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Abstract

Voles are among the most common and abundant rodents in Central Europe, represented by 

several species of Microtus and other genera. This group is also common in Pleistocene fossil 

assemblages. However, the taxonomy of fossil finds, largely based on lower first molars, is 

fraught with problems and opinions of various authors often diverge, hampering phylogenetic 

inferences and reconstruction of lineages which led to the extant species. To help solve 

taxonomic incongruence, we carried out morphometric analyses on the abundant late Early 

Pleistocene finds from the exceptionally rich site of Somssich Hill 2 (Villány Mts., southern 

Hungary), complemented with less numerous but also well-dated and nearly coeval material 

from nearby sites Villány 6 and 8, as well as Kövesvárad from northern Hungary. Both 

traditional multivariate morphometric methods (cluster and discriminant analyses) and 

geometric morphometric techniques (landmark and Procrustes analyses) were applied. First 



2

lower molars of well-established recent taxa from zoological museum collections were also 

included in the analyses, both to assess their degree in intraspecific morphological variability 

to inform delineation of fossil taxa, and to compare morphologies of fossil and recent taxa to 

establish phylogenetic relationships. Morphometric analyses and comparison with the range 

of variability of modern taxa reveal that the material from Somssich Hill 2 represents a single 

species, Microtus nivaloides, whereas specimens from the somewhat younger sites Villány 6 

and 8 belong to M. nivalinus. Paleoecology of the accompanying taxa in the fossil 

assemblages suggests differences in their habitat: M. nivalinus preferred more open 

vegetation, whereas M. nivaloides was restricted to forested areas. Geometric morphometric 

analyses together with modern taxa defined a morphospace where the consensus shape of M. 

nivaloides is centrally located, supporting the hypothesis that it represents the ancestor of 

modern Microtus (Microtus) species and forms part of a lineage which led to the M. arvalis-

agrestis group. On the other hand, morphological similarities suggest a split lineage and 

phylogenetic relations of late Early Pleistocene M. nivalinus and the recent M. oeconomus. 

The emergence of ‘true’ Microtus species stems from the radiation initiated around 1.0–0.9 

Ma, an important phase in vole evolution revealed by the rich finds from Somssich Hill 2 and 

other sites. 

Keywords: Microtus, Pleistocene, Villány Mountains, morphometric analysis, geometric 

morphometrics, phylogeny

1. Introduction

The karst fissure of the Somssich Hill 2 site (situated near the village of Villány, southern 

Hungary) is one of the richest late Early Pleistocene vertebrate localities of Central Europe. 

The clay-rich fissure fill yielded an exceptionally rich vertebrate assemblage which includes 
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remains of fish, anurans (Szentesi, 2014, 2016), reptiles, birds and mammals (Jánossy, 1986, 

1990). The remarkably diverse small mammalian fauna contains shrews (Botka and Mészáros, 

2014), hamsters (Hír, 1998), mice (Hír, 1998), dormice (Striczky and Pazonyi, 2014) and 

voles (Jánossy, 1983, 1990; Pazonyi et al., 2013). The most common elements of the fauna 

are voles and lemmings. More than 15,000 first lower molars (m1) were identified from the 50 

layers of the fissure fill.

Among the voles, remains of Microtus are the most abundant (more than 6000 m1 

specimens), accompanied by Mimomys, Pliomys, and Myodes. According to Jánossy (1990), 

six species of three subgenera were identified within the genus Microtus: the advanced M. 

(Allophaiomys) pliocaenicus, M. (Terricola) gregaloides, M. (T.) arvalidens, M. (Microtus) 

arvalinus, M. (M.) gregalis, M. (M.) ratticepoides. In addition, Jánossy (1999) mentioned M. 

(M.) nivaloides as well. Based on the co-occurrence of Allophaiomys and ’true’ Microtus 

species, the age of the locality falls into the latest Early Pleistocene (approximately 1.0–0.9 

Ma), using the chronology of Maul and Markova (2007). The assemblage is assigned to the 

Mimomys savini-Mimomys pusillus Biozone of the local biochronological system of Kordos 

(1994).

This interval coincides with one of the most important radiation events for the voles, which 

occurred within the Allophaiomys–Microtus lineage, and subsequently led to the modern 

diversity of this group (Rabeder, 1981). This event was most plausibly triggered by the 

extension of grasslands due to a progressive climate change initiated at the beginning of the 

Pleistocene, approximately 2.6 Ma (Kolfschoten and Markova, 2005). However, details of the 

Pleistocene evolution of vole lineages are not fully understood. The key issues are the 

reconstruction of evolutionary lineages leading to modern vole species and constraining the 

age of splitting of these lineages (Van der Meulen, 1973; Rabeder, 1981; Nadachowski, 1991; 
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Maul and Markova, 2007). Establishing the vole phylogeny is hampered by taxonomic 

confusion of several closely related nominal species of high morphological similarity. 

In order to improve the reliability of vole taxonomy, the main aims of this work are to 

develop a new method which combines traditional and geometric morphometric approaches, 

and to demonstrate its utility in the comparison of various fossil and extant species of the 

genus Microtus. The primary focus of the present study is to prove that the morphology of the 

previously described four ‘true’ Microtus voles from the Somssich Hill 2 site can be 

interpreted as a single species, which we think is M. nivaloides, the oldest known Microtus 

(Microtus) species in the region. Thus we analysed all ‘true’ Microtus lower first molars that 

were used by Jánossy (1990, 1999). The large sample size (more than 1,500 m1) allowed us to 

analyse its morphological differences from and phylogenetic relationship with both voles 

from some nearly contemporaneous sites (Villány 6 and 8, and Kövesvárad) and modern taxa. 

The emergence of ‘true’ Microtus species can be regarded as the result of the radiation 

initiated around 1.0–0.9 Ma from a hypothetical ancestor similar to M. nivaloides at the 

Somssich Hill 2 site.

2. Geological setting and biostratigraphic framework

The studied vole material were found at four broadly contemporaneous localities in 

Hungary: Somssich Hill 2, Villány 6, Villány 8, and Kövesvárad. The first three localities are 

situated in the Villány Mountains (southern Hungary), near the village of Villány, whereas 

Kövesvárad is located in the Bükk Mountains (northeastern Hungary) (Fig. 1). The material 

was recovered from reddish brown clay or yellowish brown silt infillings of karst cavities. 

The karstified limestone is Middle Triassic in age at Kövesvárad and Late Jurassic at the sites 

of Villány 6 and 8, and Somssich Hill 2.
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Somssich Hill 2 is an 8 m deep karst cavity with a surface diameter of 5 m, situated on the 

top of Somssich Hill, west of the village of Villány (Fig. 1). The infilling sediment is reddish 

brown clay at the bottom of the sequence (below 4 m), whereas it grades upwards into 

yellowish brown silt (Jánossy, 1990). Several interbeds of varying thickness with limestone 

clasts encrusted by calcite occur between depths of 2.5 and 5.0 m.

