
www.chembiochem.org

Accepted Article

A Journal of

Title: Manipulating Active Structure and Function of Cationic
Antimicrobial Peptide CM15 by the Polysulfonated Drug Suramin:
A Step Closer to in vivo Complexity

Authors: Mayra Quemé-Peña, Tünde Juhász, Judith Mihály, Imola
Csilla Szigyártó, Kata Horváti, Szilvia Bősze, Judit Henczkó,
Bernadett Pályi, Csaba Németh, Zoltán Varga, Ferenc Zsila,
and Tamás Beke-Somfai

This manuscript has been accepted after peer review and appears as an
Accepted Article online prior to editing, proofing, and formal publication
of the final Version of Record (VoR). This work is currently citable by
using the Digital Object Identifier (DOI) given below. The VoR will be
published online in Early View as soon as possible and may be different
to this Accepted Article as a result of editing. Readers should obtain
the VoR from the journal website shown below when it is published
to ensure accuracy of information. The authors are responsible for the
content of this Accepted Article.

To be cited as: ChemBioChem 10.1002/cbic.201800801

Link to VoR: http://dx.doi.org/10.1002/cbic.201800801



1 

 

 

Manipulating Active Structure and Function of Cationic Antimicrobial 

Peptide CM15 by the Polysulfonated Drug Suramin:  

A Step Closer to in vivo Complexity 

Mayra Quemé-Peña,[a] Tünde Juhász,[a]* Judith Mihály,[a] Imola Cs. Szigyártó,[a] Kata Horváti,[b] 

Szilvia Bősze, [b] Judit Henczkó, [c] Bernadett Pályi,[c] Csaba Németh,[a] Zoltán Varga,[a]  

Ferenc Zsila,[a] and Tamás Beke-Somfai,[a]* 

 

[a] Mayra Quemé-Peña, Dr. Tünde Juhász, Dr. Imola Cs. Szigyártó , Dr. Judith Mihály, Csaba 
Németh, Dr. Zoltán Varga, Dr. Ferenc Zsila, Dr. Tamás Beke-Somfai 
Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 
Hungarian Academy of Sciences 
H-1117 Budapest, Magyar tudósok körútja 2, Hungary 
E-mail: beke-somfai.tamas@ttk.mta.hu, juhasz.tunde@ttk.mta.hu 

[b] Dr. Kata Horváti , Dr. Szilvia Bősze 

MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös 
Loránd University 
H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary 

[c] Judit Henczkó, Bernadett Pályi 
National Biosafety Laboratory, National Public Health Center 
H-1097 Budapest, Albert Flórián út 2, Hungary 
 

  

10.1002/cbic.201800801

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemBioChem

This article is protected by copyright. All rights reserved.



2 

 

ABSTRACT 

Antimicrobial peptides (AMPs) kill bacteria by targeting their membranes via various 

mechanisms involving peptide assembly often coupled with disorder-to-order structural transition. 

However, similar conformational changes were recently reported for several AMPs, where small 

organic molecules of both endogenous and exogenous origin induced folded peptide conformation. 

Thus, function of AMPs and natural host defense peptides can be significantly affected by the local 

complex molecular environment in vivo, nonetheless this area is hardly explored. To address the 

relevance of such interactions on structure and function, herein we tested the effect of the 

therapeutic drug suramin on the membrane activity and antibacterial efficiency of a potent hybrid 

AMP, CM15. Results provided insight to a dynamic system where peptide interaction with lipid 

bilayers is interfered with the competitive binding of CM15 to suramin, resulting in an equilibrium 

dependent on peptide-to-drug ratio and vesicle surface charge. In vitro bacterial tests show that 

when CM15-suramin complex formation dominates over membrane binding, antimicrobial 

activity is abolished. Based on this case study, it is proposed that small molecule secondary 

structure regulators can modify AMP function, which should be considered and could potentially 

be exploited in future development of AMP-based antimicrobial agents. 

 

Key words: antimicrobial peptide, circular dichroism, folding, IR spectroscopy, suramin 
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INTRODUCTION 

Antibiotic resistance has reached alarming levels and represents one of the biggest current global 

threats to health.[1] There is an urgent need for new antimicrobial agents that allows us to tackle 

this problem in innovative ways. Antimicrobial peptides (AMPs) have been identified as important 

leads for the next generation of antibiotics.[1b, 2] The significant advantage of AMPs resides in the 

global mechanism of their action, which is remarkably different from that of conventional 

antibiotics.[1d] AMPs display multifunctional properties with implications as potential therapeutic 

agents as they form an essential part of the innate immunity.[3] They exhibit rapid killing, and a 

broad spectrum of activity against a large array of microorganisms including Gram-positive and 

Gram-negative bacteria, fungi, protozoan and metazoan parasites.[1b, 4] 

The unique and diverse group of AMPs are divided into several subgroups on the basis of amino 

acid composition and structure.[1c, 4c] Linear, cationic AMPs display a number of common 

characteristics including low molecular weight (10-50 amino acids) and amphiphilicity. The latter 

arises from the high content of positively charged (generally from +2 to +9) amino acids (lysine, 

arginine) along with a substantial proportion of hydrophobic residues (≥30%).[2b, 5] All of these are 

key structural features that guide the antimicrobial effects of these peptides. 

The electrostatic repulsion between the charged side chains renders the solution structure of the 

majority of cationic AMPs intrinsically disordered (ID) with no discernible secondary structure.[1c, 

5a, 6] Upon membrane binding, unstructured AMPs undergo a conformational change and fold into 

a well-ordered, mostly -helical structure.[7] As these peptides exert their action within membrane 

environment, the membrane-associated conformational transition is believed as a crucial step in 

mediating their biological activities. This structural transition could also be dependent on the lipid 

composition leading to increased specificity towards membranes enriched in negatively charged 
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species.[1d, 8] However, the in vivo action of these peptides can be considered as a complex issue 

possibly including numerous types of interactions with small molecule agents. Indeed, previous 

studies in our group have suggested that small molecules of both endogenous and synthetic origin 

could dramatically affect the structure of AMPs, which might potentially alter their mechanistic 

function including antimicrobial efficiency.[5a, 9] Related, it has also been observed that several 

disordered AMP and protein sequences adopt an ordered secondary structure induced by the lipid 

mediator lysophosphatidic acid[10] indicating that presence and use of such interactions may be 

widespread in organisms, a phenomenon far from being understood. 

