylation of the PIN 545 

hydrophilic loop (Michniewicz et al., 2007), although it is still unclear how PID 546 

regulates PIN trafficking (New ref), Nevertheless. our data indicate that despite loss 547 

of a PID site PIN6 retains a similar sensitivity to PID-dependent phosphorylation as 548 

PIN1, i.e. PIN6 basal localization is flipped to apical localization. However, we have 549 

no evidence that PID activity is responsible for PIN6 exit from the ER, since PIN6 is 550 

not targeted to PM in PIDox plants, since PIN6 is not targeted to the PM in 35S::PID 551 

plants; instead this observation indicates a role for other kinases. 552 

Data mining retrieved in vivo phosphorylation at a tandem threonine pattern 553 

(T392/T393) unique to PIN6. Accordingly, functional analyses confirmed that the 554 

T392 and T393 residues are crucial for PIN6 ER exit and subsequent PM 555 

localization. In line with this, genetic modifications preventing phosphorylation of 556 

these residues resulted in PIN6 retention in the ER. A similar mechanism was 557 
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described for the PM-targeting of Arabidopsis PHOSPHATE TRANSPORTER1 558 

(PHT1) (Bayle et al., 2011), the nitrate transporter and auxin facilitator NRT1.1 559 

(Krouk et al., 2010; Habets & Offringa, 2014) and the aquaporin PIP2;1 (Weiste & 560 

Droge-Laser, 2014). Phosphorylation of these proteins was shown to modulate their 561 

targeting to the PM.  562 

 563 

PIN6 is phosphorylated by MPK4 and MPK6  564 

Phosphorylation of PIN6 at T392/T393 represents a novel regulatory mechanism, 565 

thus we set out to identify the corresponding kinase(s). As there are 942 kinases 566 

encoded in the Arabidopsis genome (Zulawski et al., 2014), in silico pattern 567 

screening appeared to be the feasible approach to predict the kinase(s) 568 

phosphorylating T392 and/or T393. Accordingly, T393 is one of eight putative MAP 569 

kinase phosphorylation sites in PIN6 HL. Here we provide evidence that PIN6 is 570 

phosphorylated by both MPK4 and MPK6, thus revealing a novel regulatory 571 

mechanism, although T393 is not phosphorylated by MPK4 or MPK6. Preference of 572 

MAP kinases towards specific residues within a set of potential phosphosites has 573 

been precedented in case of other substrates, e.g (Furlan et al., 2017). Thus the 574 

identity of the kinase(s) phosphorylating T392 and/or T393 remains elusive in light of 575 

current kinase analysis tools. MAP kinases are involved in several adaptive and 576 

developmental processes controlled by environmental stress (Pitzschke et al., 2009; 577 

Rodriguez et al., 2010; Xu & Zhang, 2015). In particular, MKK7 is a repressor of PAT 578 

(Dai et al., 2006), and the MKK7-MPK6 cascade was recently shown to be involved 579 

in PAT and to have a direct impact on auxin distribution in inflorescence stems (Jia et 580 

al., 2016). MPK4 is known to modulate plant defense and development (Petersen et 581 

al., 2000; Gawronski et al., 2014). In light of MAPK-mediated phosphorylation of two 582 

PINs and the involvement of two MAPK pathways  [(Jia et al., 2016); this study], a 583 

complex regulatory network is emerging, which suggests an adaptive growth 584 

mechanism allowing plants to rapidly respond to environmental or developmental 585 

changes and fits well with the central role of MAPK pathways in adaptive regulation. 586 

For this respect, in vivo analysis of PIN6 phosphorylation by MPK4 or MPK6 in 587 

response to various stresses will be very informative.  588 

 589 

PIN6-depedent auxin transport regulates inflorescence stem elongation 590 
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Our data show that PIN6 expression is regulated by both developmental and tissue-591 

specific determinants throughout the entire plant lifespan. PIN6 expression does not 592 

regulate the transition to flowering, as flowering time in terms of leaf number at the 593 

onset of bolting is unaltered in both pin6 and PIN6ox genotypes. Therefore, PIN6-594 

dependent auxin transport is crucial for inflorescence stem elongation after floral 595 

initiation. The significance of PIN6-mediated auxin transport in inflorescence stem 596 

development is related to the degree of PIN6 expression. Ectopic expression of PIN6 597 

in PIN6ox plants causes the auxin accumulation (Cazzonelli et al., 2013) responsible 598 

for inhibiting inflorescence stem elongation, while lower auxin levels in the pin6 599 

mutant promote both radial extension and faster inflorescence stem elongation. This 600 

is in line with the well-accepted result that perturbing PAT alters the normal 601 

development of Arabidopsis inflorescence stems (Okada et al., 1991; Wilson et al., 602 

