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Abstract: In this paper a novel control strategy is introduced in order to create optimal dosage
profiles for individualized cancer treatment. This approach uses Nonlinear Model Predictive Control
to construct optimal dosage protocols in conjunction with Robust Fixed Point Transformations
which hinders the negative effect of inherent model uncertainties and measurement disturbances.
The results are validated by extensive simulation on the proposed control algorithm from which
conclusions were drawn.

Keywords: physiological control; nonlinear systems; model predictive control; robust fixed
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1. Introduction

In the past decades, physiological systems gained attention among control engineers.
This particular interest covers a significant variety of topics including automated anesthesia [1],
diabetes control [2] and hormonal regulation [3]. Tumor growth control is no exception as cancerous
diseases are responsible for 1,359,500 deaths in the European Union annually, based on [4]. Because of
the physiological complexity of tumor growth, the topic has been intact for decades. However in
the end of the 20th century, progress in cancer research delivered mathematical models that are able
to encapsulate the underlying mechanisms. An important result was Targeted Molecular Therapies
(TMTs) which exploit certain cancer specific processes that corresponds to the vascluar growth of
tumors, thus hampering its effect in the body of the patient. This approach led to the famous Hahnfeldt
model, which was introduced by [5], and has been used thoroughly since its development among
control engineers.

The primary issue with TMTs is that the developed drugs are exceedingly expensive,
thus availability for the vast majority is limited. A possible solution to this issue is to apply optimal
control techniques to the existing tumor growth model that incorporates the expenses of the drug
while maintaining a reasonable treatment plan i.e., minimizing the costs and the treatment time.
Several algorithms were proposed in the literature based on linear design methods [6] and nonlinear
techniques [7]. Many evidence [8,9] and practical consideration, such as unstable behaviour of the
linearised system and significant discrepancies in terms of model parameters between different
patients, suggest that nonlinear methods have to be employed. In spite of these facts, a novel
approach is presented in this paper, which combines the optimal behaviour of the Nonlinear Model
Predictive Control (NMPC) in conjunction with the error insensitive traits of the Robust Fixed
Point Transformation (RFPT) based nonlinear adaptive control. In a previous work, the NMPC
architecture was deployed in order to tackle the optimization issue [10]. However as it was indicated
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in [11], the states of the system are not measurable due to large parameter uncertainties and model
imperfections; therefore, an adaptive approach is suggested. The problem with the RFPT approach
is that it can not guarantee an optimal dosing protocol by itself. While it is locally robust, it can
not track constant references which are far from the initial value. In spite of these facts, a combined
approach is presented here, which may also be applicable for other physiological systems as well that
has significant parameter variations in the nominal model.

The paper first introduces the underlying model of the system and the important theoretical
background of both the NMPC and the RFPT method. After the introduction, the connection is
presented between the two methods with a detailed explanation of the problems that has to be solved
from a control engineering aspect. In the end of the paper, numerical simulations are presented in
order to verify the behaviour of the controller, on which conclusions are drawn.

2. System Model

Since anti-angiogenic therapy has emerged, many approaches have been considered by various
authors. A comprehensive study on tumor growth models can be found in [12] from a control
engineering point of view. However, advancements in cancer research have carried out new results,
which indicate that the currently existing models do not incorporate important alternate vascularization
methods, as pointed out in [13]. In order to overcome these issues, different models were developed
by [14,15] that describes the growth process accurately, which was validated by mice experiments.
However, in this article, the famous Hahnfeldt model [5] is used, which does not cover every
physiological aspect, but rather facilitates the comparison between the presented control algorithm
and previously employed approaches.

Based on the work of [6], many simplifications can be attained on the original Hahnfeldt model,
such as elimination of terms that are shown to be negligible by experiments [5], or merging variables
that tend to move together [16]. The modified equations of motion can be described as:

ẋ1 = −λx1ln
(

x1

x2

)

ẋ2 = bx1 − dx2/3
1 x2 − ex2g(t),

(1)

where x1 denotes the tumor volume (mm3), which is the output of the system, x2 is the volume of
the tumor vasculature (mm3), λ is the growth parameter of the tumor (1/day), b is the angiogenic
factor (1/day), d describes the cellular blocking mechanisms of the vasculature (1/day·mm2), e is the
inhibition of the vasculature by the drug (kg/day·mg), and g(t) is the concentration of the administered
inhibitor (mg/kg). The parameters were chosen according to [17], which are presented in Table 1.

Table 1. Simulation parameters.