The age of Somssich Hill 2 locality is latest Early Pleistocene (approximately 1.0–0.9 Ma), 

equivalent of the Mimomys savini-Mimomys pusillus Biozone, based on the co-occurrence of 

advanced Allophaiomys and ‘true’ Microtus species together with Mimomys savini and 

Mimomys pusillus. Similar vole faunas have been found from Ukraine (Bolshevik 2-III, 

Protopopovka 2, Tikhonovka 2, Karay Dubina; Rekovets and Nadachowski, 1995) and 

Bulgaria (Subzone B2 of the Kozarnika Cave; Popov and Marinska, 2007) in Eastern Europe, 

from Poland (Zalesiaki 1; Nadachowski, 1990a) in Central Europe, as well as from Spain (the 

lower layers of Gran Dolina in Atapuerca; Antoñanzas and Cuenca Bescós, 2002) in Southern 

Europe. (Fig. 2).

Villány 6 is a north-south trending, vertical karst fissure of very large size, which is 

exposed in the southern wall of the limestone quarry at Templom Hill (Fig. 1). The infilling 

sediment is cherry-coloured terra rossa, which is penetrated by sheets of recrystallized 

calcareous precipitate (Kretzoi, 1956; Jánossy, 1986). Based on the occurrence of Mimomys 

pusillus, Mimomys savini, and the absence of Allophaiomys, the vole fauna is slightly younger 

than that of Somssich Hill 2, but it can also be assigned to the Mimomys savini-Mimomys 

pusillus Biozone (Kordos, 1994) (Fig. 2).

Villány 8 is a karst cavity connected to a fissure system, also exposed in the southern wall 

of the abandoned limestone quarry at Templom Hill, north of Villány (Fig. 1). The lower 

layers of the infilling sediment are reddish brown clays with calcareous interbeds, whereas 
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upwards it grades into yellowish brown silt, similarly to the Somssich Hill 2 site (Jánossy, 

1986).

Villány 8 is the stratotype section of the Templomhegy Phase within the Biharian Stage of 

the local biochronological system (Kretzoi and Pécsi, 1982; Jánossy, 1986). The beginning of 

the Templomhegy Phase is closely correlated with the Early-Middle Pleistocene boundary, 

and regionally marked by environmental change which led to increasing forest cover (Fig. 2). 

The vole fauna is slightly younger than in Villány 6, it was assigned to the Mimomys savini 

Biozone based on the absence of Allophaiomys and Mimomys pusillus (Kordos, 1994). 

Similar assemblages are known, among others, from Great Britain in Western Europe (West 

Runton; Maul and Parfitt, 2010) and from Poland in Central Europe (Kozi Grzbiet; 

Nadachowski, 1985). Those sites postdate the Matuyama-Brunhes reversal, with an 

approximate age between 780–650 ka (Maul and Parfitt, 2010).

The fossiliferous locality at Kövesvárad is a 5 m high and 3 m wide karst cavity situated 

east of the village of Répáshuta (Fig. 1). The vole material was recovered from the orange and 

reddish brown clay infilling (Jánossy, 1963, 1986). Based on the occurrence of Mimomys 

savini and the absence of Allophaiomys and Mimomys pusillus, the age of the site was 

correlated with Villány 8, and assigned to the Mimomys savini Biozone (Kordos, 1994) (Fig. 

2).

3. Material

A total of 587 teeth were selected from more than 1,500 ‘true’ Microtus lower first molars 

(m1) from the Somssich Hill 2 site. Only those undamaged specimens were chosen, on which 

all of the characters discussed below were observable. From the other fossil localities 

included in the present study (Villány 6, Villány 8 and Kövesvárad), fewer Microtus 

(Microtus) specimens were available (26, 178 and 8 specimens, respectively). The material 
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analysed from Villány 6 and 8 includes several specimens previously studied and reported by 

Van der Meulen (1973). The specimens from Somssich Hill 2 and Kövesvárad are housed in 

the Department of Paleontology and Geology, Hungarian Natural History Museum (HNHM), 

Budapest, whereas the material from Villány 6 and 8 is stored at the Department of 

Geological and Geophysical Collections, Geological and Geophysical Institute of Hungary 

(GGIH), Budapest.

First lower molars belonging to four recent species, Microtus agrestis (354 specimens), M. 

arvalis (628 specimens), M. oeconomus (444 specimens), and Chionomys nivalis (96 

specimens) were also measured and included in the analyses for comparison. The latter 

specimens are stored in the Mammalia Collection, Department of Zoology of the HNHM. The 

numbers express m1 specimens rather than individual animals, because both left and right 

molars were used and counted in this study.

4. Terminology of vole first lower molars

Voles have very distinctive, intricately folded molar enamel which encapsulates the 

dentine core of the tooth. The anterior ending of a first lower molar is referred to as anterior 

cap (AC), whereas the posterior loop (PL) is the talonid. The alternating indentations (or re-

entrant angles, RA) of enamel on both sides of a molar separate the triangles (or the so called 

‘Pitymys rhombus’, in which case buccal and lingual triangles are not sufficiently isolated). 

The indentations are filled with cementum in most cases (Van der Meulen, 1973). The 

outward folds of the triangles are referred to as salient angles (SA). The triangles are labelled 

from posterior to anterior direction, thus the most posterior triangle on the lingual side of a 

molar is called T1. The AC together with all triangles in front of T3 are termed the 

anteroconid-complex (ACC). The narrow separation between the T4-T5 and the T6-T7 

triangles is called neck (Fig. 3).
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With the successive infolding of the anterior cap, new triangles emerged posterior to the 

newly developing cap in several vole lineages during evolution. Due to this process, the 

occlusal outline (especially in case of the lower first molar) varies among the taxa, and is 

usually appropriate for identification at the species level (Hillson, 2005). In addition, the inner 

structure and other visible features of enamel (such as thickness changes and stripes which 

may be missing on the sides of the tooth downwards from the crown) are also key features to 

identification (Mayhew, 2009).

5. Methods

5.1. Data acquisition

In order to carry out standard morphometric measurements and to record geometric 

coordinates of landmark points which describe the outline of molar enamel sufficiently, 

groups of 20 to 30 teeth were fixed with a reusable putty-like pressure-sensitive adhesive on a 

small disk installed on a ball joint. Photomicrographs of the occlusal surfaces were taken 

using a Canon EOS 450D digital camera fixed with a modified T2 adapter into the socket of 

the right ocular of a Nikon SMZ445 stereomicroscope. Each surface was brought to a 

horizontal position with the rotation of the disk before taking the photographs. The same 

protocol was used for all photographs. In this way, a large number of images can be made 

quickly and efficiently.

The landmark (LM) and sliding semi-landmark (SLM) points (22 and 16, respectively) 

were digitized directly on the photographs using the tpsDig2 software (available at 

http://life.bio.sunysb.edu/morph/). Landmarks correspond to the salient and re-entrant angles 

as well as the most anterior point of the cap and the most posterior point of the talonid, 

whereas semi-landmarks were defined at inflexions or slight curvature changes between the 

LM points. In the lack of such features, SLM points were digitized as midpoints between the 
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neighbouring LM points. In forms similar to M. oeconomus, the fourth buccal re-entrant angle 

(BRA4) is missing or vestigial, therefore the landmark points representing BSA4, BRA4, and 

BSA5 (LM4, LM3, and LM2, respectively) were evenly distributed between the most anterior 

point of the molar (LM1) and the point superimposed to BRA3 (LM5) (Fig. 4 shows the LM 

and SLM points).