To shed more light on this issue, our present study has focused on  CM15, a short, linear, natively 

unfolded, synthetic hybrid AMP combined from the silk moth cecropin A and the bee venom 

peptide melittin. CM15 displays a potent broad-spectrum antimicrobial activity retaining the 

bactericidal effect of cecropins but lacking the strong haemolytic property of melittin.[3, 5a, 5c, 9] 

With a total charge of +6, it has a much higher average charge per residue than its congeners. The 

highly cationic N-terminal and a mostly hydrophobic C-terminal region separates to a hydrophilic 

and a hydrophobic part upon helix formation (Scheme 1) coupled to membrane interaction. Based 

on the above, CM15 was used as model peptide for preliminary screening of folding inducer effect 

of anionic drugs and biomolecules.[5a] Among the biomolecules and synthetic compounds tested 

on CM15, the therapeutic drug suramin was the most potent helix promoter,[5a] thus it was selected 

for this study as the most suitable candidate to address the more complex AMP-small molecule-

lipid bilayer interactions. Suramin is a symmetrical, hexasulfonated naphthylurea used as 

anthelmintics treating onchocerciasis (African river blindness)[11] and sleeping sickness (African 

trypanosomiasis)[12] since 1920.[13] Suramin also shows anticancer and antiviral properties.[11a, 14] 
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Scheme 1. Structures of the compounds used in the study. A) Helical wheel diagram of CM15 

(KWKLFKKIGAVLKVL-amide), N and C stand for N- and C-terminus of the peptide, 

respectively. The helix plot was drawn using HELIQUEST.[15] B) Chemical structure of suramin. 

C) Chemical structures of the lipid components used in model membranes built up of dioleoyl-

phosphatidylcholine (DOPC) and dioleoyl-phosphatidylglycerol (DOPG). For mimicking 

mammalian and bacterial cell membrane, pure DOPC and DOPC/DOPG (80/20 n/n%) referred as 

PC and PC/PG, respectively, were used thoroughly in the study. In the chemical structures, oxygen 

(O) and nitrogen (N) atoms are colored by red and blue, highlighting negatively and positively 

charged parts, respectively.  

 

Utilizing in vitro binding and functional assays, we characterized the interaction network of the 

CM15-suramin-membrane system. Results indicate that the drug affects not only the secondary 
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structure of the AMP but also its membrane activity, which finally results in decreased antibacterial 

activity. This observation proposes that so far undetected side effects may be identified when drugs 

with similar characteristics are administered. Alternatively, the gained insight is also hoped to 

provide a potential point to exploit towards development of new strategies, where AMP function 

may be altered or even increased in a controllable manner. 
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Results and Discussion 

 

Structural changes of CM15 in the presence of suramin and liposomes studied by circular 

dichroism (CD) spectroscopy 

As previously reported,[5a] the drug molecule suramin (Sur) has proven as effective folding 

inducer of the disordered membrane-active peptide CM15. To understand the structural effect of 

suramin on the interaction of CM15 with membranes, CD spectra were collected in the presence 

of the interacting partners. 

The far-UV CD spectrum of free CM15 measured in buffer with a sole negative band at around 

198-200 nm and no remarkable shoulder in the 210-230 nm region indicates an intrinsically 

disordered state (Figure 1A), which is in agreement with reported observations.[5a, 16] Based on the 

results presented here and in previous studies,[5a] suramin triggers the disorder-to-order 

conformational transition of CM15. The characteristic positive-negative couplet corresponding to 

-* transitions at 195 and 208 nm as well as the negative band at 222 nm of the n-* transition 

(Figure 1A) suggest the -helical folding of CM15.[17] Secondary structure analysis also indicates 

increased helix content (Table S1).[5a] These spectral transformations occurred promptly after 

addition of the drug and are related to rapid interaction. 

Moreover, the relatively low CD signals might be indicative of complex formation accompanied 

by aggregation, which has been verified by dynamic light scattering (DLS) measurements 

detecting particles in the micrometer scale.[5a] It is to be noted that the intensity ratio of the CD 

values at 222 and 208 nm is below ~0.9 for non-interacting -helices. In line with CD data, this 

value is >1 for the CM15-suramin mixture (Figure 1A) suggesting oligomerization of the peptide 
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chains. Considering the net charge of +6 and -6 of CM15 and suramin, respectively, neutral 1:1 

complexes can easily assemble to higher oligomers or aggregates as suggested previously.[5a] 

Structural order gained upon interaction with membranes was probed with PC and PC/PG 

liposomes mimicking electrostatic features of mammalian and bacterial biomembranes, 

respectively. Addition of neutral PC liposomes to CM15 renders the main negative band of the 

peptide to be red shifted (from 198 to 203 nm) associated with intensity decrease and the 

unresolved negative shoulder at 222 nm more pronounced (Figure 1A). This partial helical folding 

may be the result of a weak, rather hydrophobic interaction lacking electrostatic attraction between 

the zwitterionic lipids and the peptide.[5b] The outer leaflet of mammalian cell membranes is 

exclusively composed of neutral, zwitterionic phospholipids, for which charged peptides like 

CM15 show lower affinity,[18] that is also why ionic AMPs are less toxic towards mammalian 

cells.[4c, 8b, 8c] In contrast, upon addition of negatively charged PC/PG liposomes, the ID peptide 

folds into a definite helical conformation (Figure 1A). Helix formation is also supported by the 

estimated ~40% helix content for the lipid-loaded CM15 (Figure 1B and Table S1). In this case, 

the driving force of the folding could be the combination of electrostatic interactions between the 

positively charged residues of the peptide and the negatively charged PG head groups, as well as 

hydrophobic interactions between the non-polar side chains and the hydrophobic core of the lipid 

bilayer.[5b, 18] 

To test the effect of suramin on lipid-bound peptide, titration with the drug was carried out in 

the presence of model membranes. Compared to the results obtained for the free peptide where 

addition of the drug resulted in elevated helix content saturated at 1:1 molar ratio, suramin-

dependence was remarkably different (Figure 1B). With increasing suramin concentration, the 

helix content first reduced below the value of the lipid-free state for both vesicles, which was then 
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followed by a signal increase resulting in approximately doubled helix fraction at 1:2 molar ratio 

compared to the no suramin state (Figure 1B). However, differences between the two liposomes 

were also revealed. For the neutral PC system, the helical content rises at high suramin ratios (> 

60 M, Figure 1B). The phenomenon could be explained in terms of non-specific association of 

suramin above a threshold concentration on the lipid bilayer rendering the neutral surface 

negatively charged, which may facilitate peptide binding and induce helical folding. It should be 

noted that titration curves following the same trend were obtained in the presence and absence of 

sulfate ions resembling drug sulphonate groups (Figure 1B). Thus, it is evident that the sulfate 

moiety alone is not enough to trigger peptide conformational changes induced by suramin where 

relative spatial arrangement of the negatively charged groups as well as the separating rings act in 

concert. 