λ b d e

0.192 5.85 0.00873 0.66

It is worth mentioning that the underlying system model describes a positive dynamical system,
which entails that the control signal must remain positive for all times. Previous simulations showed
that when the input signal is zero, the model attains a steady state of x1 = x2 = 1.734 × 104 (mm3). This
steady state yields a worst case scenario, so that the controller is designed according to this initial
value in order to deal with minor initial tumor volumes as well. Because anti-angiogenic therapy does
not eradicate the tumor completely, the objective is to shrink the volume to such an extent that it does
not jeopardise the health of the patient. The model contains a major singularity at x1 = x2 = 0 (mm3)
that corresponds to the previously indicated behaviour of the therapy, which implies that the control
objective can not be zero value. In particular the tumor is said to be in safe steady state if its volume
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does not exceed 10 (mm3); hence from the controllers perspective it is sufficient to bring the tumor
volume in this region.

3. Control Algorithm

In this section, the combined NMPC-RFPT approach is introduced with the necessary design
steps for the simplified Hahnfeldt model as a primary example. The idea shares similar traits of the
robust NMPC approach that can be seen in [18]; however, the second optimization loop is replaced
by the RFPT controller. This decreases the computational burden of the dual NMPC solution and
makes the design steps easier, as it does not require to construct terminal cost and sets to ensure
a robust operation of the controller. This technique also overcome several obstacles concerning
the RFPT method. The NMPC block provides an optimal trajectory for set point tracking, as an
output of the nominal model, that can be used by the RFPT controller. This solves the set point
tracking problem of the RFPT controller by providing an appropriate nominal trajectory prescription,
in conjunction with the non-optimal behaviour of the RFPT technique. If the plant and the nominal
model has the same parameter values, the RFPT controller can be tuned to produce minor tracking
error, thus the plant trajectory does not deviate significantly from the nominal, which entails that the
output is essentially optimal. If uncertainties are present in the plant, then the RFPT controller tries
to reduce these deviations which renders the control loop robust. It should be also noted that the
nominal trajectory, which is provided by the NMPC block, can be computed offline which makes the
method computationally attractive. This means in practice that instead of solving a complex nonlinear
optimization in each control cycle, one step of iteration (7) has to be computed which is faster.

3.1. The Nonlinear Model Predictive Controller

The NMPC consists of three main ingredients, namely, prediction, optimization, and execution.
The controller uses the plant measurement in order to predict the behaviour of the system based on
the discrete model, which is then used in a cost function. This essentially means the construction
of a complicated cost function that has to be minimized by the input sequence for each prediction
step, which implies the use of nonlinear optimization solvers. From the optimal control sequence,
the first element is applied to the plant and the cycle repeats. The operation of the controller can be
summarized in the Optimal Control Problem (OCPN

n ), based on [19] as:

arg min
u(·)∈UN(x0)

JN(n, x0, u(·)) :=
N−1

∑
k=0

`(n + k, xu(k, x0), u(k))

s. t. xu(0, x0) = x0, xu(k + 1, x0) = f (xu(k, x0), u(k)),

(2)

where x0 = x(n) is the measurement of states in the nth control cycle, N denotes the length of
the optimization horizon, the value u(·) ∈ UN(x0) represents a vector of predicted input values of
dimension N from the feasible set UN , function `(n + k, xu(k, x0), u(k)) is the cost function, JN is the
total cost function that has to be minimized, and xu(k + 1, x0) = f (xu(k, x0), u(k)) is responsible for
the prediction stage with initial condition xu(0, x0) = x0. Note that the prediction equation describes a
discrete time system in the form of x+ = f (x, u). This implies in particular that the continuous time
system must be discretized, therefore the system model takes the form of:

x+1 = x1 + ∆t[−λ1x1ln(x1/x2)]

x+2 = x2 + ∆t[bx1 − dx2/3
1 x2 − ex2g]

(3)

in which ∆t is the time step of the discretization. In (2), the left side of the prediction corresponds to
the state variables in (3), namely xu(k + 1, x0) = [x+1 x+2 ]T , and the function f (xu(k, x0), u(k)) is the
vector valued function on the right-hand side of the discretization equation. It is worth mentioning
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that different discretization methods can be employed which could lead to more accurate results, thus
improving the overall robustness of the NMPC controller in exchange for computational effort.