5.2. Traditional morphometric measurements

Traditional morphometric measurements were made using the raw coordinates of the LM 

and SLM points. In order to obtain results which are comparable with the conventional 

measurements in the literature (Van der Meulen, 1973, Nadachowski, 1982, 1991, Rekovets 

and Nadachowski, 1995, Petruso et al., 2011) the following variables were used in this study 

(Fig. 5):

L: The maximum length of the occlusal surface, which is defined as the distance between 

LM1 and LM11, and measured along the longitudinal axis of the molar from the most anterior 

part of the anterior cap to the most posterior point of the talonid.

A (equivalent to ‘a’ in Van der Meulen, 1973 and Rekovets and Nadachowski, 1995): The 

length of the anteroconid-complex, defined as the distance between LM1 and LM7, measured 

along the longitudinal axis of the molar from the anterior tip of the molar to the most anterior 

point of BRA2.

A2: The length of the anterior part of ACC (AC and T6-T7 triangles) on the buccal side of 

m1, defined as the distance between the LM1 and LM5 points, measured along the 

longitudinal axis of the molar from the anterior tip of the molar to the most anterior point of 

BRA3.

sole
Cross-Out



10

W (equivalent to ‘W1’ in Nadachowski, 1982): The width of the posterior part of the ACC, 

defined as the distance between the LM6 and LM18 points, measured from the outermost 

point of BSA3 to that of LSA4.

D (equivalent to ‘B2’ in Nadachowski, 1982, ‘d’ in Van der Meulen, 1973 and Rekovets 

and Nadachowski, 1995): The width of the infolding between the AC and the remaining part 

of the ACC was calculated from the coordinates of LM3 and LM21 points. Alternatively, it 

can be interpreted as the distance between BRA4 and LRA5.

E (equivalent to ‘W2’ in Nadachowski, 1982, ‘e’ according to Rekovets and Nadachowski, 

1995): The width of the middle part of the ACC (T6-T7 triangles, respectively) was calculated 

from the coordinates of LM4 and LM20 points. Alternatively, it can be measured from the 

outermost point of BSA4 and that of LSA5.

B (equivalent to ‘B1’ in Nadachowski, 1982, ‘b’ in Van der Meulen, 1973 and Rekovets 

and Nadachowski, 1995): The width of the neck was calculated from the coordinates of points 

LM5 and LM19, or interpreted as the distance between BRA3 and LRA4. This measurement 

is similar, but greater than variable ‘5’ of Nadachowski, 1991, which represents the same 

distance, but is measured along the longitudinal axis of the molar and not directly between 

LM5 and LM 19.

C2 (equivalent to ‘C2’ in Nadachowski, 1982): The length of the middle part of the ACC 

(T6-T7 triangles, respectively) calculated from the coordinates of LM3 and LM19, or 

measured from the inflexion point of BRA4 and that of LRA4. ‘C1’ in Nadachowski, 1982 

(which is equivalent to ‘c’ in Van der Meulen, 1973 and Rekovets and Nadachowski, 1995) 

were not used here, because it would only be useful for comparing Microtus (Microtus) with 

Microtus (Terricola) and Microtus (Allophaiomys) morphologies, and the latter two were not 

studied in the present paper.
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In addition to the above mentioned measurements, new variables are also used and defined 

below (Fig. 5):

A3: The length of the anterior part of ACC (AC and T6-T7 triangles) on the lingual side of 

m1, defined as the distance between LM1 and LM19, measured along the longitudinal axis of 

the molar from the anterior tip of the molar to the most anterior point of LRA4.

C3: The length of the posterior part of the ACC (T4-T5 triangles, respectively) calculated 

from the coordinates of LM5 and LM17 points, or measured from the inflexion point of 

BRA3 and that of LRA3.

After defining the distances of the specified points in pixels, a scaling factor was used to 

transform the values into millimetres.

These measurements were used to calculate the following indices: A/L = A*100/L, D/E = 

D*100/E (= ‘B2/W2’ in Nadachowski, 1982), B/L = B*100/L, and C2/E = C2*100/E. The 

total number of variables and indices used in the traditional morphometric analyses is 14.

5.3. Tests for normality and statistical comparisons

Prior to comparing the different taxa, normality of the distributions was verified by 

Shapiro-Wilks and Anderson-Darling tests with α=0.05. Unimodality was evaluated by 

Hartigan’s dip test with the same significance level. The tests were carried out 500 times on 

subsamples of 100 randomly selected measurements of each variable for most taxa. If the size 

of an original sample was lower than 100 specimens (as in the case of Chionomys nivalis) 

then 50 measurements were used for subsampling and the tests were made only 100 times. 

The values, which fall beyond the lower (the lower quartile (Q1) - 1.5 × the interquartile 

range (IQR = Q3 − Q1)) and upper whiskers (upper quartile (Q3) + 1.5 × the interquartile 

range (IQR = Q3 − Q1)) are considered outliers and were excluded from the analysis. The 

resulting distributions of the p-values were used to assess normality and modality of the 
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original distributions. If the majority (95%) of the tests rejected the null hypothesis, then 

normality or unimodality was rejected. A visual inspection of the quantile-quantile plots was 

used for verification of normality for each variable. In the case of normally distributed data, 

the points on such plot should fall approximately on a straight line. Lack of fit to the 

regression line suggest deviations from the normality. An “S”-shaped arrangement of the 

points, for example, indicates that the sample distribution is either bimodal or has heavier tails 

than the normal theoretical distribution (Helsel and Hirsch, 2002; Thode, 2002). All 

calculations were made with the diptest and nortest packages of R (R Core Team, 2013).

A distribution was considered symmetric if the skewness value calculated by the moments 

package of R (R Core Team, 2013) was between -0.3 and 0.3 and the correlation coefficient 

of the regression line fitted to the points of the corresponding quantile-quantile plot was 

higher than 0.98. In order to compare the equality of the mean and variance of the 

distributions of different taxa both parametric (Welch test and F-test, which are sensitive to 

non-normality) and non-parametric tests (Kolmogorov-Smirnov test and Kruskal-Wallis test) 

were used. The null hypothesis of equality was rejected if the p-value was lower than 0.05.

5.4. Clustering and discriminant analysis

Group structure in the morphometric data was evaluated via two different approaches. The 

first one, cluster analysis does not assume any a priori classification of observations, and may 

be used to detect whether any natural grouping exists in the data. Its results may be contrasted 

with an existing taxonomic classification afterwards to assess how the taxa are reproduced by 

clustering on the selected variables. The other approach, multiple discriminant analysis (also 

known as canonical variates analysis) operates the other way round; its input is a 

classification of observations specified by the investigator. Its objective is to produce an 

ordination of observations such that separation of these a priori defined groups is maximized 
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in a space of a few canonical variates. These variates, also called the discriminant functions, 

are linear combinations of the original variables. The method is useful to quantify how the 

original variables support the distinction between the groups. For these multivariate analyses, 

only one variable (L) was chosen from those (L, A, W) that showed high linear correlation (r 

> 0.8) with each other. The correlation coefficient was calculated by the corrplot package of 

R (R Core Team, 2013).

