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Abstract. We consider the Diophantine equation Pn(x) = g(y)
in x, y where Pn(x), g(x) ∈ Q[x],deg g(x) ≥ 3 and {Pn(x)}n≥0 is

an Appell sequence. Under some reasonable assumptions on Pn(x)
we prove an ineffective finiteness result on the above equation.

1. Introduction

For n ∈ N∪{0}, let Pn(x) be a polynomial with rational coefficients
and with degPn(x) = n. Further, let P0(x) be a non-zero constant.
The sequence {Pn(x)}n≥0 is called an Appell sequence (and Pn(x) is
called an Appell polynomial) if

P ′n(x) = nPn−1(x) for all n ∈ N. (1)

The history of such polynomials goes back to Appell’s work [2] in 1880.
There are several well-known examples of Appell sequences, such as
the Bernoulli polynomials Bn(x), the Euler polynomials En(x), and
the Hermite polynomials Hn(x), respectively defined by the following
generating series (see e.g. [12])

t exp(tx)

exp(t)− 1
=
∞∑
n=0

Bn(x)
tn

n!
;

2 exp(xt)

exp(t) + 1
=
∞∑
n=0

En(x)
tn

n!
(|t| < π);

exp(tx)

exp(t2/2)
=
∞∑
n=0

Hn(x)
tn

n!
.

The above defined Hermite polynomials Hn(x) are sometimes denoted
by Hen(x), e.g. in the book of Abramowitz and Stegun [1].

The following properties of Appell polynomials will often be used in
the text, sometimes without special reference.
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We recall the so-called Appell Identity :

Pn(x+ y) =
n∑
k=0

(
n

k

)
Pk(x)yn−k =

n∑
k=0

(
n

k

)
Pk(y)xn−k, (2)

which, by setting y = 0, implies that there exists a sequence of rational
numbers {cn}n≥0 with c0 6= 0 such that

Pn(x) =
n∑
k=0

(
n

k

)
ckx

n−k, where ck := Pk(0) (k ≥ 0). (3)

For the proofs of (2) and (3) see, for instance the book of Roman [12].
Let K be an arbitrary field. We denote by K[x] the ring of polyno-

mials in the variable x with coefficients from K. A decomposition of a
polynomial F (x) over K is an equality of the following form

F (x) = G1(G2(x)) (G1(x), G2(x) ∈ K[x]),

which is nontrivial if

degG1(x) > 1 and degG2(x) > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are
said to be equivalent if there exists a linear polynomial `(x) ∈ K[x]
such that G1(x) = H1(`(x)) and H2(x) = `(G2(x)). The polynomial
F (x) is called decomposable over K if it has at least one nontrivial
decomposition over K; otherwise it is said to be indecomposable.

The decomposition of Bernoulli polynomials has been described by
Bilu et al. in [6]. Decomposition properties of Euler polynomials were
recently investigated by Rakaczki and Kreso [11]. The mentioned re-
sults can both be summarized as follows: the corresponding polynomial
(Bn(x) or En(x)) is indecomposable over C for all odd n, while, if n
is even, then any nontrivial decomposition of the polynomial under
consideration over C is equivalent to one of the shape

P̂n/2

((
x− 1

2

)2
)
,

where P̂n/2(x) is a polynomial of degree n/2 which is indecomposable
for every n. These results from [6] and [11] suggest the following notion.
We say that an Appell sequence {Pn(x)}n≥0 is of special type if Pn(x) is
indecomposable over C for all odd n, and, for even n, every nontrivial
decomposition of Pn(x) is equivalent to a decomposition of the form

Pn(x) = P̂n/2

((
x− 1

2

)2
)
, (4)
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with an indecomposable polynomial P̂n/2(x) over C of degree n/2. Cle-
arly, the polynomials {Bn(x)}n≥0 and {En(x)}n≥0 are of special type.

The theory of polynomial decomposition is strongly connected to
the theory of separable Diophantine equations since, in 2000, Bilu
and Tichy [5] established their general ineffective finiteness criterion
on equations of the form f(x) = g(y). (See Proposition 1 below.)

In this paper we study the Diophantine equation

Pn(x) = g(y) in integers x, y, (5)

where Pn(x) is from an Appell sequence of special type and g(x) ∈ Q[x],
deg g(x) ≥ 3. For technical reasons, we restrict ourselves to Appell
sequences {Pn(x)}n≥0 for which

3P2(−c1/c0)2 − 2c0P4(−c1/c0)
3P2(−c1/c0)2 − c0P4(−c1/c0)

is not a positive integer. (6)

Remark. In the following table, we give the value of the constant
from (6) for the case when Pn(x) is a Bernoulli, Euler or an Hermite
polynomial, respectively.