According to [19], the cost function can be defined as

`(k, x1, u) = ζ
∥∥∥x1 − xre f (k)

∥∥∥
2
+ ξ

∥∥∥u− ure f (k)
∥∥∥

2
(4)

where ζ and ξ are control parameters, x1 is the tumor volume, xre f (k) is the time-varying reference
signal with ure f (k) as the desired input signal at prediction time k, and ‖·‖ is the Euclidean
norm. Equation (4) allows the use of time varying references; however, in this case a constant
reference is proposed, so xre f (k) ∈ [1; 10] (because of the singularity in the model at x1 = x2 = 0),
and ure f (k) = 0, ∀k ∈ N. For technical reasons, in every control cycle, the calculated predicted values
u(·) is used in the next step by the nonlinear optimization algorithm as an initial guess.

3.2. The Robust Fixed Point Transformations Based Controller

The RFPT method is a novel nonlinear control technique which was introduced by [20] and proven
to be effective in many control problems providing accurate results. Its operation can be described
with the realized-response scheme. Theoretically, if one calculates the input signal for an arbitrary
trajectory by inverting the dynamics of the model, then it is possible to steer the system along this
trajectory by applying the calculated input signal to the plant, if there are no uncertainties between
the nominal and physical systems (this will be called the desired response). However, in the vast
majority of cases this is not true due to modelling imperfections, or parameter variations. This causes
a realized response which differs significantly from the desired one, thus the control objective can not
be achieved. The RFPT method solves this issue by deforming the desired input trajectory, so that the
calculated input signal produces the desired response of the plant. A more elaborate description can
be found in [20–22].

The method first uses a kinematic part which can be completely determined by the order of the
system, that is the highest derivative of the states in the system model. The kinematic equation is
given by:

eint(t) =
∫ t

t0

(qn(τ)− q(τ))dτ ,

(
d
dt

+ Λ)n+1eint = 0
(5)

where qn is the reference trajectory, q is the measured state, n is the order of the system, and Λ is a
control parameter. Since the highest derivative is n = 1 and the controlled variable is x1, the expression
takes the form of:

eint(t) =
∫ t

t0

(xn
1 (τ)− x1(τ))dτ ,

ẋd
1 = Λ2eint + 2Λe + ẋn

1 .
(6)

In (6), xn
1 denotes the reference tumor volume that is a decreasing function with respect to time.

In the combined approach this will be the output of the nominal system model of the NMPC part.
After the kinematic part, the output ẋd

1 is used by the deform function which is defined as:

G(r|rd)
de f
= (r + K)[1 + B tanh(A[ f (r)− rd])]− K

G(rd
∗|rd) = rd

∗, if f (rd
∗) = rd

G(−K|rd) = −K, if r = −K

(7)

whence the iteration is achieved by rn+1 = G
(

rn|rd
)

. In (7), f (r) is the measured signal, rd is the

output of the kinematic block that is ẋd
1 , rd∗ is the solution of the fixed point problem for which the

realized response of the system coincides with the desired trajectory, and A, B, K are free control



Machines 2018, 6, 49 5 of 9

parameters. Using the deformed trajectory, the output can be calculated from the inverse model,
which now has to be expressed. Taking the first equation from (1) and rearranging the terms leads to:

x2 = x1exp
(
− ẋ1

λx1

)−1

. (8)

Differentiation of the previous equation yields:

ẋ2 =

ẋ1exp
(
− ẋ1

λx1

)
+ x1exp

(
− ẋ1

λx1

) (
ẋ1x1λ− λẋ2

1
(λx1)2

)

exp
(
− ẋ1

λx1

)2 (9)

from which the following form can be obtained by simplification:

ẋ2 =
λẋ1x1 + ẍ1x1 − ẋ2

1
f λx1

(10)

In the simplified equation f denotes the exponential term in (9). This equation can be substituted
into the second equation in the system model (1), together with Equation (8). By rearranging the terms,
g(t) can be expressed as:

g(t) = −λẋ1x1 + ẍ1x1 − ẋ2
1 + λdx8/3

1 − λbx1 f
λex2

1
(11)

which is the inverse model of the system. Applying the output of the deform function to the inverse
model leads to a proper control signal g(t), which drives the system along the desired trajectory.