Clustering was performed by the agnes package of R (R Core Team, 2013). We used an 

agglomerative hierarchical algorithm, the average linkage clustering (also called UPGMA = 

unweighted pair group method using arithmetic averages, Sneath and Sokal, 1973). The 

analysis employed Euclidean distances calculated between pairs of observations based on the 

original variables, each standardized to unit variance and zero mean. The results are 

graphically visualized by a dendrogram. The agglomerative coefficient (AC, Kaufman and 

Rousseeuw, 1990) was used to assess whether any natural grouping occurs in the data. A high 

AC value (close to 1.0) indicates that the algorithm has found a natural grouping, whereas a 

low value (close to 0.0) means that there is no clustering tendency in the data.

Multiple discriminant analysis was performed by the SYN-TAX 2000 multivariate data 

analysis software (Podani, 2001), following Anderberg (1973). Because the goal is to 

maximize the between-group dispersion rather than within-group variances on each axis, the 

spherizing transformation suggested by Mardia et al. (1979) was applied. For visualization, an 

ordination scatter diagram for the first two most important canonical variates is used. 

Correlations of the original variables may be projected onto the ordination to yield a biplot 

diagram which greatly enhances interpretation of results. Isodensity and confidence circles 

drawn around the centroid of each group may be interpreted statistically, provided that 

sampling was random and multivariate normality holds.
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5.5. Landmark analysis

Landmark analysis of LM and SLM points was carried out using the tpsRelw software. 

According to the software requirements, a links file was prepared to describe the enamel 

outline and a separate sliders file was made to distinguish landmarks from semi-landmarks 

with tpsUtil (http://life.bio.sunysb.edu/morph/). The subroutine of tpsRelw executes the 

following steps: in order to eliminate variation in position, size, and orientation, the raw 

landmark configurations are superimposed on each other using the centroid (i.e. the arithmetic 

mean of all landmarks) as a matching point. The centred configurations are then scaled to the 

same centroid size (which represents the square root of the summed squared distances 

between all landmarks and the centroid) and iteratively rotated until the minimum sum of 

squared distances between the LM points and their corresponding sample average position is 

reached. The latter method is known as Generalized Procrustes Analysis (Gower, 1975) and 

the resulting landmark coordinates are the Procrustes shape coordinates. The residual 

differences after the Procrustes superimposition can be ascribed to real shape differences or 

measurement error. The mean shape of the superimposed specimens is the consensus shape. 

In addition to these transformations, the SLM points are allowed to slide along the outline 

curve until they match their corresponding sample average positions as closely as possible. 

This step is justified because the contour line of a molar should be homologous, whereas the 

individual points do not necessarily satisfy this criterion. Furthermore, because the SLM 

points do not necessarily represent specific geometric or biological points, their original 

position is somewhat arbitrary. After these steps, the program executes a relative warp 

analysis (RWA), which is a principal component analysis (PCA) of Procrustes shape 

coordinates based on covariance matrix.

The principal component loadings (i.e. the eigenvectors of the covariance matrix of 

Procrustes shape coordinates) are visualized by deformation grids, and provide information 
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whether the dominant aspects of shape variation affect the entire structure or are mostly 

contained in particular parts or regions. A larger eigenvector means larger variance in the 

position of a given Procrustes shape coordinate.

The consensus shape of each species was calculated with the method described above. 

These mean configurations were compared with the consensus shape of the whole sample 

using Procrustes distance, which was approximated by the Euclidean distance between two 

sets of Procrustes shape coordinates. The Procrustes distance is a measure of shape difference 

between two landmark configurations. It is zero only if the configurations have the same 

shape, and larger than zero otherwise. The Procrustes sum of squares is the sum of squared 

distances of each landmark of each observation from the consensus position of the same 

landmark, calculated after the Generalized Procrustes Analysis. This sum of squares may be 

partitioned into percentage contributions from individual observations, reflecting the relative 

deviation of each individual from the consensus.

For a detailed discussion of the above mentioned methodology, see Killick (2012), 

Mitteroecker et al. (2013). Similar analyses were performed on Microtus (Terricola) molars 

by Piras et al. (2009, 2010).

6. Results

6.1. Distribution tests and comparative statistics

The measurements of the Somssich Hill sample along with basic statistical parameters are 

summarized in Table 1, those of the Villány 6 and Villány 8 specimens are in Table 2, 

whereas the modern taxa are treated in Table 3. Almost all of the variables used here are 

normally distributed, except to three cases. Normality was rejected for the width of the neck 

(B) in M. arvalis, the length of the tooth (L) in C. nivalis, and the A/L index in the case of M. 

agrestis. All of the variables have unimodal and more or less symmetric distributions 
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according to the results of Hartigan’s dip tests and the skewness values. These results support 

the assumption that the voles from the Somssich Hill 2 site referred to the genus Microtus 

(Microtus) belong to a single species and do not represent a composite sample of different 

taxa. They also imply that all of the variables can be used for statistical tests which are 

sensitive to deviation from normality and symmetry (Welch test and F-test).

In order to confirm that this fossil sample from the Somssich Hill 2 site represents a single 

species, the variance of the group was compared with three recent species of Microtus and 

Chionomys nivalis. The variance of the Somssich Hill sample equals that of one of the recent 

species in the case of eight variables, two species (M. arvalis and M. agrestis) in the case of 

the width of the middle part of the ACC (E), and three species (M. arvalis, M. agrestis, and C. 

nivalis) in the case of the length of the anterior part of ACC on the lingual side of a molar 

(A3). It means that considering the overall variance, the Somssich Hill Microtus (Microtus) 

group is remarkably similar to several recent vole species, supporting that the representatives 

of this fossil assemblage belong to a single species.

In order to exclude the possibility that the Somssich Hill sample represents a mixture of 

two morphologically close (or almost identical) species, similarly to the recent M. arvalis and 

M. agrestis, data from the latter two species were combined and compared as a single group 

to the other vole samples. The variance of the M. arvalis-agrestis group equals to one other 

species in the case of two variables (A2 and E) and to two species (of which one was the 

Somssich Hill sample in each case) in the case of two variables (A3 and C2). Therefore, it 

seems that the overall variance of the Somssich Hill group is more similar to a valid species 

than the variance of the mixed M. arvalis-agrestis group, which means that dividing this fossil 

assemblage to two different taxa is not justified.

Similar conclusions could be drawn from all tests used here for comparing the means of 

the distributions. In the case of the Somssich Hill sample, the hypothesis of equality of the 
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means with the recent species was rejected for almost all of the variables, except the width of 

the neck (B), which was identical to M. agrestis, the C2/E index, which was similar to M. 

arvalis, and the A/L index, which was identical to M. nivalis. Based on these results, the 

Somssich Hill Microtus (Microtus) group represents a statistically distinct taxon considering 

the means of the studied variables. The recent species are also statistically distinguishable 

from each other. Even the morphologically similar M. arvalis and M. agrestis are identical 

only in the case of the D/E index.