Bn(x) En(x) Hn(x)
9/2 7/2 undefined

For Pn(x) = Bn(x), Rakaczki [10], and independently Kulkarni and
Sury [9] characterized those pairs (n, g(y)) for which equation (5) has
infinitely many integer solutions. Recently, Rakaczki and Kreso [11]
proved an analogous result for the case when Pn(x) = (En(0)±En(x))/2
(which is not an Appell polynomial anymore). For further related re-
sults we refer to [7, 8].

We prove the following.

Theorem 1. Let g(x) ∈ Q[x] with deg g(x) ≥ 3, and suppose that
{Pn(x)}n≥0 is an Appell sequence of special type with property (6).
Then for n ≥ 7, equation (5) has only finitely many integer solutions
x, y, apart from the following cases:

(i) g(x) = Pn(h(x)), where h(x) is a polynomial over Q.
(ii) g(x) = γ(δ(x)m), where m is a positive integer.

(iii) n is even and g(x) = P̂n/2(q(x)2)

(iv) n is even and g(x) = P̂n/2(δ(x)q(x)2)

(v) n is even and g(x) = P̂n/2(cδ(x)t), where t ≥ 3 is an odd integer

(vi) n is even and g(x) = P̂n/2((aδ(x)2 + b)q(x)2)

Here a, b, c ∈ Q \ {0}, γ(x), δ(x) ∈ Q[x] are linear polynomials and
q(x) ∈ Q[x] is a non-zero polynomial.
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We prove the above theorem by applying among other things the
general finiteness criterion of Bilu and Tichy [5] for equation (5). Hence
our finiteness result is ineffective.

Remark. For n ≥ 7, our main result is a common generalization
of the mentioned results of Rakaczki [10], Kulkarni and Sury [9] and
Rakaczki and Kreso [11]. In the special cases Pn(x) ∈ {Bn(x), En(x)},
one can exclude the exceptional case (ii) by making use of some specific
properties of the Bernoulli or Euler polynomials, respectively. (See
[9, 10, 11])

2. Auxiliary results

Before proving Theorem 1, we collect those results that we are going
to apply in the proof. First, we recall the finiteness criterion of Bilu
and Tichy [5]. To do this, we need to define five kinds of so-called
standard pairs of polynomials.

Let α, β be nonzero rational numbers, µ, ν, q > 0 and r ≥ 0 be
integers, and let v(x) ∈ Q[x] be a nonzero polynomial (which may be
constant). Denote by Dµ(x, δ) the µ-th Dickson polynomial, defined by
the functional equation Dµ(z + δ/z, δ) = zµ + (δ/z)µ or by the explicit
formula

Dµ(x, δ) =

bµ/2c∑
i=0

dµ,ix
µ−2i with dµ,i =

µ

µ− i

(
µ− i
i

)
(−δ)i.

Two polynomials f1(x) and g1(x) are said to form a standard pair over
Q if one of the ordered pairs (f1(x), g1(x)) or (g1(x), f1(x)) belongs to
the list below. The five kinds of standard pairs are then listed in the
following table.

kind explicit form of {f1(x), g1(x)} parameter restrictions
first (xq, αxrv(x)q) 0 ≤ r < q, (r, q) = 1,

r + deg v(x) > 0
second (x2, (αx2 + β)v(x)2) -
third (Dµ(x, αν), Dν(x, α

µ)) (µ, ν) = 1

fourth (α
−µ
2 Dµ(x, α),−β −ν

2 Dν(x, β)) (µ, ν) = 2
fifth ((αx2 − 1)3, 3x4 − 4x3) -

The following proposition is a special case of the main result of [5].

Proposition 1. Let f(x), g(x) ∈ Q[x] be nonconstant polynomials
such that the equation f(x) = g(y) has infinitely many solutions in
rational integers x, y. Then f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ,
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where λ(x), µ(x) ∈ Q[x] are linear polynomials, ϕ(x) ∈ Q[x], and
(f1(x), g1(x)) is a standard pair over Q.