Altogether, these findings suggest that suramin interacts with CM15 even in the presence of lipid 

bilayers, and control peptide conformation in a concentration-dependent manner. Considering 

peptide structural changes as well as charge neutralisation effects, mixtures with peptide:suramin 

ratios of 1:1 and 1:2 were investigated throughout this study. 
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Figure 1. Structural changes of CM15 in the presence and absence of model membranes and suramin 

studied by CD spectroscopy. A) Far-UV CD spectra were taken at peptide, suramin and lipid concentrations 

of 40, 40, and 635 M, respectively. B) Effect of suramin on the helix content of free and membrane-bound 

CM15. The peptide (40 M) was titrated with suramin in the absence and presence of liposomes (635 M 

total lipid) using CD buffer or PBS (for the composition see Experimental section). Helix content was 

estimated using the BestSel online tool.[19] Data are mean±SEM, two series of titrations were carried out 

using CD buffer, and a single titration was performed in PBS as a control. 

 

To determine relative affinity of the peptide to lipid and small molecule binding partners, three-

component mixtures differing only in the order of mixing of the components were tested. In general, 

spectral features of the liposome-containing samples resemble more those of suramin-loaded 

peptide than those of the lipid-bound state, and indicate random coil-to-helix transition (Figure 2 

and Table S1). However, clear differences could be experienced, which might be attributed to the 

binding preference of the peptide. For systems with CM15:suramin ratio of 1:2 (Figure 2B and 

2D), comparable spectra were obtained for the two-component CM15-suramin complexes and the 

three-component mixtures where the peptide competes for the partners, (Sur+lipid)+CM15, 

suggesting the prevalence of peptide-drug binding over the lipid interaction. However, the highest 

signal exceeding intensities for the pure CM15-suramin complex is detected with PC/PG 

liposomes when adding suramin to the lipid-bound peptide (Figure 2D), which argues for the 

highest apparent ordered peptide fraction with possibly the lowest level of aggregation for the 

(CM15+PC/PG)+Sur mixture. This also points to the ability of suramin to enhance helical 

conformation even when the peptide is already attached to the lipid bilayer. Alternatively, 

variations in the spectral intensity might be coupled to aggregation induced by the small molecule. 

In line with these, although the helical character of the peptide is clear, the intensity of the CD 

10.1002/cbic.201800801

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemBioChem

This article is protected by copyright. All rights reserved.



11 

 

signal is rather low for most of the three-component mixtures but especially with 1:1 

CM15:suramin ratio (Figure 2A and 2C), which could be indicative of higher levels of aggregation. 

 

 

Figure 2. Far-UV CD spectra of CM15 in the presence and absence of model membranes and suramin. 

Spectra were collected at 40 M peptide with and without PC (A and B) or PC/PG (C and D) liposomes 

(635 M total lipid) at CM15:suramin ratios of 1:1 (A and C) or 1:2 (B and D). The order of addition in the 

three-component system was varied so that primarily the preincubation of two compounds in parenthesis 

was performed, to which than the third compound was added. 

 

Based on CD spectral features observed for the two- and three-component systems, additional 

information about peptide binding characteristics could be derived. The -* band minimum of 
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the PC/PG-bound CM15 is below 210 nm whereas it is at around 210 nm for the suramin-

associated peptide (Figure 2C and 2D). This wavelength shift could reflect polarity changes in 

peptide backbone surroundings. Specifically, hydrophobic environment provided by PC/PG 

liposomes could rise the excitation energy of the -* transitions resulting in blue shift. 

Conversely, the more polar aqueous phase around the CM15-suramin complexes could cause red 

shift of the -* peak. Based on this consideration, spectral features witnessed for three-component 

mixtures showing non-reduced signals (Figure 2B and 2D, (Sur+lipid)+CM15 and 

(CM15+PC/PG)+Sur) are consistent with a binding scenario where peptide chains are not inserted 

into the apolar interior of the lipid bilayer but rather exposed to the bulk aqueous phase. 

Furthermore, considering suramin association to the vesicles as suggested above, peptide-suramin 

interaction might occur at the liposome surface. 

 

CM15-suramin complex aggregation revealed by dynamic light scattering and electron 

microscopy 

To monitor formation of molecular aggregates, dynamic light scattering (DLS) measurements 

were conducted. As previously indicated,[5a] large associates appeared for the two-component 

CM15-suramin system with a hydrodynamic diameter in the low micrometer range, which was 

also confirmed here for both 1:1 and 1:2 peptide:suramin ratios (Figure 3, Table S2 and S3). The 

phenomenon was explained by the mutual charge neutralization within complexes composed from 

the cationic CM15 and its anionic partner resulting in less hydrophilic adducts prone to aggregation 

in aqueous environment.[5a]  

Peptide binding to the lipids induces no detectable changes in the correlation function so that 

liposome size of 100 nm was determined for the vesicle-peptide mixtures. Similarly, addition of 
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suramin to the model membranes caused no perturbation of the curves. However, for the three-

component systems, a shift of the correlation function to higher decay times agrees with formation 

of aggregates with a size greater than 100 nm. The estimated aggregate size in the high nanometer-

low micrometer range is similar to that measured for CM15-suramin complexes. Large-sized 

associates were clearly detected in the presence of PC liposomes but were not so pronounced with 

PC/PG liposomes. In general, mixtures of preincubated peptide and drug followed by addition of  

 

Figure 3. Peptide-drug assembly in the two- and three-component systems monitored by dynamic light 

scattering. Correlation functions are shown for mixtures with CM15:suramin ratio of 1:1 (A, C) and 1:2 (B, 

D), in the absence and presence of PC (A, B) and PC/PG (C, D) liposomes, respectively. Peptide, suramin 

and lipid concentration is 20, 20 or 40, and 635 M, respectively. For more details see Table S2 and S3. 

 

10-6 10-5 10-4 10-3 10-2 10-1 100
0.0

0.2

0.4

0.6

0.8

1.0

10-6 10-5 10-4 10-3 10-2 10-1 100
0.0

0.2

0.4

0.6

0.8

1.0

10-6 10-5 10-4 10-3 10-2 10-1 100
0.0

0.2

0.4

0.6

0.8

1.0

10-6 10-5 10-4 10-3 10-2 10-1 100
0.0

0.2

0.4

0.6

0.8

1.0

 
 

A
m

p
lit

u
de

 (
A

U
)

Time (s)

CM15:Sur = 1:1
  

 CM15+Sur 
 PC
 (CM15+PC)+Sur
 (CM15+Sur)+PC
 (Sur+PC)+CM15

 

 
A

m
p

lit
u

de
 (

A
U

)

Time (s)

CM15:Sur = 1:2
  

 CM15+Sur 
 PC
 (CM15+PC)+Sur
 (CM15+Sur)+PC
 (Sur+PC)+CM15

B)

D)C)

 

 

A
m

p
lit

u
de

 (
A

U
)

Time (s)

CM15:Sur = 1:1  

 CM15+Sur 
 PC/PG
 (CM15+PC/PG)+Sur
 (CM15+Sur)+PC/PG
 (Sur+PC/PG)+CM15

A)

 

 

A
m

p
lit

u
de

 (
A

U
)

Time (s)

CM15:Sur = 1:2

 CM15+Sur 
 PC/PG
 (CM15+PC/PG)+Sur
 (CM15+Sur)+PC/PG
 (Sur+PC/PG)+CM15

10.1002/cbic.201800801

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemBioChem

This article is protected by copyright. All rights reserved.