Normality was rejected for two variables (B, C3), and three indices (A/L, D/E and C2/E) in 

the case of the Villány 8 sample. Unimodality was also rejected for B and C3 variables, but 

the mentioned three indices were distributed unimodally. These results indicate the presence 

of more than one species in the Villány 8 Microtus (Microtus) material. However, the overall 

variance of the Villány 8 sample equals with one recent species in the case of three variables 

(A3 and L – M. arvalis; A – M. oeconomus), with two species in the case of four variables 

(C3 and C2/E – M. oeconomus, C. nivalis; A2 and C2 – M. agrestis, M. oeconomus), and with 

three species (M. agrestis, M. oeconomus, C. nivalis) in the case of A/L. The variance also 

equals with the Somssich Hill and Villány 8 samples in the case of six variables (B, L, D, C2, 

C2/E and A/L). The fact that the variance tests indicated several similarities with recent 

species suggests that there is only one Microtus (Microtus) species in the Villány 8 sample, 

which is in contrast with the results of the above described distribution tests.

The means of the distributions were equal with one species in only three cases (A3 – 

Somssich Hill sample, L – M. agrestis, C2/E – C. nivalis). This suggest that the Villány 8 

sample (representing either one or more species) is considerably distinct from both the 

Somssich Hill material and the recent species.

Results of the Villány 6 sample are not reliable due to the small sample size. Normality 

and unimodality of the variables were rejected. Results of the parametric tests (Welch test and 
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F-test), which are sensitive to non-normality, were not used. On the basis of the Kolmogorov-

Smirnov, and Kruskal-Wallis tests, the Microtus (Microtus) material from Villány 6 is similar 

to the Villány 8 sample. Comparing these two localities, the means are equal in the case of 

four variables (A2, L, D, C2). Some means are also identical to that of recent species (C3, L – 

M. agrestis; A2, C2/E – C. nivalis; A – M. arvalis and M. oeconomus), as well as with the 

Somssich Hill sample (C2/E).

Only eight specimens were available from Kövesvárad, thus the small sample size 

precluded any statistical analyses.

6.2. Cluster and discriminant analyses

Cluster analysis was used here in order to decide which recent species is the most similar 

morphologically to the Somssich Hill sample. High agglomerative coefficient (0.8) suggests 

the presence of a natural grouping in the data. The species involved in the analysis form five 

distinct groups which make up two larger clusters in the dendrogram, consisting of the 

(Somssich Hill sample (M. agrestis, M. arvalis)) and (M. oeconomus, C. nivalis) (Fig. 6). The 

larger groups are separated at a distance level of 5.0, whereas all the five species are distinct 

at approximately 3.0. There is no significant natural separation below the species level. The 

cluster analysis indicates that the Somssich Hill sample is morphologically close to the recent 

M. arvalis-agrestis group. Despite the morphological similarities, the two species in the latter 

group formed two closely related, but distinct clusters in the resulting dendrogram. It is 

notable that Chionomys nivalis, a species removed from the genus Microtus by several 

authors (Chaline and Graf, 1988, Nadachowski, 1990b, Bannikova et al., 2010), is not an 

outgroup, but is placed together with M. oeconomus (Fig. 6).

The discriminant function analysis confirmed the above described results of the 

hierarchical clustering. M. agrestis, M. arvalis and the Somssich Hill sample are 
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morphologically close to each other, whereas M. oeconomus and C. nivalis both take a 

separate position in the canonical space (Fig. 7). 

The main variables responsible for the distinction of the Somssich Hill sample together 

with the M. agrestis–M. arvalis group from the other species are A3, B, C2, D and L, and the 

indices A/L, C2/E and D/E (Fig. 7). These two groups hardly ever overlap when considering 

these variables. Because variables C2 and D express the distance between fourth or the fifth 

lingual re-entrant angles (LRA4 and LRA5, respectively) and the fourth buccal re-entrant 

angle (BRA4, i.e. the buccal infolding of the cap region), which is missing or undeveloped in 

the case of the M. oeconomus–C. nivalis morphogroup, it is obvious that these variables are 

longer in the latter species. Variable B is related to the width of the neck (i.e. the distance 

between the LRA4 and BRA3). Since LRA4 is more anteriorly positioned in the M. 

oeconomus–C. nivalis morphogroup, the neck is more open than in the case of the other three 

species (Fig. 7). Due to the same morphological change, the distance between LRA4 and most 

anterior point of the cap reduces, thus variable A3 becomes shorter. The Somssich Hill 

sample occupies an intermediate position between the M. oeconomus–C. nivalis morphogroup 

and the voles belonging to the M. agrestis–M. arvalis group with narrow neck and high A3 

values. The two morphogroups also differ in size, teeth that belong to the M. oeconomus–C. 

nivalis morphogroup being longer (thus having higher L values).

None of the studied variables allow clear separation of M. agrestis from M. arvalis within 

the group that also contains the Somssich Hill sample (Fig. 7). The Somssich Hill sample can 

only be separated from the M. agrestis–M. arvalis group on the basis of one variable (A3) and 

two indices (A/L, D/E). It means that the recent species have a slightly longer cap region (A, 

A3). In addition, the distance between BRA4 and LRA5 (D) reduces (i.e. the anterior 

infolding of the cap becomes more emphasized).
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The differences in the other morphogroup between M. oeconomus and C. nivalis are more 

obvious (Fig. 7). There are no overlaps between these species in the case of four variables 

(A2, A3, C3, E). The teeth of M. oeconomus are narrower (which results smaller E values), 

but their cap regions are longer (i.e. they have higher A2 and A3 values).

It seems that Chionomys as a representative of a different lineage can most effectively be 

separated from voles belonging to the genus Microtus based on the length of the posterior part 

of the anteroconid-complex (C3). These genera hardly ever overlap regarding this variable 

(Fig. 8). The C3 of Chionomys is typically higher than 0.4 mm (mean = 0.47 ± 0.04 mm), 

whereas that of Microtus is usually below 0.4 mm (mean = 0.29 ± 0.08 mm). In the Somssich 

Hill sample, all C3 values are below 0.4 mm (mean = 0.29 ± 0.04 mm), which means that all 

specimens in this sample can be referred to the genus Microtus.

In the dendrogram produced by the cluster analysis of the Villány 6 and Villány 8 samples 

and the recent species, four distinct groups are present which belong to two major clusters: 

(((Villány 8 sample, Villány 6 sample) (C. nivalis)) (M. oeconomus))) and (M. arvalis, M. 

agrestis) (Fig. 9). The larger groups are separated at a distance of 22.0, whereas all the three 

smaller clusters are distinct at approximately 16.0. The results suggest that the Villány 6 and 

Villány 8 samples are morphologically very close to each other, similarly to the recent M. 

arvalis-agrestis group. These fossil species are most similar to C. nivalis among the recent 

voles, but the Villány 8 sample is morphologically similar to M. oeconomus as well.

The discriminant analysis that was based on the material from Villány 6 and Villány 8 and 

the recent taxa confirmed the results of the clustering. These fossil samples are 

morphologically close to C. nivalis and M. oeconomus, but they are clearly distinct from the 

M. agrestis–M. arvalis group (Fig. 10a). Based on the C3 values that are lower than 0.4 mm 

(Villány 8 mean = 0.28 ± 0.07 mm; Villány 6 mean = 0.34 ± 0.06 mm), these fossil samples 

can be referred to the genus Microtus rather than Chionomys.
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The cluster analysis of all of the the fossil samples showed that a large part of the 

Somssich Hill sample forms a separate group together with the Kövesvárad material, but 

some specimens are morphologically closer to the Villány 6 and Villány 8 samples 

(overlapping forms on Fig. 11). 

