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Abstract

We investigate the coefficients of the polynomial

Sn
m,r(ℓ) = rn + (m+ r)n + (2m+ r)n + · · ·+ ((ℓ− 1)m+ r)n.

We prove that these can be given in terms of Stirling numbers of the first kind
and r-Whitney numbers of the second kind. Moreover, we prove a necessary and
sufficient condition for the integrity of these coefficients.
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1 Introduction

Let n be a positive integer, and let

Sn(ℓ) = 1n + 2n + · · ·+ (ℓ− 1)n

be the power sum of the first ℓ − 1 positive integers. It is well known that
Sn(ℓ) is strongly related to the Bernoulli polynomials Bn(x) in the following
way

Sn(ℓ) =
1

n+ 1
(Bn+1(ℓ)− Bn+1).
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where the polynomials Bn(x) are defined by the generating series

tetx

et − 1
=

∞
∑

k=0

Bk(x)
tk

k!

and Bn = Bn(0) is the nth Bernoulli number.

It is possible to find the explicit coefficients of ℓ in Sn(ℓ) [9]:

Sn(ℓ) =
n+1
∑

i=0

ℓi
(

n
∑

k=0

S2(n, k)S1(k + 1, i)
1

k + 1

)

, (1)

where S1(n, k) and S2(n, k) are the (signed) Stirling numbers of the first and
second kind, respectively.

Recently, Bazsó et al. [1] considered the more general power sum

Sn
m,r(ℓ) = rn + (m+ r)n + (2m+ r)n + · · ·+ ((ℓ− 1)m+ r)n,

where m 6= 0, r are coprime integers. Obviously, Sn
1,0(ℓ) = Sn(ℓ). They, among

other things, proved that Sn
m,r(ℓ) is a polynomial of ℓ with the explicit expres-

sion

Sn
m,r(ℓ) =

mn

n + 1

(

Bn+1

(

ℓ+
r

m

)

−Bn+1

(

r

m

))

. (2)

In [12], using a different approach, Howard also obtained the above relation via
generating functions. Hirschhorn [11] and Chapman [8] deduced a longer ex-
pression which contains already just binomial coefficients and Bernoulli num-
bers.

For some related diophantine results on Sn
m,r(ℓ) see [3,10,15,16,2] and the ref-

erences given there.

Our goal is to give the explicit form of the coefficients of the polynomial
Sn
m,r(ℓ), thus generalizing (1). In this expression the Stirling numbers of the

first kind also will appear, but, in place of the Stirling numbers of the second
kind a more general class of numbers arises, the so-called r-Whitney numbers
introduced by the second author [13].

The r-Whitney numbers Wm,r(n, k) of the second kind are generalizations of
the usual Stirling numbers of the second kind with the exponential generating
function

∞
∑

n=k

Wm,r(n, k)
zn

n!
=

erz

k!

(

emz − 1

m

)k

.

For algebraic, combinatoric and analytic properties of these numbers see [5,14]
and [6,7], respectively.
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First, we prove the following.

Theorem 1 For all parameters ℓ > 1, n,m > 0, r ≥ 0 we have

Sn
m,r(ℓ) =

n+1
∑

i=0

ℓi
(

n
∑

k=0

mkWm,r(n, k)

k + 1
S1(k + 1, i)

)

.

Proof. The formula which connects the power sums and the r-Whitney num-
bers is the next one from [13]:

(mx+ r)n =
n
∑

k=0

mkWm,r(n, k)x
k.

Here xk = x(x− 1) · · · (x− k+ 1) is the falling factorial. We can see that it is
enough to sum from x = 0, 1, . . . , ℓ− 1 to get back Sn

m,r(ℓ). Hence

Sn
m,r(ℓ) =

n
∑

k=0

mkWm,r(n, k)
ℓ−1
∑

x=0

xk.

The inner sum can be determined easily (see [9]):

ℓ−1
∑

x=0

xk =
ℓk+1

k + 1
+ δk,0.