14 

 

lipid vesicles showed the highest propensity to form large aggregates. As an exception to the latter, 

all three-component systems displayed high-sized particles in the presence of neutral PC liposomes 

highlighting the importance of peptide-drug charge neutralisation in effective assembly. The 

association process is also regulated by the CM15:suramin ratio as the size distribution of the 

aggregates was found to be narrower in the case of the 1:2 ratio compared with the 1:1 (Table S2 

and S3). In line with this consideration, no such dependence on the molar ratio was observed for 

anionic PC/PG vesicles. 

Aggregate formation was further investigated by transmission electron microscopy (TEM), 

providing additional information on the morphology of the CM15-suramin complex. In agreement 

with DLS results, TEM micrographs for both 1:1 and 1:2 peptide:drug ratios (Figure 4) showed 

formations of up to 1-2 m diameter with a characteristic morphology. These displayed a network 

of sphere-like building blocks of ~50 nm interconnected by rather linear regions. Similar associate 

state depicted as beadlike branched morphology was reported for the anticancer/antimicrobial 

peptide LL-37 in complex with self-RNA as detected by phase contrast light, scanning electron 

and confocal fluorescence microscopy.[20] These findings suggest that cationic amphiphilic 

peptides like CM15 and LL-37 might easily form complex aggregates with anionic partners 

bearing aromatic rings with limited structural flexibility, such as drugs or nucleotides. It should be 

noted that particles with this morphology are typical for the CM15-suramin complex and were 

observed neither for sole peptide nor for sole drug solutions. 
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Figure 4. Morphology of the CM15-suramin complex imaged by transmission electron miscoscopy. 

Micrographs of the mixtures stained with phosphotungstic acid were taken at CM15:suramin ratio of 1:1 

(left panel) and 1:2 (right panel). Peptide and suramin concentration in the solution prior drying was 20, 

and 20 or 40 M, respectively. 

 

Tryptophan fluorescence indicates altered environment in different lipid complexes 

To obtain additional information on the CM15-suramin interaction in the presence of various 

lipid bilayers, fluorescence spectroscopy measurements were performed. Herein we exploited the 

intrinsic tryptophan (Trp) fluorescence of the peptide, which sensitively reports a binding event 

leading to polarity changes in local fluorophore environment. 

The spectrum of the free peptide is characterized by an emission maximum at 357 nm (Figure 

5) in agreement with a water accessible tryptophan of a disordered peptide. Upon addition of the 

liposomes, the membrane-bound state was easily detected by the blue shift of the maximum. This 

phenomenon is typical for a peptide tryptophan inserted in a more apolar environment shielded 

from the aqueous phase. The effect was more pronounced as accompanied with significant 

intensity increase in the case of the negatively charged PC/PG liposome. In contrast, the rather 

wide maximum for the PC-bound peptide suggests the co-existence of two tryptophan populations 
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with different environments. These results agree well with stronger peptide binding connected to 

a more intimate interaction with PG-containing bilayers compared to the neutral PC liposome, and 

are also in line with CD-based considerations above. 

 

Figure 5. Fluorescence emission spectra of CM15 in the absence and the presence of model membranes. 

Peptide and lipid concentration were 1 and 100 M, respectively. 

 

Titration of CM15 with suramin resulted in reduced emission intensity indicating a nearby 

quencher group in the complex (Figure 6A). Considering suramin structure (Scheme 1), the 

aromatic naphtyl moieties could account for the effect, though ligand binding induced helical 

folding could also lead to tryptophan quenching due to the enhanced rigidity and closer proximity 

of adjacent side chains.[21] Nevertheless, the moderate dose-dependent intensity decrease leading 

to almost complete fluorescence loss at 50 M drug concentration (Figure 6A) is characteristic for 

the CM15-suramin interaction. Similarly, nearly complete loss of fluorescence upon addition of 

suramin was reported for the recombinant prion PrP protein, which was attributed to suramin-

induced aggregation,[22] a phenomenon also detected here for CM15 as discussed above. 
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For comparison, the same experiment was carried out with the non-binding tryptophan control 

N-acetyl-tryptophanamide (NATA) which does not form stable complexes with suramin, 

consenquently can reflect on dynamic quenching and/or inner filter effects. In this case (Figure 

6B), intensity loss was much weaker, and the lack of static binding of NATA to liposomes or 

suramin is evident from the slight linear suramin-dependent intensity decrease, which occured to 

the same extent in the presence and absence of lipid vesicles. Thus, the difference in quenching 

efficiency comparing the effect of suramin on NATA and CM15 could account to the peptide 

binding of the drug. 

 

Figure 6. Suramin binding to CM15 in the absence and presence of liposomes studied by peptide 

fluorescence. A) Fluorescence emission spectra of CM15 (1 M) upon addition of suramin. Arrow indicates 

increasing drug concentrations. B) Normalized maximal emission intensities of CM15 (1 M) and the 

control NATA (1 M) as a function of suramin concentration. Note that error bars for the peptide titration 

points are mostly smaller than symbol size (data are mean±SEM, n=2). 

 

Performing suramin titration on lipid-loaded peptide, a more effective quenching compared to 

the lipid-free state was observed suggesting different peptide-drug binding mode (Figure 6B). For 

the PC system, the fluorescence loss was ~85% at 1:1 and was complete at 1:2.5 peptide:suramin 
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ratio. PC/PG liposomes showed an intermediate behaviour closer to the free peptide than to the 

PC-bound state. A possible explanation for the phenomenon could be the binding of suramin to 

the lipid bilayer separately from the peptide and/or to the vesicle-bound peptide resulting in 

improved relative position of the putative suramin quencher group to access peptide fluorophore. 

Supposing suramin naphthyl groups as quencher, more efficient quenching detected for PC-bound 

peptide would require Trp situated closer to suramin and/or in a more suitable relative orientation 

of the two rings on the two molecules enabling better contact compared to the pure peptide-drug 

complex. This could relieve some lifting out of the lipid-loaded peptide inserted to some depth 

into the bilayer, which could be easier for the PC-bound peptide having a looser contact to the 

vesicle. In contrast, Trp of the peptide bound tighter to PC/PG liposome could remain more 

incorporated, however, still located closer to the suramin quencher part. For the latter, drug binding 

is probably less favoured due to the electrostatic repulsion between the negatively charged suramin 

sulphonyl and PG head groups. Nevertheless, this binding mode assumes preferred interaction of 

the N-terminal part of CM15 with the middle part of suramin (see Scheme 1) in the CM15-suramin 

complex, which was indeed predicted using computational approach in our group (published 

separately). Moreover, similar binding characteristics including membrane-associated drug could 

be deduced from CD findings (see above) and from IR spectroscopy experiments (see below). 