The discriminant analysis of the fossil samples showed that the specimens from 

Kövesvárad can be separated from the Somssich Hill sample on the basis of variables A3 and 

C3 only. The main variables responsible for the distinction of the Somssich Hill sample and 

the Villány 6 – Villány 8 group are variables A2, C2, D, E and L (Fig. 10b). Variables C2 and 

D express the distance between the fourth or the fifth lingual re-entrant angles (LRA4 and 

LRA5, respectively) and the fourth buccal re-entrant angle (BRA4). Because both the buccal 

(BRA4) and the lingual (LRA5) infoldings at the cap region are underdeveloped in the case of 

the Villány 6 – Villány 8 group, it is obvious that these variables are longer in the latter 

samples. BRA3 is also slightly underdeveloped in the case of the Villány 8 sample (but not in 

the Villány 6 sample). As a consequence, the distance between this region and the most 

anterior point of the cap (A2) increases compared to the Somssich Hill sample. Variable E 

represents the distance between BSA4 and LSA5. Because LSA5 is more anteriorly 

positioned in the case of the Villány 6 – Villány 8 group, higher E values can be measured on 

the latter teeth (Fig. 10b). In addition the teeth are longer, thus they have higher L values in 

the Villány 6 – Villány 8 group.

 

6.3. Landmark and Procrustes analyses

Landmark analysis was used in order to find the consensus shape in the Somssich Hill 

sample and to reveal and visualize the shape variance of the occlusal surface within the 

studied fossil and recent vole species. The first two axes of the relative warp analysis of the 

landmark points explain 51% of the overall variance. The drop in the variance explained by 
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each consecutive axis is slight to moderate, however, more than 70% of total variance is 

explained by the first 6 axes. Each species forms distinct groups along the first two ordination 

axes, except M. agrestis and M. arvalis, which occupy almost the same location in the 

morphospace. The Somssich Hill sample is located centrally in the morphospace, whereas the 

other species have marginal positions (Fig. 12a). Regarding the shape of the occlusal surface, 

all possible morphological transitions towards the studied recent species exist within the 

Somssich Hill sample. It means that the morphologies located on the edge of the Somssich 

Hill sample point cloud are hardly separable from the individuals belonging to other species 

which are located adjacent to them (Fig. 13).

Eigenvectors of each landmark points were used in order to reveal the most important 

shape changes associated with the principal components. The ten largest vectors belonged to 

the nine landmark points on the cap (LM1-5 and LM19-22) and the most posterior point of 

the tooth (LM11). It means that the differences in the cap shape are the main factors behind 

the distinction of the groups, whereas the posterior part of the molars shows a conservative 

morphology, apart from the overall length.

In order to quantify the observed morphometric differences between the analysed species, 

the consensus shapes of each species were compared to a hypothetical shape calculated from 

the consensus coordinates of all of the five studied taxa. From the percentage contributions to 

the total sum of squares, we found that the Somssich Hill sample is the most similar to the 

hypothetical average shape (3.8%). M. agrestis and M. arvalis differ from the average 

approximately to a similar extent (12.7% and 17.1%, respectively). M. oeconomus and C. 

nivalis represent the most distinct morphologies, with percentage contributions to deviation 

from the mean shape of 32.3% and 34.0%, respectively.

Although the point clouds of the Villány 6 and Villány 8 samples partially overlap with the 

Somssich Hill sample, they are clearly distinguishable from it, and located in the 
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morphospace between the point clouds of M. oeconomus and C. nivalis, partially overlapping 

with C. nivalis. On the other hand, the Kövesvárad sample cannot be separated from the 

Somssich Hill material on the basis of the landmark analysis (Fig. 12b).

7. Discussion

7.1. Taxonomy

Four different Microtus species were reported from West Runton (Norfolk, Great Britain), 

a site of comparable age (early Middle Pleistocene, MIS 19-17) with the Somssich Hill 2 and 

Villány 6 and Villány 8 localities: M. arvalinus, M. nivalinus, M. nivaloides and M. 

ratticepoides (Hinton, 1923; Forsyth Major, 1902). According to the revision of Nadachowski 

(1990b), M. arvalinus is a junior synonim of M. nivaloides, whereas M. ratticepoides is a 

junior synonim of M. nivalinus. 

Although Jánossy (1990, 1999) assigned the ‘true’ Microtus material from the Somssich 

Hill 2 site to four different species, our above described results suggest that it should rather be 

referred to a single species. Van der Meulen (1973) mentioned two distinct Microtus 

(Microtus) species from Villány 6 and Villány 8, which was also rejected by our analyses. We 

think that the Somssich Hill sample and the Villány 6 – Villány 8 morphogroup represent 

most likely two distinct species. Considering the morphological similarities, we argue that the 

material from the Somssich Hill 2 locality is best referred to M. nivaloides, whereas the 

Villány 6 and Villány 8 samples should be assigned to M. nivalinus.

7.1.1. Microtus (Microtus) nivaloides from the Somssich Hill 2 locality

Based on 587 specimens, our study revealed that Microtus nivaloides was a small-sized 

Microtus (Microtus) species with plesiomorph characters and basal cap morphology 

somewhat similar to Microtus (Allophaiomys). Shallow, nearly equally-sized re-entrant angles 
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(LRA5, BRA4) appear on both sides of the cap. This feature establishes similarity to the M. 

arvalis-agrestis group, but not to Chionomys nivalis and M. oeconomus (Fig. 14). The strong, 

anteriorly directed infolding of LRA4 and the relatively large distance between LRA4 and 

BRA3 (i.e. the open neck) are similar to C. nivalis and M. oeconomus. These features clearly 

separate the M. nivaloides morphology from the recent M. arvalis-agrestis group with an 

inward pointed LRA4 and a narrow neck.

7.1.2. Microtus (Microtus) nivaloides from the Kövesvárad locality

Because of the small sample number (eight specimens), the Kövesvárad sample (which is 

slightly younger than the Somssich Hill sample) was not suitable for statistical analyses, but 

nevertheless was included in the geometric morphometric study leading to taxonomically 

meaningful results. The morphology of the teeth is more similar to the material from the 

Somssich Hill site than to the teeth from the Villány 6 and Villány 8 localities, thus we 

referred these molars to M. nivaloides.

7.1.3. Microtus (Microtus) nivalinus from the Villány 6 and Villány 8 localities

Because the Villány 6 and Villány 8 localities are slightly younger than the Somssich Hill 

2 site, our stratigraphic data suggest that Microtus nivalinus appeared somewhat later than M. 

nivaloides in the area. Although all Microtus (Microtus) specimens from both Villány 6 and 

Villány 8 sites are thought to belong to M. nivalinus, they display slight morphological 

differences. Based on a comparison of the consensus shapes, a gradual morphological 

transition could be detected between M. nivaloides from Somssich Hill 2 and M. nivalinus 

from Villány 8, in which the morphology of the specimens from Villány 6 represent an 

intermediate state (Fig. 14).
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Compared to M. nivalinus from Villány 8, the infolding of the cap is more prominent (i.e. 

the D values are lower) in the case of the teeth from the Villány 6 site. BRA4 and LRA5 are 

more prominent in M. nivaloides from Somssich Hill 2, therefore their D value is even lower. 