The Kronecker delta will never appear, because if k = 0 then the r-Whitney
number is zero (unless the trivial case n = 0, which we excluded). Therefore,
as an intermediate formula, we now have that

Sn
m,r(ℓ) =

n
∑

k=0

mkWm,r(n, k)
ℓk+1

k + 1
.

The falling factorial ℓk+1 is a polynomial of ℓ with Stirling number coefficients:

ℓk+1 =
k+1
∑

i=0

S1(k + 1, i)ℓi.

Substituting this to the formula above, we obtain:

Sn
m,r(ℓ) =

n
∑

k=0

mkWm,r(n, k)

k + 1

k+1
∑

i=0

S1(k + 1, i)ℓi.

Since S1(k + 1, i) is zero if i > k + 1, we can run the inner summation up to
n + 1 (this is taken when k = n) to make the inner sum independent of k.
Altogether, we have that

Sn
m,r(ℓ) =

n+1
∑

i=0

ℓi
n
∑

k=0

mkWm,r(n, k)

k + 1
S1(k + 1, i).
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This is exactly the formula that we wanted to prove. ✷

Now we give some elementary consequences of the theorem. The proofs are
trivial.

Remark. The next properties of the polynomial Sn
m,r(ℓ) hold true for all

parameters ℓ > 1, n > 0, r,m ≥ 0:

(i) The constant term of Sn
m,r(ℓ) is 0,

(ii) The leading coefficient of Sn
m,r(ℓ) is m

n/(n+ 1),
(iii) Sn

m,r(ℓ) is a polynomial of ℓ of degree n + 1 unless m = 0; in this latter
case the degree is n.

The above statements also follow from (2).

2 The integer property of the coefficients in Sn
m,r(ℓ)

The coefficients of the polynomial Sn
m,r(ℓ) are not integer in the overwhelming

majority of the cases:

S1
1,0(ℓ) =

ℓ(ℓ− 1)

2
,

S2

2,5(ℓ) =
1

3
ℓ(47 + 24ℓ+ 4ℓ2),

etc.

However, we revealed that in special cases the polynomial Sn
m,r(ℓ) has integer

coefficients. Several parameters are in the next table.

m r n

2 1 3

2 3 3

2 5 3

4 3 3

4 5 3

For example,

S3

2,1(ℓ) = ℓ2(2ℓ2 − 1),

or

S3

2,3(ℓ) = ℓ(2 + ℓ)(2ℓ2 + 4ℓ+ 3).
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From the formula of Theorem 1 it can be seen that if

(k + 1) | mkWm,r(n, k) (k = 1, 2, . . . , n),

then we get integer coefficients.

To find another condition which is necessary and sufficient for the integrity
of the coefficients in Sn

m,r(ℓ), we recall the following well known properties of
Bernoulli polynomials and Bernoulli numbers.

Bn(x+ y) =
n
∑

k=0

(

n

k

)

Bk(x)y
n−k =

n
∑

k=0

(

n

k

)

Bk(y)x
n−k; (3)

Bn(x) =
n
∑

k=0

(

n

k

)

Bkx
n−k; (4)

B3 = B5 = B7 = . . . = 0. (5)

By the denominator of a rational number q we mean the smallest positive
integer d such that dq is an integer. We recall also the von Staudt theorem

Λ2n =
∏

(p−1)|2n
p prime

p, (6)

where Λn is the denominator of Bn. In particular, Λn is a square-free integer,
divisible by 6. For the proofs of (3)-(5) see e.g. the work of Brillhart [4].

Let 2 ≤ j ≤ n be an even number and put

f(n, j) := lcm





Λj

gcd
(

Λj ,
(

n+1

j

)(

j

j

)) ,
Λj

gcd
(

Λj,
(

n+1

j+1

)(

j+1

j

)) , . . . ,

Λj

gcd
(

Λj,
(

n+1

n

)(

n

j

))



 . (7)

Further, we define

F (n) :=







lcm (rad(n+ 1), f(n, 2), f(n, 4), . . . , f(n, n)) if n is even,

lcm (rad(n+ 1), f(n, 2), f(n, 4), . . . , f(n, n− 1)) if n is odd,

(8)
where

rad(n) =
∏

p|n
p prime

p.