Although the ability of suramin to quench a fluorophore like tryptophan has been demonstrated 

here and reported in the literature,[22] suramin has also intrinsic fluorescence properties related to 

its naphtylamide moiety. When excited separately from tryptophan at 315 nm, suramin emission 

with a maximum near 400 nm showed remarkable enhancement of up to 10-fold in the presence 

of protein binding partners.[23] However, when excited at 295 nm, the wavelength used here for 
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exciting tryptophan, the weak emission peak developing at ~400 nm showed no sensitivity on drug 

interactions with CM15 or vesicles (data not shown). 

Summarized, fluorescence data suggest perturbed CM15-suramin interaction with different 

relative conformation of the peptide towards the binding partners in the presence of lipid bilayers. 

Titration results on lipid-bound CM15 are not compatible with simple peptide displacement by 

suramin from the vesicles. 

 

Peptide partition between liposome-bound and suramin-complexed states suggested by IR 

spectroscopy 

The interaction between CM15 and lipid assemblies like vesicles has been studied by several 

groups exploiting IR spectroscopy.[2d, 24] Bastos et al.[24d] investigated the interaction between 

CM15 and liposomes formed from shorter and saturated PC/PG lipids compared to the ones used 

here. Following lipid carbonyl stretch as a function of increasing peptide concentration, it was 

reported that the bilayer retained a remarkable order in the presence of the peptide. 

Parts of IR spectra involving lipid carbonyl (around 1735 cm-1) as well as peptide amide I 

(around 1660 cm-1) and amide II (around 1545 cm-1) bands of CM15-liposome associates (Figure 

7A) were analysed. No drastic changes were observed regarding the lipid order in the bilayer. The 

small shift of lipid carbonyl bands (from 1736 to 1735 cm-1) in the presence of the peptide suggests 

that the polar-apolar interface of lipid bilayer could be involved in the interaction with both PC 

and PC/PG vesicles. More pronounced changes were witnessed in the amide I band of the peptide 

upon lipid binding. Beside the main band at 1660 cm-1 assigned to unordered/helical fraction, a 

new band component appeared at around 1684 cm-1 in the presence of liposomes. In an early study 

on interaction of melittin and melittin fragments with PC vesicles, Brauner et al. [25] observed very 
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similar spectral feature. They speculated that the band at 1685 cm-1 arose from peptides assembled 

at the lipid surface in an extended conformation.[25] In general, there are controversial results 

available for CM15 and other membrane-active peptides considering peptide orientation relative 

to the bilayer, arguing that perpendicular insertion connected mainly to pore formation of the 

surface-associated peptide might occur above a threshold peptide concentration and peptide:lipid 

ratio.[3, 5c, 24d] 

  

Figure 7. CM15 binding to model membranes and suramin studied by IR spectroscopy. A) Amide I and 

II regions as well as lipid carbonyl band recorded for the CM15-liposome systems. B) Formation of CM15-

suramin complex indicated by the appearance of an extra band at 1040 cm-1.  

 

The structural changes associated with CM15-suramin interaction can be monitored by means 

of IR spectroscopy as well (Figure 7 and 8). An important advantage of the method is that the 

signal is not complicated by spectral perturbations due to the presence of aggregates. Changes in 

the amide I and amide II bands (Figure 7A) suggest a protein-like complex structure with 

predominant helical conformation (corroborated by the amide I peak centred at 1655 cm-1) 

connected to the suramin induced oligomerization/aggregation. Similar observations were made 
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by other methods as well.[5a] In addition, a remarkable feature of the suramin-CM15 complex is 

the sharp peak at 1040 cm-1 that is markedly separated from the buffer phosphate vibrations 

(Figure 7B). This band can be assigned to the in phase S-O stretching of the sulphonyl groups in 

complexed drug molecules as also observed for suramin oligomers.[26] Thus, the extra band at 1040 

cm-1 could be used as an IR marker for identification and approximate quantification of CM15-

suramin complex formation. We have to point out that at suramin concentrations used, 80 and 160 

M, no such local crowding was detected in the absence of CM15. This is in agreement with NMR 

data arguing for prevalence of monomers at 0.5 mM but oligomerization at 5 mM concentration.[27]  
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Figure 8. CM15 interactions in the presence of model membranes and suramin studied by IR 

spectroscopy. (A, C) Amide I and II regions and lipid carbonyl band. (B, D) Formation of CM15-suramin 

complex indicated by the appearance of an extra band at 1040 cm-1. ATR-FTIR spectra were collected for 

dry films derived from solutions containing CM15 (80 M), suramin (160 M) and PC or PC/PG liposome 

(1.3 mM lipid).  

 

Based on spectral changes experienced for the two-component systems, in the three-component 

mixtures we focused on the evolution of the amide I band component at 1684 cm-1 as well as the 

band at 1040 cm-1, as a measure of the peptide-lipid and peptide-drug interaction, respectively. 

First, liposome systems with 1:2 peptide:suramin ratios were analysed (Figure 8), which 

revealed substantial differences when varying the mixing order of the components. Upon addition 

of suramin to PC-bound CM15, the intensity of the shoulder amide I band at 1684 cm-1 decreases 

(Figure 8A) indicating competition of lipid and drug for the peptide. However, when suramin is 

added first to CM15 or PC, suppression of the amide I band component is nearly complete (Figure 

8A) suggesting higher affinity of CM15 towards the drug. Similar trend was observed for the extra 

band at 1040 cm-1 (Figure 8B and Table S4). According to the band intensity, the highest amount 

of CM15-suramin complex formed when the peptide and small molecule was mixed first. In case 

of suramin administration to the PC-bound peptide, the affinity of CM15 towards liposomes is, 

however, only partially debased, parallel with a reduced CM15-suramin complex formation. When 

addition of suramin to liposomes was followed by incorporation of the peptide, CM15-suramin 

complex formation is still remarkable and no redistribution towards liposomes was witnessed. A 

possible explanation for the latter could be that lipid binding of CM15 is strong enough to interfere 

with suramin interaction thus the liposome-loaded peptide cannot participate in complex formation 

with the drug. However, this binding scenario is not in full agreement with CD and DLS results 
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indicating significant fraction of CM15-suramin associates in the presence of neutral vesicles, 

which points to a binding event where suramin can interact with liposomes and/or lipid-bound 

peptide as suggested by CD and fluorescence results. Indeed, liposome-associated suramin causes 

perturbation of the lipid head group region as indicated by a shift of the lipid asymmetric phosphate 

vibration (nPOas) at 1240-1250 cm-1. 