2013) and with the reported auxin concentration-dependent effect on stem 603 

elongation, in which the application of high concentrations of auxin directly inhibits 604 

the growth of shoots, while lowering auxin concentrations promotes growth (Thimann, 605 

1939). It is possible that PIN6-dependent auxin gradients differentially regulate the 606 

genes controlling cell expansion, thus inhibiting cell growth when auxin levels are 607 

high, such as occurs in PIN6ox plants.  608 

By delaying elongation of the inflorescence stem, PIN6-dependent auxin transport 609 

allows the plant to optimally mature, hence optimizing seed yields. On the other 610 

hand, lowering PIN6 function appears to be a relevant tool for accelerating or 611 

delaying inflorescence stem development. We propose that PIN6 acts as a gate 612 

keeper, ensuring that Arabidopsis plants efficiently develop the inflorescence stem at 613 

the appropriate, environmentally determined time and that inflorescence stem 614 

development is timed in accordance with environmental conditions. The underlying 615 

regulatory mechanisms probably involve upstream factors that sense environmental 616 

changes and activate the kinases that phosphorylate PIN6, thereby stimulating its 617 

exit from the ER. In this respect, it is remarkable that MAPK signaling is activated by 618 

various environmental signals.  619 

The fact that inflorescence stem elongation is repressed in plants overexpressing 620 

PIN6 [this study; (Cazzonelli et al., 2013)] and in PIN6T392E/T393E plants, where PIN6 621 

localizes at the PM, suggests the existence of a correlation between PIN6 622 

phosphorylation status, the PM-localization of PIN6 and the elongation of the 623 

inflorescence stem during plant bolting. PM localization of PIN6 is crucial, as it may 624 
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contribute to the fine tuning of the tissue-specific auxin amounts necessary for the 625 

optimal development of the Arabidopsis inflorescence stem. Furthermore, although 626 

PIN6 is an auxin efflux carrier (Petrasek et al., 2006; Simon et al., 2016), its activity 627 

once targeted to the PM is quite intriguing, particularly in relation to the other PM-628 

localized PIN proteins. The pin1 mutant displays several developmental defects such 629 

as naked, pin-shaped inflorescences (Galweiler et al., 1998) and delayed bolting 630 

(Okada et al., 1991; Galweiler et al., 1998), whereas 35S::PIN1 plants bolt similarly to 631 

WT (Benkova et al., 2003). In comparison, pin6 mutants bolt faster, while PIN6ox 632 

plants are severely delayed. Since PIN6 and PIN1 both localize to the PM in WT 633 

stems, it is logical that their combined basipetal auxin transport activities are required 634 

for inflorescence stem development. Interestingly, PAT was shown to be increased in 635 

35S::PIN1 plants but significantly reduced in plants overexpressing PIN6 (Cazzonelli 636 

et al., 2013). Altogether, these observations suggest that PIN6 and PIN1 probably 637 

have distinct activities during inflorescence stem development. 638 

Taken together, our data suggest a mechanism in which 639 

environmental/developmental cues act at both the transcriptional and 640 

posttranscriptional levels by stimulating PIN6 expression and inducing the 641 

phosphorylation and subsequent translocation of PIN6 protein to the PM (Fig. S10).  642 
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Figure 1. PIN6 expression and subcellular localization.  
(a) PIN6 mRNA levels in different tissues were detected by qRT-PCR. (b-c) Immunolocalization of PIN6 and 
PIN1 in Arabidopsis WT seedlings. (b) Immunocytolocalization of PIN6 and PIN1 in a seedling root tip. PIN6 

is mainly cytoplasmic in endomembrane domains. (c) PIN6 is localized mainly at the PM of developing 
vegetative leaf primordium and co-localizes with PIN1. (d), Co-localization of PIN6 and PIN1 at the PM in 

stem xylem parenchyma cells. (e) PIN6 expression in developing WT flowers. Arrows indicate PIN6 mRNA. 
(f-g), Immunolocalization of PIN6 and PIN1 in Arabidopsis inflorescences. (f) PIN6 and PIN1 subcellular 

localization in an inflorescence longitudinal section. Arrow indicates PIN6 localization at the PM in emerging 
incipient primordia (I1, I2). (g-i) Co-localization of PIN6 and PIN1 at the PM in WT Arabidopsis inflorescence 
transverse sections. (g), PM-localized PIN6 (green). (h) PM-localized PIN1 (red). (I) G and H merged. PIN6 
and PIN1 co-localize at the PM in incipient leaf primordia (I1, I2, I3) tips. Scale bars, 20 µM in (b), (c), (e), 