Theorem 2 The polynomial Sn
m,r(ℓ) has integer coefficients if and only if

F (n) | m.
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Proof. By relations (2), (3) and (4) we can rewrite Sn
m,r(ℓ) as follows:

Sn
m,r(ℓ) =

mn

n+ 1

(

Bn+1

(

ℓ+
r

m

)

−Bn+1

(

r

m

))

= (9)

=
mn

n+ 1

((

n+1
∑

k=0

(

n+ 1

k

)

Bk

(

r

m

)

ℓn+1−k

)

− Bn+1

(

r

m

)

)

= (10)

=
mn

n+ 1

n
∑

k=0

(

n+ 1

k

)

Bk

(

r

m

)

ℓn+1−k = (11)

=
mn

n+ 1

n
∑

k=0

(

n+ 1

k

)





k
∑

j=0

(

k

j

)

Bj ·
(

r

m

)k−j


 ℓn+1−k (12)

We denote the common denominator of the coefficients of Sn
m,r(ℓ) by Q. One

can see from (9) that the polynomial has integral coefficients if and only if m
is divisible by Q. Thus we have to determine Q.

By (12) we observe that neither m nor r occurs in Q. Moreover, the only
algebraic expressions which may affect Q in (12) are on one hand n+1 and on
the other hand, the denominators of the Bernoulli numbers involved, which
are 2,Λj(2 ≤ j ≤ n even) by (5) and the von Staudt theorem.

It can easily be seen that n + 1 | mn if rad(n + 1) | m. Indeed, supposing the
contrary, i.e., that rad(n + 1) | m and n + 1 ∤ mn, it implies that there is a
prime factor p of n+1 such that pn+1 divides n+1. Hence 2n+1 ≤ pn+1 ≤ n+1,
which is a contradiction.

Let 2 ≤ j ≤ n be an even index. It follows from (12) that the contribution of
Λj to the common denominator Q is precisely f(n, j) defined in (7). In other
words, if f(n, j) | m, then every term of (12) containing the factor Bj has
integer coefficients.

In conclusion, we obtained that Q is the least common multiple of rad(n+ 1)
and f(n, j) for all even j ∈ [2, n], which number we denoted in (8) by F (n).
The theorem is proved. ✷

Remark. An easy consequence of our Theorem 2 is that Sn(ℓ) = Sn
1,0(ℓ) /∈ Z[x]

for any positive integer n.

Some small values of F (n) are listed in the following table. These are results
of an easy computation in MAPLE.
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n F (n) n F (n) n F (n) n F (n)

1 2 6 42 11 6 16 510

2 6 7 6 12 2730 17 30

3 2 8 30 13 210 18 3990

4 30 9 10 14 30 19 210

5 6 10 66 15 6 20 2310
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Diophantine equations and Bernoulli polynomials (with an Appendix
by A. Schinzel), Compositio Math., 131 (2002), 173–188.

[4] J. Brillhart, On the Euler and Bernoulli polynomials, J. Reine Angew.
Math., 234 (1969), 45–64.

[5] G.-S. Cheon and J.-H. Jung, r-Whitney numbers of Dowling lattices,
Discrete Math. 312(15) (2012), 2337–2348.

[6] R. B. Corcino and C. B. Corcino, On the maximum of generalized
Stirling numbers, Util. Math. 86. (2011), 241-256.

[7] C. B. Corcino and R. B. Corcino, Asymptotic estimates for second kind
generalized Stirling numbers, J. Appl. Math. (to appear).

7



[8] R. Chapman, Evaluating
∑N

n=1
(a+ nd)p again, Math. Gaz. 92 (2008),

92–94.

[9] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics,
Addison Wesley, 1993.
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