With reduced suramin concentrations at CM15:suramin ratio of 1:1 in the PC system (Figure 

S2), weaker peptide-liposome interaction was observed for all the three-component mixtures as 

indicated by the intensity loss of the marker band at 1684 cm-1 and the shift of the lipid ester 

carbonyl band from 1736 to 1737 cm-1 (Figure S2A). The latter suggests slight lifting of CM15 

from the polar-apolar boundary of the bilayer upon suramin addition. On the other hand, the 

formation of the CM15-suramin complex is less remarkable (Figure S2B) compared to the 1:2 

CM15:suramin case (Figure 8B). Nevertheless, the highest amount of peptide-drug complex is 

indicated when vesicles were added to the CM15-suramin mixture (Table S4). 

Using the PC/PG liposome system mimicking the negative charge of bacterial membranes, both 

similarities and differences were found compared with the neutral PC system. At 1:2 

peptide:suramin ratio (Figure 8), addition of suramin diminishes the amide I band shoulder at 

1684 cm-1 significantly but not completely (Figure 8C). Furthermore, the marker band of CM15-

suramin association at 1040 cm-1 (Figure 8D) is less pronounced (Figure 8B). This is in line with 

the considerations above, namely that binding of CM15 to negatively charged liposomes is 

stronger than to neutral lipids, thus peptide-drug complex formation is more hindered in the 

presence of the former (see also Table S4). Based on these results, it can be concluded that in the 

three-component systems, there is a competition for CM15 between binding to the liposome 

surface or complex formation with suramin. However, the (CM15+PC/PG)+Sur mixture behaves 
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exceptionally. For this system, both peptide interactions seem to be diminished according to 

reduced band intensities at 1685 and 1040 cm-1. Moreover, a slight shift of the lipid carbonyl band 

from 1735 to 1737 cm-1 is observed, which occurs only for this mixture combination. 

In contrast to PC/PG liposome systems with 1:2 peptide:suramin ratio, no shift of the lipid carbonyl 

group was observed for any mixture with 1:1 ratio (Figure S2C). Alterations of the 1684 cm-1 

marker band suggest that in the case of suramin added to the PC-bound peptide, binding of CM15 

to the liposome is still strong (Figure S2C). Simultaneously, formation of CM15-suramin complex 

is also hindered as confirmed by the significant intensity loss of the ‘complex marker’ band at 

1040 cm-1 (Figure S2D and Table S4). 

To summarize the findings obtained from IR measurements, our results point to dominating 

peptide-drug interaction when the lipid is added to the preformed CM15-suramin complexes. This 

preference is stronger at 1:2 CM15:suramin ratio and more relevant for the neutral PC system 

compared to the charged PC/PG system. Vesicle attachment of CM15 could be strong enough to 

inhibit CM15-suramin complex formation, however, interaction with suramin could result in 

peptide lifting from the bilayer interior. 

 

Binding determinants in the three-component systems 

Combining the results obtained from the biophysical measurements, we can conclude a general 

binding scenario in three-component CM15-suramin-lipid systems where CM15 forms complex 

with suramin in expense to binding to liposomes. However, not all spectral changes observed could 

be explained by simple peptide displacement. Perturbations in the lipid head group region detected 

by IR spectroscopy and suggested by fluorescence quenching point to possible suramin binding to 

the vesicles or even lipid-bound peptide, allowing formation of dynamic complex associates. In 
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these assemblies, the peptide could be extruded from the polar-apolar boundary of the lipid bilayer 

but might preserve looser contact with the less buried regime of the lipid head group region facing 

the aqueous phase. 

Moreover, our findings point to the importance of mixing order in peptide binding preference, 

that is, which binding partner gets in contact with CM15 first. Peptide interaction with the small 

molecule could dominate over liposome-binding when the lipid is added to preformed CM15-

suramin complexes. However, the binding preference is also controlled by peptide:suramin ratio 

as well as vesicle composition, mainly driven by electrostatics. As CM15 and suramin bears +6 

and -6 net charges, respectively, complex formation could be initiated by electrostatic attraction 

between peptide and drug. In agreement with charge neutralisation at an equimolar ratio and the 

negative overall charge of the complex at higher suramin ratios, higher peptide partition towards 

complex formation with suramin leading to more remarkable aggregation was detected at 1:1 

CM15:suramin ratio and for the neutral liposome system. In contrast, vesicle attachment of CM15 

could inhibit interaction with the drug when suramin meets the peptide associated tightly to the 

negatively charged membrane. 

Our results suggested that electrostatic forces play pivotal role in initiation of peptide binding 

and assembly. This is consistent with previous studies supposing that electrostatics is a key factor 

in AMP-membrane interactions.[24d] However, considering the amphiphilic nature of all partners 

(CM15, suramin, lipids), hydrophobic interactions could also contribute to the binding energetics. 

Indeed, CD spectra, tryptophan fluorescence and lipid carbonyl vibration indicated peptide regions 

residing close to the apolar interior of the lipid bilayer. In contrast, CD and IR spectroscopic results 

suggested more polar environment for suramin-bound CM15 even in the presence of vesicles. 
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Variations in peptide structure monitored by CD and IR spectroscopy are compatible with a 

reduced content of the membrane-active peptide conformation in the presence of suramin, which 

seems to be valid even when considering the ability of suramin to interact with biomembranes. To 

test the biological relevance of the above interactions and their potential in altering bioactivity, in 

vitro antibacterial and cytotoxicity assays were performed. 

 

Altered antibacterial activity and cytotoxicity of CM15 in the presence of suramin 

To understand the biological relevance of the AMP-drug complex formation, antibacterial effect 

and cytotoxicity on human cells was probed with CM15 premixed with suramin. 

On the tested E. coli strain, CM15 showed remarkable antibacterial effect as indicated by the 

fact that no bacterial growth was detected at as low as 5 M peptide concentration. In the presence 

of suramin, however, peptide efficiency significantly decreased so that bacterial growth was 

observed even at higher CM15 concentrations of 10-40 M (Figure 9A). To have a more detailed 

picture on the effect of suramin, bacteria were treated with 5 M peptide preincubated with excess 

suramin. The deep impact of the drug molecule on the antibacterial efficacy of CM15 is evident 

as significantly higher amount of the bacterial cells survived when CM15 was added with suramin 

(Figure 9B). Furthermore, increasing suramin concentrations resulted in higher relative bacterial 

growth. Specifically, this value was approximately half at a peptide:suramin ratio of 1:2 compared 

to that of 1:8 (Figure 9B). 
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Figure 9. Antibacterial effect of CM15 in the presence and absence of suramin. A) E. coli treated with 

peptide-drug mixtures of various ratios. After 24 hrs of incubation, no bacterial growth was detected in the 

CM15 treated wells. Contrary, when CM15 was added with suramin, visible bacterial growth was observed. 

B) Relative bacterial count after treatment with 5 M CM15 and various concentrations of suramin. Values 

are mean±SEM (n=4). 