(f), (g), (h), and (i); 10 µm in (d).  
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Figure 2. PIN6 is located at the PM in WT Arabidopsis nectary glands.  
(a) WT plants expressing a pPIN6::GFP-PIN6 fusion protein in nectary glands were labelled with endosome 

tracker/PM marker FM4-64. (b-e) Z-stack maximum projection of confocal microscope images showing GFP-

PIN6 co-localizing with FM4-64. (b) GFP-PIN6 signal. (c), FM4-64 signal. (d), (b) and (c) merged. (e), Co-
localization of GFP-PIN6 and FM4-64 in (D). (f-h) WT plants expressing a pPIN6::GFP-PIN6 fusion in nectary 
glands labelled with the ER marker rhodamine B hexyl ester. GFP-PIN6 is not localized to the ER. (f) GFP-

PIN6 signal. (g) Rhodamine hexyl B signal. (h) (f) and (g) merged. (i-j) Semi-quantitative, color-coded heat 
map of PM-PIN6 displaying GFP-PIN6 polarity in confocal microscope virtual sections of a WT nectary. Dark 
and white pixels indicate low and high intensity, respectively; pixel values range from 0 to 4095. (i) Outer 
plane of the nectary gland. (j) Median plane of the nectary. Arrowheads indicate GFP-PIN6 polarity. Scale 

bar, 20 µm.  
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Figure 3. PM targeting of PIN6 in PIN6ox plants.  
(a) PIN6 and ß-Actin (as a reference gene) mRNA levels were detected by RT-PCR in WT (Col-0) and 

35S::PIN6 (PIN6ox) Arabidopsis seedlings. (b-d) PIN6 overexpression perturbs root growth (upper panel) 
and abolishes root hair development (lower panel). (b) Col-0. (c) 35S::PIN6 (PIN6ox). (d) 35S::GFP-PIN6 
(GFP-PIN6ox). (e) Overexpressed GFP-PIN6 (GFP-PIN6ox) co-localizes with the PM marker FM4-64. (f-h) 
Magnified view of epidermal cells showing co-localization of GFP-PIN6ox and FM4-64 at the PM. (i) Color-
coded heat map showing high and low AtPIN6 signal intensities detected with the anti-PIN6 antibody. The 
solid white arrow marks the separation between meristematic cells of the epidermis in Tier 1 (red box) and 

Tier 2 (blue box). In Tier 1, PIN6 localizes apically (toward the shoot; red arrowheads), while in Tier 2, PIN6 
localizes basally (toward the quiescent centre; black arrowheads). White arrowheads indicate PIN6 polarity 

in the cortex, endodermis and stele cells. Epidermis (Ep), cortex (Co), endodermis (En), lateral root cap cells 
(Lrc). Scale bar, 1 cm in a-c, 50 µm in e, and 20 µm in f-h and i.  
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Figure 4. PIN6 ER exit is phosphorylation dependent. Four-day-old wild-type (WT) Arabidopsis and PIN6-
inducible lines were induced with 0.1 µM β-estradiol for 3 days. (a) Neither the growth (top panel) nor root 

hair development (middle panel) of WT plants is affected. In the root tip epidermal cells (lower panel), 

immunolocalization shows that PIN6 localizes in endomembrane compartments, while PIN2 is detected at 
the PM. (b) After induction with β-estradiol, PIN6ox-i root growth is affected (top panel), root hair 

development is suppressed (middle panel) and PIN6 is targeted to the PM, where it colocalizes with PIN2 
(lower panel). (c) Induced roots of EE plants are agravitropic (top panel) and hairless (middle panel), with 
GFP-PIN6 (detected with an anti-GFP antibody) being predominantly localized apolarly at the PM, where it 