For P (x) ∈ C[x], a complex number c is said to be an extremum if
P (x)− c has multiple roots. The P -type of c is defined to be the tuple
(α1, . . . , αs) of the multiplicities of the distinct roots of P (x)− c in an
increasing order. Obviously, s < degP (x) and α1+. . .+αs = degP (x).

Proposition 2. For a 6= 0 and k ≥ 3, Dµ(x, α) has exactly two extrema

±2α
µ
2 . If µ is odd, then both are of P -type (1, 2, 2, . . . , 2). If µ is even,

then 2α
µ
2 is of P -type (1, 1, 2, . . . , 2) and −2α

µ
2 is of P -type (2, 2, . . . , 2).

Proof. See, for instance [4, Proposition 3.3]. �

We end this section with two technical results. Let d1, e1 ∈ Q∗ and
d0, e0 ∈ Q

Proposition 3. Suppose that {Pn(x)}n≥0 is an Appell sequence of spe-
cial type. Then the polynomial Pn(d1x+d0) is not of the form e1x

q+e0,
with q ≥ 7.

Proof. We assume the contrary, i.e., that we have

Pn(d1x+ d0) = e1x
q + e0 (7)

with q ≥ 7. Obviously, we then have n = q.
We observe from (2) and (7) that

P1(d0) = P2(d0) = . . . = Pn−1(d0) = 0. (8)

Since, by (3), P1(d0) = c0d0 + c1, we get

d0 = −c1
c0
. (9)

Further, since, by (1),

Pk(x) =
k!

(n− 1)!
P

(n−1−k)
n−1 (x), k = 1, . . . , n− 1, (10)

we infer that d0 is a root of Pn−1(x) of multiplicity (n − 1). Thus, in
view of (9), we have Pn−1(x) = c0 (x+ c1/c0)

n−1, which implies

Pn(x) = c0

(
x+

c1
c0

)n
+ C with C = Pn

(
−c1
c0

)
. (11)

First, if n ≥ 7 is even , then, by (11), one can easily find the nont-
rivial decomposition Pn(x) = Q(R(x)) with

Q(x) = c0x
2 + C, and R(x) =

(
x+

c1
c0

)n/2
. (12)
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Since n ≥ 7, this nontrivial decomposition is obviously not equivalent
to the one in (4), contradicting that {Pn(x)}n≥0 is of special type.

Now, let n ≥ 7 be an odd positive integer. If n is composite, then
any divisor v of n with 1 < v < n leads to a nontrivial decomposition

Pn(x) = c0

((
x+

c1
c0

)v)n/v
+ C, (13)

which again contradicts that {Pn(x)}n≥0 is of special type (and in this
case Pn(x) is indecomposable). If n is a prime, then derivating both
sides of (11) we obtain

Pn−1(x) = c0

(
x− 1

2

)n−1
, (14)

where of course the exponent n − 1 is even. Similarly as above, this
leads to a nontrivial decomposition not equivalent to (4) and thus to a
contradiction.

�

Proposition 4. Suppose that {Pn(x)}n≥0 is an Appell sequence which
satisfies (6). Then the polynomial Pn(d1x + d0) is not of the form
e1Dµ(x, δ)+e0, where Dµ(x, δ) the µ-th Dickson polynomial with µ > 4,
δ ∈ Q∗.

Proof. Suppose that the Appell sequence {Pn(x)}n≥0 satisfies (6), and
that we have

Pn(d1x+ d0) = e1Dµ(x, δ) + e0. (15)

Clearly, n = µ. Comparing the leading coefficients of both sides we get

dn1c0 = e1, (16)

where the numbers ck (k ≥ 0) are defined in (3). Similarly, from (2)
and the equality of the coefficients of xn−1 on both sides we obtain

ndn−11 P1(d0) = 0, (17)

which implies

d0 = −c1
c0
. (18)

Again, by (2), comparing the coefficients of xn−2 gives(
n

2

)
dn−21 P2(d0) = −e1nδ, (19)

whence, together with (16) it follows that

d21 = −(n− 1)P2(d0)

2c0δ
(20)
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Now we compare the coefficients of xn−4 on both sides of (15) and we
obtain (

n

4

)
dn−41 P4(d0) =

e1n(n− 3)δ2

2
, (21)

which along with (16) leads to

d41 =
(n− 1)(n− 2)P4(d0)

12c0δ2
. (22)

After substituting (20) into (22), we obtain

3(n− 1)P2(d0)
2 = (n− 2)c0P4(d0), (23)

whence, together with (18) it follows that

n =
3P2(−c1/c0)2 − 2c0P4(−c1/c0)
3P2(−c1/c0)2 − c0P4(−c1/c0)

. (24)

This is a contradiction by (6). �

We note that Proposition 4 is a common generalization of Lemma
5.3 in [6], Lemma 2.4 in [3], and of the second statement of Lemma 12
in [11].