 

Membrane disrupting activity of CM15 was also tested on human cells, specifically on 

MonoMac6 monocytes and red blood cells (RBCs). Cells were treated with CM15 in the absence 

or presence of suramin at 1:1 and 1:2 peptide:suramin ratios. Using the monocyte cell line, CM15 

alone was found to be cytotoxic at a relatively low concentration (IC50 = 7.6 M, Figure 10A), 

whereas when administered together with suramin, the effect substantially decreased. Peptide 

cytotoxicity was impaired to a higher extent at suramin excess (with IC50 values of 19.8 and 66.9 

M for the 1:1 and 1:2 ratio, respectively, Figure 10A). When treating red blood cells, CM15 

alone showed moderate cytotoxicity with a HC50 value of ~45 M (Figure 10B), which is in 

agreement with the reduced haemolytic activity of the hybrid peptide compared to its parent 

melittin.[28] In the presence of suramin, no haemolysis was observed (HC50 > 200 M, Figure 10B). 

It is to be noted that suramin alone at concentrations up to 100-200 M showed no effect on these 
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cells (Figure 10A and 10B), which indicates that reduced peptide cytotoxicity is directly 

connected to CM15-suramin complex formation. 

In an early work, an effective concentration of 10 M and typical drug dosage of 0.3 mM was 

reported for suramin.[13] In a recent study, patients were treated with suramin at plasma 

concentration in the 140-190 M range and the drug was cleared with a 40 day period half time.[29] 

As suramin can reach high levels in vivo, the interactions investigated here are likely to occur in 

the human body. 

 

 

Figure 10. Cytotoxic and haemolytic effect of CM15 in the presence and absence of suramin. 

Cytotoxicity was measured on MonoMac6 human monocytes and haemolysis was assayed on 

human RBCs suspension (4 v/v%). Data are mean±SEM (n=3). Note that error bars are often 

smaller than the symbol size, and the logarithmic scale for the concentration. A) Significantly 

lower cytotoxicity was measured for CM15 administered together with suramin: IC50 values for 

CM15 alone, CM15-suramin at 1:1 and 1:2 ratio are 7.6±0.2, 19.6±4.3, and 66.9±4.5 M, 

respectively, with p=0.0011 for CM15 versus CM15:Sur (1:1), and p<0.0001 for CM15 versus 

CM15:Sur (1:2), respectively. The effect is higher when CM15 was mixed with suramin at higher 

(1:2) molar ratio. Suramin alone showed no cytotoxic effect (IC50 >100 M). B) Haemolytic 

activity of CM15 (HC50 = 45.9±1.6 M) was abolished in the presence of suramin at both ratios 

applied (HC50 > 200 M). Suramin alone showed no haemolytic effect (HC50 >200 M). Note that 

data points overlap for Sur, CM15:Sur (1:1), and CM15:Sur (1:2). 
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Concluding remarks 

Herein we investigated the structural and functional effects of the therapeutic drug suramin on 

the membrane-active antimicrobial peptide CM15 by a combination of several biophysical 

methods. Based on the structural data supported by in vitro binding assays, our findings are 

compatible with a model delineating formation of dynamic complex associates of the peptide 

populated in lipid-bound and/or drug-loaded forms. CM15 partition is dictated mainly by charge 

neutralisation effects controlled by suramin-to-peptide ratio and lipid bilayer composition. We also 

demonstrated that interaction with suramin remarkably changed peptide function as illustrated by 

significantly reduced antimicrobial activity on Gram-negative bacteria and diminished 

cytotoxicity towards mammalian cells. Considering the low effective concentration for both CM15 

and suramin, high drug plasma levels during medical treatments and locally accumulated AMPs, 

suramin and AMP levels can fall in the range used in this study. Based on these findings and 

several other small molecule-AMP interactions demonstrated recently in our group, it is proposed 

that natural AMPs and host defense peptides will regularly experience alteration of their structure 

and function in the complex in vivo environment – an aspect to be considered and potentially 

exploited during future treatments and drug design. 
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Experimental Section 

 

Peptide solution: CM15 was synthesized on solid phase using standard Fmoc/tBu strategy in an 

automated peptide synthesizer. Peptide product was characterized by analytical RP-HPLC, mass 

spectrometry and amino acid analysis (see more details in Supporting Information). Lyophilized 

CM15 powder (trifluoroacetate salt) was dissolved in high purity water at the indicated 

concentration not higher than 1 mM, aliquoted and stored frozen at -18 ºC until usage no longer 

than a few weeks. 

 

Suramin solution: Suramin powder (sodium salt, Calbiochem) was dissolved in high purity water 

at the indicated concentration not higher than 1 mM, aliquoted and stored frozen at -18 ºC until 

usage. 

 

Lipid solutions: High purity synthetic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 

1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], sodium salt (DOPG) were purchased from 

the Avanti Polar Lipids Inc. (USA). Liposomes were prepared by using the lipid thin film hydration 

technique. Lipids were dissolved in chloroform (LabScan, Hungary) containing 50 vol% methanol 

(Reanal, Hungary), which was then evaporated using a rotary evaporator. The resulting lipid film 

was kept in vacuum for at least 8 hours to remove residual traces of solvent. The dried lipid film 

was hydrated with the assay buffer. After repeated heating (37 ºC) and cooling (-196 ºC) steps (at 

least 10 times), the solutions were extruded through polycarbonate filters with 100 nm pore size 

(at least 11 times) using a LIPEX extruder (Northem Lipids Inc., Canada). Final lipid concentration 

was 13 mM. For mimicking mammalian and bacterial cell membrane, pure DOPC and 
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DOPC/DOPG (80/20 n/n%) referred as PC and PC/PG, respectively, were used thoroughly in the 

study. 

 

Assay conditions: To mimic physiological conditions, the assay buffer used thoroughly in the 

study was isotonic phosphate buffered saline (PBS, 10 mM phosphate, 137 mM NaCl, 3 mM KCl, 

pH 7.4), purchased from Sigma-Aldrich. For measuring CD spectra, a buffer avoiding chloride 

ions (10 mM Na-phosphate, 100 mM Na2SO4, pH 7.0, CD buffer) was used frequently, which 

allowed spectra collection down to 190 nm. 

When investigating three-component systems, the order of addition of the components was varied 

including preincubation of two compounds (Comp1 and 2) for 3-4 minutes, followed by the 

incorporation of the third one (Comp3). The corresponding labelling used thoroughly in the text is 

(Comp1 + Comp2) + Comp3. 