partially co-localizes with PIN2 (lower panel). (d), Induced VV plants are not affected by β-estradiol 
induction (top and middle panels). GFP-PIN6 is predominantly localized in the ER. White and yellow 

arrowheads indicate PM-PIN6 and PM-PIN2, respectively, and nuclei are stained in blue with DAPI. Scale, 1 
cm (top panel) and 10 µM (lower panel).  
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Figure 5. PIN6 is phosphorylated by MPK4 and MPK6. Kinase assay with in vitro-translated, affinity-purified 
WT GST:PIN6 (PIN6-WT), T226A, T242A, S286A, T304A, T320A, S326A, S337A, and T393A mutant 

GST:PIN6 (indicated as ‘PIN6-mut8’) and T226A, T242A, S286A, T304A, T320A, S326A and S337A mutant 

[indicated as ‘PIN6-mut7 (T393-WT)’] GST:PIN6 variants. PIN6 variants were incubated in the absence (-) 
or presence (+) of in vitro-translated, affinity-purified, activated MPK4 (top panel) or MPK6 (bottom panel). 

Protein loading is visualized by Coomassie staining.  
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Figure 6. PIN6 regulates Arabidopsis inflorescence stem elongation.  
(a) WT Col-0, pin6-5, PIN6ox, WT Ler, pin6-7 and pin6-8 plants were grown in soil for 35 days (Col-0, pin6-

5 and PIN6ox) or 23 days (Ler, pin6-7 and pin6-8). Scale bar, 1 cm. (b) pin6-6 and pin6-7 inflorescence 

stems are significantly longer than WT Ler inflorescence stems. Stars (*) indicate significant differences 
from WT control at P<0.01 (T-test). The data are shown as means (n=40 ± s.e.). (c) At flowering, pin6 

mutants and WT plants display the same number of rosette leaves. (d) The inflorescence stem is 
significantly longer in pin6-5 plants than WT Col-0 plants, while PIN6ox plant inflorescence stems are 

significantly shorter. (e) Quantification of the inflorescence stem development of WT Col-0, pin6-5 mutant, 
pin6-5 complemented with pPIN6::PIN6-GFP, GFP-PIN6ox and PIN6oxDR5::GFP plants. DAS, days after 
sowing seeds. Symbols (α, β) in (d) indicate significant differences, as determined by ANOVA followed by 

Tukey's Honest significant difference (HSD) post hoc test (P<0.05). The data are shown as means (n=20 ± 
s.e.).  
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Figure 7. Auxin distribution and vascular tissue differentiation. Transverse sections taken 50 mm above the 
uppermost rosette leaf of the inflorescence stem of DR5rev::GFP, pin6-5DR5rev::GFP and 

PIN6oxDR5rev::GFP plants. (a), GFP signal in DR5rev::GFP vascular bundles. (b) GFP signal in pin6-
5DR5rev::GFP vascular bundles. Note the reduction in DR5rev::GFP signal. (c) GFP signal in 

PIN6oxDR5rev::GFP vascular bundles. Note the increase in DR5rev::GFP signal. (d) Quantification of GFP 
signal from plants shown in (a), (b), and (c). (e) Stem surface area of plants shown in (a), (b), and (c). (f) 
Boxed area in (a). (g) Boxed area in (b). (h) Boxed area in (c). (i) Magnified view of boxed area in (f). Note 

the GFP signal in phloem cells (Ph, yellow arrows) and xylem parenchyma cells (Xpc, white arrows). (j) 

Magnified view of boxed area in (g). Note the reduced number of Xpc.  
(k) Magnified view of boxed area in (h). Note the DR5rev::GFP signal in nearly all phloem cells (yellow 

arrows), the increased number of Xpc displaying DR5rev::GFP signal (white arrows) and the presence of 
protoxylem cells (Pxy) and phloem cap cells (Phc) with an abnormal shape (dashed circles). Xylem tissues 
(Xy) and fascicular cambium cells (Fc) are overlaid in red and yellow, respectively. Interfascicular cambium 
(If). (l), Size of xylem pole. Stars (*) or (***) indicate significant differences at P<0.05 or P<0.01 (T-test), 
respectively. The data are shown as means (n=11-17 ± s.e. for (d); n=8 ± s.e. for (e); n=16-22 for (m). 

Scale bar, 20 µm in (f-h), 10 µm in (i-k).  
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