3. Proof of Theorem 1

Let g(x) ∈ Q[x] with deg g(x) ≥ 3. Suppose that equation (5)
has infinitely many integer solutions x, y with an Appell sequence
{Pn(x)}n≥0 of special type satisfying (6) and with n ≥ 7. Then
by Proposition 1 it follows that there exist λ(x), µ(x), ϕ(x) ∈ Q[x],
deg λ(x) = deg µ(x) = 1 such that

Pn(x) = ϕ(f1(λ(x))) and g(x) = ϕ(g1(µ(x))), (25)

where (f1(x), g1(x)) is a standard pair over Q.
Let λ−1(x) = a1x + a0, µ

−1(x) = b1x + b0, where a0, a1, b0, b1 ∈ Q
with a1b1 6= 0. Then we can rewrite (25) as

Pn(a1x+ a0) = ϕ(f1(x)) and g(b1x+ b0) = ϕ(g1(x)), (26)

Since Pn(x) is of special type and degPn(x) = n, we obtain that

degϕ(x) ∈
{

1,
n

2
, n
}
.
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3.1. The case degϕ(x) = n. If we assume that degϕ(x) = n, then by
(25), we have deg f1(x) = 1. Thus Pn(x) = ϕ(t(x)), where t(x) ∈ Q[x]
is a linear polynomial. Clearly, t−1(x) ∈ Q[x] is also linear. By (25),
we obtain Pn(t−1(x)) = ϕ(t(t−1(x))) = ϕ(x). Hence

g(x) = ϕ(g1(µ(x))) = Pn(t−1(g1(µ(x)))) = Pn(q(x)), (27)

where q(x) = t−1(g1(µ(x))). So, if, in our case, equation (5) has infin-
itely many solutions, then g(x) is of the form as in Theorem 1 (i).

3.2. The case degϕ(x) = 1. Let ϕ(x) = ϕ1x + ϕ0, where ϕ1, ϕ0 ∈ Q
and ϕ1 6= 0. We study now the five kinds of standard pairs.

In view of our assumptions on n and deg g(x), it follows that the
standard pair (f1(x), g1(x)) cannot be of the second or fifth kind.

If it is of the third or fourth kind, we then have Pn(a1x + a0) =
e1Dµ(x, δ) + e0 with e0 ∈ Q, e1, δ ∈ Q∗. This contradicts Proposition
4.

If (f1(x), g1(x)) is a standard pair of the first kind, then we have
either

(I) Pn(a1x+ a0) = ϕ1x
q + ϕ0, or

(II) Pn(a1x + a0) = ϕ1αx
pν(x)q + ϕ0, where 0 ≤ p < q, (p, q) = 1

and p+ deg ν(x) > 0.

The first case (I) is impossible by Proposition 3 since n ≥ 7 by
assumption.

Let us now consider the second case (II). Then we have g(x) =
ϕ1µ(x)q +ϕ0 = ϕ(µ(x)q), where q ≥ 3 and µ(x) ∈ Q[x] is linear, which
is case (ii) of Theorem 1.

3.3. The case degϕ(x) = n/2. Clearly, n is then even, and from
(25) we observe that deg f1(x) = 2. Hence it follows that, in (25),
(f1(x), g1(x)) cannot be a standart pair of the fifth kind. Further,
we obtain a nontrivial decomposition of Pn(x), which, since Pn(x) is of
special type, implies that there exists a linear polynomial `(x) = `1x+`0
over Q such that

ϕ(x) = P̂n/2(`(x)) and `(f1(λ(x))) =

(
x− 1

2

)2

. (28)

Again, we study the remaining kinds of standard pairs.
First, we consider the case when, in (25), (f1(x), g1(x))is a standard

pair of the first kind. If f1(x) = xt, then by deg f1(x) = 2, we have
(f1(x), g1(x)) = (x2, αxp(x)2). Putting λ(x) = λ1x + λ0, (28) takes
the form `((λ1x+λ0)

2) = (x− 1/2)2, whence an easy calculation gives
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`(x) = x/λ21. Substituting this to (25), we obtain

g(x) = P̂n/2(`(g1(µ(x)))) = P̂n/2

(
αµ(x)p(µ(x))2

λ21

)
(29)

So g(x) is of the form (iv) with δ(x) = αµ(x)/λ21 and q(x) = p(µ(x)).
In the switched case (f1(x), g1(x)) = (αxrp(x)t, xt), where 0 ≤ r < t,

(r, t) = 1 and r + deg p(x) > 0, deg f1(x) = 2 implies that one of the
following cases occurs:

(A) r = 0, t = 1 and deg p(x) = 2, or
(B) r = 2, t > 2 is odd and p(x) is a constant polynomial.