 

Circular dichroism (CD) spectroscopy: CD spectra were collected with a JASCO J-1500 

spectropolarimeter at room temperature in 0.1 cm path-length cylindrical quartz cuvette (Hellma, 

USA). Peptide CD data were collected in continuous scanning mode between 190 and 260 nm at 

a rate of 50 nm/min, with a data pitch of 0.5 nm, response time of 4 sec, 1 nm bandwidth, and 3 

times accumulation. CD curves of peptide, peptide-drug, peptide-liposome and peptide-liposome-

drug samples were corrected by spectral contribution of the blank buffer solution. Titration with 

suramin in the presence and absence of liposomes was performed in duplicate using CD-buffer 

and as a single experiment in PBS. To estimate secondary structure content of CM15 under various 

conditions, the software provided by the BeStSel (Beta Structure Selection) website 

(http://bestsel.elte.hu)[19] was used. Data point are given as mean ± standard error of mean (SEM). 
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Dynamic Light Scattering (DLS): Mean hydrodynamic diameter (Dh) and polydispersity were 

measured at 20 °C using a W130i dynamic light scattering device (DLS, Avid Nano Ltd., High 

Wycombe, UK) with a diode laser (660 nm) and a photodiode detector. Low volume disposable 

cuvettes with 1 cm path-length were used (UVette, Eppendorf Austria GmbH). Samples containing 

20 M peptide and various amounts of drug and liposomes were measured in a final volume of 80 

l in PBS. The time-dependent autocorrelation functions were measured for 10 seconds, repeated 

10 times and the average distributions were reported. The analysis of the measurement data was 

performed with the iSize 3.0 software, supplied with the device. 

 

Attenuated total reflexion Fourier-transform infrared spectroscopy (ATR FTIR): FTIR 

spectroscopic measurements were conducted using a Varian 2000 FTIR Scimitar spectrometer 

(Varian Inc, US) fitted with a liquid nitrogen cooled mercury-cadmium-telluride (MCT) detector 

and with a ‘Golden Gate’ single reflection diamond ATR accessory (Specac Ltd, UK). Onto the 

diamond ATR surface, 5 µl of the sample was mounted and the spectra were collected (2 cm-1 

resolution and 64 scans) as a dry film (after slowly evaporation of the buffer solvent under ambient 

conditions). Prior to spectral evaluation, ATR correction was performed and the corrected spectra 

were smoothed with Savitzky-Golay algorithm (polynomial degree = 2; number of points = 17) 

using the GRAMS/32 (Galactic Inc., USA) software package. 

 

Fluorescence spectroscopy: Spectra were recorded using a Jobin Yvon Fluoromax-3 

spectrofluorimeter (with 3 and 5 nm excitation and emission slits, respectively), at 25 C in PBS. 

To test peptide interaction, the tryptophan fluorophore of CM15 was excited at 295 nm and 
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emission was monitored from 310 to 400 nm. Binding assays were carried out, so as CM15 at 1 

M in the presence and absence of liposomes was titrated with increasing amounts of suramin up 

to 50 M. To correct for spectral contribution of the liposomes and suramin, appropriate blank 

spectra (recorded for solutions containing no fluorophore but lipid and drug at the same 

concentration) were subtracted. Peptide titrations were performed in duplicate, data presented are 

mean±SEM. 

 

Transmission electron microscopy (TEM): For direct visualisation of the structure and 

morphology of the sample, transmission electron microscopy images were obtained using a 

Morgagni 268D instrument (FEI, The Netherlands). A 2 l droplet of the sample prepared in PBS 

was pipetted onto a 200 mesh copper grid with a support film made of formvar, and after 20 

seconds contact time, excess liquid was removed. 5% phosphotungstic acid was added 

immediately as contrast material, then after a contact time of 10 minutes, excess liquid was 

removed, and the sample was left to air dry. 

 

Antibacterial test, cytotoxicity and haemolytic assay: The antibacterial effect of CM15 in the 

presence or absence of suramin was measured on Escherichia coli strain (DSM 1103). Bacterial 

lyophilizate were resuspended in Bouillion broth and cultured in blood agar plate for 24 hrs. To 

test peptide efficacy, 0.5 McFarland standard was diluted 50-times then 100 l bacterial 

suspension was plated on a 96-well U-bottom plate. As culture media, Lysogeny broth (LB) was 

used. CM15 solutions alone or together with suramin were added to the wells in a final 

concentration of 40, 20, 10, and 5 M for each compound. Plates were read after 24 hrs of 

incubation. All samples were measured in quadruplets, data are mean±SEM. 
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Cytotoxic effect of CM15 was measured on MonoMac6 human monocytic cell line (DSMZ, 

ACC 124), frequently used and accepted as model cells to assay cytotoxicity, membrane damage, 

and cellular uptake of compounds like peptides or drugs.[30] Prior to the treatment, cells were 

cultured in serum-free RPMI-medium and plated (15,000 cells, 100 l/well) in a flat-bottom 96-

well plate. CM15 was dissolved in serum-free medium at a final concentration of 200 M. Suramin 

was added to the peptide solution at 1:1 or 1:2 molar ratio. Cells were treated with the serial 

dilution of CM15 or CM15-suramin mixtures in the concentration range of 0.8-100 M in 

quadruplets. Cells were incubated with the compounds for 1.5 h, then cell viability was tested 

using MTT assay.[31] Briefly, 45 l MTT (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) solution was added to each well (2 mg/ml, solved in serum-free medium). Following 3.5 

hrs of incubation, plates were centrifuged at 2000 rpm for 5 minutes, and the supernatant was 

carefully aspirated with a G30 needle. The precipitated purple crystals were dissolved in 100 l 

DMSO, and after 10 minutes agitation, the absorbance was determined at 540 and 620 nm using 

an ELISA plate reader (iEMS Reader, Labsystems). Cytotoxicity expressed in percentage as a 

function of peptide concentration was plotted, and IC50 values were determined. Data are 

mean±SEM (n=3). 

For haemolytic activity assay, peripheral blood from healthy volunteer (purchased from the 

Hungarian National Blood Transfusion Service, Budapest, Hungary) was collected in vacuum 

tubes containing sodium citrate as anticoagulant (Vacuette, 9NC). Tubes were centrifuged (2000 

rpm, 5 min) and the pellet was washed twice with PBS. To the pellet, PBS was added to yield a 

final 4 v/v% RBC suspension. Stock solutions of the compounds were diluted in PBS and two-

fold serial dilution series were prepared (final concentration: 1.6 – 200 μM). RBC suspension (100 

µl/well) were placed into a 96-well U-bottom cell culture plate and mixed with 100 µl peptide 
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solution. The plates were incubated for 1.5 hrs at 37°C. After centrifugation (2000 rpm, 5 min), 50 

µl of the supernatant was transferred to a flat-bottom microtiter plate and absorbance was measured 

at 414/450 nm using an ELISA plate reader. Percentage haemolysis is plotted against peptide 

concentration, and HC50 values (peptide concentration at which 50% haemolysis occurred) were 

determined. Data are mean±SEM (n=3). 

For analyzing statistical significance (p), Student’s t-test was performed using GraphPad Prism. 
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Table of Content  

 

Antimicrobial peptides (AMPs) experience a complex environment in their host organisms, which 

may significantly affect their function. The cationic AMP CM15 forms a tight complex with the 

polyanionic drug suramin controlling peptide structure upon membrane binding. This case study 

demonstrates on the three-component system that by modulating AMP structure, its antibacterial 

activity is also changed. 
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