The width of the neck is approximately the same in M. nivaloides from Somssich Hill 2 and 

M. nivalinus from Villány 6, but the neck is more open (i.e. the B values are higher) in the 

Villány 8 sample. The cap morphology of the Villány 8 specimens are slightly similar to the 

recent M. oeconomus. The neck is open, BRA4 is present but not well-developed, and BSA4 

is clearly distinguishable. The cap is slightly flattened (similarly to the Villány 6 sample and 

the recent C. nivalis) but not rounded as in the case of M. nivaloides and the recent M. 

oeconomus. The cap region of specimens in the Villány 6 and Villány 8 samples is slightly 

mesiobuccally rotated compared to M. nivaloides (Fig. 14).

7.2. Evolutionary and ecological interpretation

With its age of approximately 1.0–0.9 Ma, the late Early Pleistocene material of the 

Somssich Hill 2 site represents one of the earliest occurrences of M. nivaloides in Central 

Europe. Geographically and temporally it provides an important record of the initiation of 

radiation of ‘true’ Microtus species which most likely led to the present diversity of this group 

(Rabeder, 1981). Our analyses suggest that M. nivaloides have a morphology which is 

centrally positioned in a morphospace defined on the basis of the extant Microtus (Microtus) 

species in the region. The morphology of its occlusal surface shows transitional features 

towards all of the recent taxa included in this study, which suggests that M. nivaloides is the 

likely ancestor from which the recent Microtus (Microtus) species evolved. The material from 

Villány 6 and Villány 8 indicates that approximately 200 kyr later, an additional ‘true’ 

Microtus species, M. nivalinus appeared in the region, but the contemporaneous material from 

Kövesvárad suggests that M. nivaloides was still present. Morphological similarity between 
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the material from the Somssich Hill 2 site and the recent M. arvalis-agrestis group suggests 

that both M. arvalis and M. agrestis evolved from M. nivaloides, whereas M. nivalinus 

belongs to the lineage which led to M. oeconomus (Fig. 15). Rabeder (1981) suggested that M. 

oeconomus evolved from Microtus (Terricola) hintoni instead of M. nivalinus. The latter 

species led to the emergence of Chionomys nivalis in his model. However, our evolutionary 

model agrees with that of Nadachowski (1991) and Maul and Markova (2007) regarding the 

evolution of the above mentioned lineages. 

The ecological needs of M. nivaloides and M. nivalinus are best inferred from the 

ecological preferences of the other taxa in the accompanying fauna. According to Jánossy 

(1986), the dominant species of the Kövesvárad site (Glis sackdillingensis, Muscardinus 

dacicus, Apodemus sylvaticus, Myodes sp.) likely lived in a forested environment. However, a 

few other, albeit more rare taxa (e.g. Allocricetus bursae, Cricetus praeglacialis and 

Ochotona sp.) suggest a more open vegetation. The contemporaneous assemblages of Villány 

6 and Villány 8 sites are remarkably different from those at Kövesvárad, which are dominated 

by species adapted to an open, steppe environment (Allocricetus bursae, Cricetus 

praeglacialis, Prolagurus pannonicus, Crocidura obtusa). The Villány Mountains (southern 

Hungary) and the Bükk Mountains (Kövesvárad, northeastern Hungary) therefore appear to 

represent different environments with different vegetation in the early Middle Pleistocene. 

The degree of their dissimilarity resembles the present conditions. In addition, it seems that 

M. nivalinus preferred open habitats, whereas M. nivaloides was restricted to forested areas. 

The fauna of the slightly older Somssich Hill 2 site allows similar paleoecological inferences. 

M. nivaloides is markedly less abundant in layers with dominant species indicative of steppe 

environment (e.g. Allocricetus bursae, Cricetus runtonensis, Lagurodon arankae, Prolagurus 

pannonicus).
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8. Conclusions

A combination of distribution analyses, clustering and discriminant analyses of standard 

morphometric measurements, and relative warp analysis of landmark data was successfully 

used in the case of c. 800 fossil and 1500 recent vole lower first molars belonging to the 

genera Microtus (Microtus) and Chionomys.

We developed a method to distinguish vole specimens of the genus Chionomys from 

Microtus. The length of the posterior part of the anteroconid-complex (C3) is typically larger 

than 0.4 mm for Chionomys, whereas it remains below 0.4 mm for Microtus specimens. 

Based on the C3 values, all of the fossil material studied here is referred to the genus 

Microtus.

Almost all of the variables used here are unimodally and nearly symmetrically distributed 

in both the fossil sample from Somssich Hill 2 and the recent material used for comparison. 

The variance of the Somssich Hill 2 sample is more similar to that in any single recent valid 

species included in the analysis than to the variance of the mixed M. arvalis-agrestis group. 

These observations suggest that the fossil material should be referred to a single species and 

do not represents a composite sample which contains different taxa. In addition, the cluster 

analysis indicates that the Somssich Hill sample is morphologically close to the recent M. 

arvalis-agrestis group.

The Villány 6 and Villány 8 samples are morphologically close to each other (to a degree 

comparable to the similarity within the recent M. arvalis-agrestis group), but they are clearly 

distinct from both the Somssich Hill material and the recent species. These fossil species are 

most similar to C. nivalis among the recent voles, but the Villány 8 sample is morphologically 

similar to M. oeconomus as well.

Morphological similarities suggest that the material from the Somssich Hill 2 locality 

should be referred to M. nivaloides, whereas the Villány 6 and Villány 8 samples should be 
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assigned to M. nivalinus. Here we provide detailed diagnoses for these species, on the basis of 

the consensus shapes of each taxa and the mathematical statistical assessment of the whole 

sample.

Known ecological preferences of other taxa in the accompanying fauna allow to infer that 

M. nivalinus preferred open habitats, whereas M. nivaloides was restricted to forested areas. 

The observed morphological similarities with the studied recent taxa suggest that both M. 

arvalis and M. agrestis evolved from M. nivaloides, whereas M. nivalinus belongs to another 

lineage which led to M. oeconomus.  However, a more complete stratigraphical record would 

be necessary to fully clarify the phylogenetic relationships of the recent taxa, and to track the 

morphological changes at high temporal resolution between the late Early Pleistocene and the 

appearance of the extant species.
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Tables

Table 1. Basic statistical parameters of the morphometric measurements of Microtus 

nivaloides from Somssich Hill 2 site.

Microtus nivaloides – Somssich Hill 2 (n=587)

min mean max sd

A 1.05 1.31 1.71 0.10
A2 0.54 0.77 1.02 0.08

A3 0.36 0.59 0.85 0.09

C2 0.05 0.28 0.50 0.06

C3 0.09 0.30 0.46 0.06

D 0.19 0.42 0.62 0.07

E 0.57 0.75 1.00 0.06

L 2.15 2.60 3.27 0.17

B 0.05 0.20 0.44 0.07

W 0.74 0.93 1.15 0.07

A/L 45.09 50.13 54.50 1.72

C2/E 8.23 37.83 70.20 9.64

D/E 26.03 56.96 86.22 10.03

B/L 1.71 7.57 16.41 2.81
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Table 2. Basic statistical parameters of the morphometric measurements of Microtus nivalinus 

from localities Villány 6 and Villány 8.