In case (A) we have g1(x) = x, whence from (25) and (28) we obtain

g(x) = P̂n/2(`(g1(µ(x)))) = P̂n/2(`(µ(x))) = P̂n/2(δ(x)q(x)2), (30)

where δ(x) = `(µ(x)) and q(x) ≡ 1. Thus g(x) is again of the form
(iv).

In the second case (B), we can write f1(x) = βx2, with β = αp(x)t ∈
Q \ {0}. Substituting this to (28), we deduce that `(x) = x/(βλ21),
whence, by (25), we get

g(x) = P̂n/2(`(g1(µ(x)))) = P̂n/2

(
µ(x)t

βλ21

)
= P̂n/2(cδ(x)t), (31)

where c = 1/(βλ21), δ(x) = µ(x) and t > 2 is odd. This is option (v)
in Theorem 1.

Next let, in (25), be a the standard pair (f1(x), g1(x)) of the second
kind. If (f1(x), g1(x)) = (x2, (αx2 + β)v(x)2), then a calculation from
(28) yields `(x) = x/λ21, and by (25) we have

g(x) = P̂n/2(`(g1(µ(x)))) =

= P̂n/2

(
(αµ(x)2 + β)v(µ(x))2

λ21

)
= P̂n/2((αδ(x)2 + β)q(x)2), (32)

where δ(x) = µ(x) and q(x) = v(µ(x))/λ1. So we are led to option (vi)
of our theorem.

In the switched case (f1(x), g1(x)) = ((αx2 + β)v(x)2, x2), since
deg f1(x) = 2, v(x) is a constant polynomial and

g(x) = P̂n/2(`(g1(µ(x)))) = P̂n/2((`1µ(x)2 + `0)q(x)2), (33)

where q(x) ≡ 1. Thus, we arrived again at option (vi) with δ(x) = µ(x)
and a = `1, b = `0.

Now, if the standard pair (f1(x), g1(x)) is of the third kind over
Q, then (f1(x), g1(x)) = (D2(x, α

t), Dt(x, α
2)) with t being odd. Let us
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substitute f1(x) = x2−2αt into (28) to deduce that `(x) = (x+2αt)/λ21,
whence

g(x) = P̂n/2(`(g1(µ(x)))) = P̂n/2

(
Dt(µ(x), α2) + 2αt

λ21

)
. (34)

It follows from Proposition 2 that −2αt/λ21 is an extremum of the
polynomial Dt(µ(x), α2)/λ21, which is of P -type (1, 2, . . . , 2) as t is odd.
Hence (Dt(µ(x), α2) + 2αt)/λ21 = δ(x)q(x)2 for some δ(x), q(x) ∈ Q[x]
with deg δ(x) = 1. We deduce, that g(x) is of the form (iv).

Finally, consider the case when (f1(x), g1(x)) is a standard pair of
the fourth kind over Q. Then

(f1(x), g1(x)) =

(
D2(x, α)

α
,
Dt(x, β)

β(t/2)

)
,

with an even t. Substituting this into (28), an easy calculation yields
`(x) = (αx+ 2α)/λ21, whence, by (25), we obtain

g(x) = P̂n/2(`(g1(µ(x)))) = P̂n/2

(
αβ−t/2Dt(µ(x), β) + 2α

λ21

)
. (35)

Now from Proposition 2 we infer that

−2βt/2αβ−t/2

λ21
= −2α

λ21

is one of the two extrema of the polynomial αβ−t/2Dt(µ(x), β)/(λ21)
and it is of P -type (2, 2, . . . , 2) as t is even. Therefore we have

αβ−t/2Dt(µ(x), β) + 2α

λ21
= q(x)2

for some q(x) ∈ Q[x]. Thus g(x) is of the form (iii), which completes
the proof.

�
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