3.3. The Combined Approach

The last step in the design process is to determine the parameters of the controllers. A possible
path is to tune the NMPC controller separately to the nominal plant by adjusting the values of ξ and ζ,
so that it meets the design criterion, or using other more sophisticated techniques from the NMPC
literature. If the NMPC controller is tuned, the output of the nominal system can be used as an input
of the RFPT controller so that parameters A, K and B can be determined by numerical simulations
on the nominal plant. Because of its novelty, the RFPT method has no exact tuning techniques yet.
However, several thumb rules exist which alleviate the tuning process; B is either 1 or −1, K is usually
a big number with the magnitude of 105, and A = 1/(10 · K). A schematic depiction of the controller
architecture can be seen in Figure 1.
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ẋ2 =
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ẋr
1

NMPC controller RFPT controller

xn
1 xn

2

Figure 1. Schematic depiction of the combined NMPC-RFPT approach
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K = 5.3 ·1010, A = 1/(1011), B = −1, by empirical tuning, which produced sufficiently small tracking errors.161

Figure 1. Schematic depiction of the combined NMPC-RFPT approach.
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4. Simulation Results

Multiple simulations were conducted in order to ensure the appropriate operation of the controller.
In order to mimic real behaviour, the NMPC controller operates on the plant once every day with zero
order hold. The prediction time step was 1/24 (day) with a horizon of N = 24× 14 = 336, which predicts
the evolution of the system for two weeks. Control parameters ζ = 100, ξ = 1 produced acceptable
results in terms of tumor volume reduction and total inhibitor concentration, with a maximum input
signal restriction of 25 (mg/kg). For this nominal trajectory, the parameters of the RFPT controller was
set as K = 5.3 × 1010, A = 1/(1011), B = −1, by empirical tuning, which produced sufficiently small
tracking errors. The simulation step was ∆t = 10−3 (day), with time interval t ∈ [0; 100].

On Figure 2 the nominal trajectory is presented which was created by the NMPC controller.
After the 100th day the tumor volume was 1.083 (mm3), which is close to the desired setpoint value of
x1 = 1 (mm3). This result can be improved by increasing the prediction horizon; however, it affects
the computational time significantly, thus it was not applied here. The tumor reduces under 10 (mm3)
volume in 31 (days), with an inhibitor concentration of 765.7 (mg/kg). Compared to the results in [10]
this is clearly an improve in terms of concentration during the transient phase, i.e., the amount of
medication given to the patient until the tumor volume reaches 10 (mm3).
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Nominal trajectory

Figure 2. The nominal trajectory produced by the NMPC controller.

Figure 3 illustrates the tracking error of the RFPT controller on the nominal trajectory. It can be
seen that the error decreases to zero almost in ten days while its values in the transient phase does
not exceed 15 (mm3), which can be considered negligible. The difference between the two control
signal can be scrutinised on Figure 4. It can be seen that the RFPT input signal matches its NMPC
counterpart almost everywhere, thus it does not violate the bounds on the control input. It should be
noted, however, that there is a jump at the beginning of the control cycle which can be attributed to
numerical imprecisions. The reduction of tumor and vasculature volume can be seen on Figure 5.
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Figure 3. Tracking error of the RFPT controller.
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Figure 4. Administration protocols of the RFPT and the NMPC controller.
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Figure 5. The reduction of the tumor volume.

In order to ensure the robustness of the controller, different system parameter configurations
were simulated. The parameters were chosen with Latin Hypercube Sampling from the interval [0; 1],
which was then scaled to the order of magnitude for each parameter and added to their nominal values.
In total fifty different parameter configuration was tested, which revealed that the system is very
sensitive for parameter d, but for the other three the controller is able to manage even extreme cases
as well. On Figure 6 one can see the tracking errors which are caused by the parameter uncertainties
between the nominal and real models. The maximal error has increased significantly, but the error
vanishes in ten days and the maxima is negligible compared to the initial value of the tumor volume.
Simulations also revealed that the robustness can be increased by adjusting the value of Λ in the
kinematic part; hence Λ was altered to Λ = 0.5. On Figure 7 the different administration protocols are
shown. It is worth noting that their shape resembles the nominal case in Figure 4 and also their values
do not violate the 25 (mg/kg) constraint prescription.
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Figure 6. Tracking errors under parameter uncertainties.
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Figure 7. Administration protocols under parameter uncertainties.

5. Conclusions

In this paper, a novel control method was introduced that uses the NMPC and RFPT methods in
order to achieve robust optimal control of an anti-angiogenic tumor growth model. A design procedure
was introduced, so that the approach can be used in different control problems that require a robust
optimal control. Simulations showed that the proposed algorithm can tackle many issues posed by
parameter uncertainties and modelling imperfections. The algorithm combined with previous results
on discrete control with large sampling time of the Hahnfeldt model could result in a final solution to
the individualized anti-angiogenic problem. Further research has to focus on auto tuning of the RFPT
controller and also the possibility to include a feedback part for the NMPC part of the controller.
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