Microtus nivalinus – Villány 6 (n=26)

min mean max sd

A 1.09 1.28 1.55 0.10
A2 0.57 0.73 0.89 0.08

A3 0.38 0.55 0.63 0.06

C2 0.24 0.31 0.39 0.04

C3 0.18 0.32 0.43 0.06

D 0.36 0.50 0.61 0.06

E 0.66 0.77 0.86 0.05

L 2.34 2.64 3.04 0.14

B 0.09 0.20 0.34 0.06

W 0.91 0.97 1.01 0.03

A/L 45.03 48.52 52.22 1.86

C2/E 29.91 40.43 52.01 6.29

D/E 45.75 64.94 80.75 8.48

B/L 3.61 7.72 12.31 2.25

Microtus nivalinus – Villány 8 (n=178)

min mean max sd

A 1.02 1.33 1.63 0.11
A2 0.58 0.80 1.00 0.09

A3 0.37 0.54 0.78 0.08

C2 0.20 0.35 0.57 0.06

C3 0.09 0.27 0.58 0.07

D 0.36 0.56 0.75 0.08

E 0.49 0.79 1.02 0.09

L 2.13 2.83 3.49 0.21

B 0.07 0.31 0.47 0.07

W 0.77 1.05 1.26 0.09

A/L 41.69 47.04 52.83 1.71

C2/E 22.78 45.16 77.18 9.03

D/E 47.67 71.45 94.88 7.88

B/L 2.38 11.07 16.31 2.44
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Table 3. Basic statistical parameters of the morphometric measurements of the recent taxa 

(Microtus agrestis, M. arvalis, M. oeconomus and Chionomys nivalis).

Microtus agrestis – recent (n=354)

min mean max sd

A 1.32 1.57 1.86 0.11
A2 0.80 0.97 1.21 0.08

A3 0.55 0.80 1.08 0.09

C2 0.06 0.28 0.49 0.07

C3 0.09 0.36 0.51 0.05

D 0.14 0.33 0.54 0.06

E 0.70 0.87 1.04 0.05

L 2.49 2.90 3.36 0.18

B 0.05 0.17 0.43 0.06

W 0.86 1.06 1.29 0.06

A/L 47.82 54.17 59.62 1.52

C2/E 6.32 32.79 69.33 8.94

D/E 16.06 37.62 68.87 7.20

B/L 1.81 5.84 14.93 2.07

Microtus arvalis – recent (n=628)

min mean max sd

A 1.11 1.39 1.70 0.11
A2 0.68 0.89 1.14 0.08

A3 0.52 0.77 1.02 0.08

C2 0.11 0.28 0.40 0.05

C3 0.11 0.29 0.42 0.04

D 0.05 0.28 0.51 0.06

E 0.62 0.76 0.92 0.05

L 2.16 2.54 3.04 0.17

B 0.04 0.12 0.28 0.04

W 0.77 0.90 1.12 0.06

A/L 49.30 54.83 61.76 1.42

C2/E 12.51 37.01 57.64 6.61

D/E 6.06 36.77 70.20 7.97

B/L 1.73 4.88 10.54 1.57

Microtus oeconomus – recent (n=444)

min mean max sd

A 1.07 1.38 1.80 0.09
A2 0.56 0.88 1.21 0.10

A3 0.40 0.56 0.77 0.06

C2 0.27 0.45 0.62 0.06

C3 0.05 0.22 0.50 0.08

D 0.33 0.50 0.67 0.05

E 0.52 0.73 0.88 0.05

L 2.32 2.79 3.30 0.14

B 0.15 0.36 0.60 0.08

W 0.83 1.04 1.19 0.05

A/L 45.62 49.52 57.01 1.59

C2/E 35.16 62.41 90.02 8.28

D/E 47.44 68.47 106.97 6.79

B/L 5.04 12.80 20.44 2.76

Chionomys nivalis – recent (n=96)

min mean max sd

A 1.27 1.52 1.75 0.10
A2 0.61 0.78 1.03 0.08

A3 0.31 0.54 0.75 0.09

C2 0.21 0.39 0.55 0.08

C3 0.14 0.46 0.70 0.09

D 0.25 0.69 0.93 0.12

E 0.62 0.89 1.05 0.09

L 2.46 3.04 3.38 0.16

B 0.09 0.25 0.43 0.08

W 0.89 1.14 1.26 0.07

A/L 45.32 49.96 54.86 1.73

C2/E 27.49 44.00 63.58 8.65

D/E 40.68 76.89 100.54 11.63

B/L 2.77 8.25 14.83 2.56



Figure captions

Fig. 1. Map of Villány (southern Hungary) and Kövesvárad (northeastern Hungary) with the 

enlargement of the three sites near Villány. Abbreviations: 2: Somssich Hill 2; 6: Villány 

6; 8: Villány 8.

Fig. 2. Stratigraphic position of the studied vertebrate sites and their comparison with other 

European localities mentioned in the text (biochronological framework after Kretzoi and 

Pécsi, 1982; Fejfar et al., 1998; Maul et al., 2013). Evolution of Microtus are shown after 

Maul and Parfitt (2010).

Fig. 3. Terminology used for the description of first lower molars of voles.

Fig. 4. Position of landmark and semi-landmark points used in this study on the first lower 

molars of voles.

Fig. 5. Morphometric measurements used in this study on the first lower molars of voles.

Fig. 6. Dendrogram produced by hierarchical clustering of morphometric data on first lower 

molars of four recent vole species and fossil material from the Somssich Hill 2 site.

Fig. 7. Biplots produced by discriminant analysis of morphometric data on first lower molars 

of four recent vole species and fossil material from the Somssich Hill 2 site.

Fig. 8. Box-and-whisker plots of C3 measurements on specimens belonging to the genera 

Microtus and Chionomys.

Fig. 9. Dendrogram produced by hierarchical clustering of morphometric data on first lower 

molars of four recent vole species and fossil material from sites Villány 6 and Villány 8.

Fig. 10. Biplots produced by discriminant analysis of morphometric data on first lower molars 

of four recent vole species and fossil material from sites Villány 6 and Villány 8 (a). Biplot 

produced by discriminant analysis of all studied fossil samples (b).

Fig. 11. Dendrogram produced by hierarchical clustering of morphometric data on first lower 

molars of all studied fossil voles specimens.



Fig. 12. Relative warp analysis of landmark data on first lower molars four recent vole species 

and fossil material from the Somssich Hill 2 site (a). The same analysis on the four recent 

specimens and fossil material from sites Villány 6, Villány 8 and Kövesvárad (b).

Fig. 13. Morphological variability of first lower molars of the five studied recent vole species 

and of Microtus nivaloides specimens from the Somssich Hill 2 site. Note the 

morphological plasticity of M. nivaloides that shows gradual transitions towards all recent 

species studied here. 

Fig. 14. Consensus shapes of Microtus nivaloides from the Somssich Hill 2 site, M. nivalinus 

from sites Villány 6 and Villány 8, as well as recent M. arvalis, M. oeconomus and 

Chionomys nivalis. The most characteristic features of the occlusal morphology are 

indicated by arrows.

Fig. 15. Stratigraphically constrained phylogenetic relationships postulated for Early 

Pleistocene to recent vole taxa.


































