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Abstract: In the past few decades cancer research has delivered several new treatment options,
of which can be highly expensive thus reducing its applicability in medical practice. However,
advances in control engineering can tackle this issue by the use of an appropriate optimal
controller. In this paper a Computed Torque Control (CTC) based PID controller was designed
for the Hahnfeldt tumor growth model which can provide an optimal administration protocol for
every individual patient. The paper contains the system model in conjunction with the detailed
design steps of the controller. The control strategy was tested by numerical simulations which
can be found at the end of the paper together with the conclusions.
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1. INTRODUCTION

Cancerous diseases are one of the most serious illnesses
of modern society which cause high mortality rates. Ac-
cording to Malvezzi et al. (2017), approximately 1 373 500
people died in 2017 due to cancer which is a 3% increase
compared to 2012. These high numbers can be attributed
to inefficient treatment strategies such as chemotherapy or
radiotherapy which often has adverse impact on the health
of the patient.

Researchers have developed a number of new method-
ologies from which targeted molecular therapies (TMT)
offers promising results (Charlton and Spicer (2016)). In
particular anti-angiogenic treatment has been a significant
advancement which targets special tumor growth mecha-
nisms. In theory the side effects are mild compared to con-
ventional protocols which renders the method attractive to
medical professionals (Harris (2003)).

Besides its promising features, anti-angiogenic treatment
has numerous disadvantages. Based on Jayson et al.
(2016), the drug has no effect on particular cancer illnesses,
prostate or pancreatic cancer for example. However, it is
also worth noting that nowadays the protocol is vastly
applied as a combined treatment in practice (Ilic et al.
(2016)). From biological perspective future research should
scrutinise predictive biomarkers, however from an engi-
neering standpoint a different problem will be discussed in
this paper that is the treatment often infers high medical
expenses which should be addressed in order to be applied
widely.
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In the recent years biomedical control has become a flour-
ishing discipline in engineering. Mathematical models are
employed on physiological processes which can lead to
effective individualized treatment solutions, Ionescu et al.
(2011) and Ionescu et al. (2017) for example, and curing
cancer is not an exception as well. From a control engi-
neering perspective the tumor regulation problem can be
solved using an optimal controller which aims to decrease
the size of the tumor in the shortest manner while mini-
mizing the magnitude of input signal i.e. the concentration
of the medication. In order to design such a controller
an appropriate model should be used which describes the
tumor growth under anti-angiogenic inhibition. An impor-
tant growth model is the Hahnfeldt model introduced by
Hanhfeldt et al. (1999). While the model seems simple at
first glance, it has severe nonlinearities which should be
handled with care.

Several linear control methods were proposed by various
authors in order to control the volume of the tumor. In
Sápi et al. (2015) the authors investigated several linear
strategies including pole placement and LQR design, while
Kovacs et al. (2013) analyzed modern robust control pos-
sibilities. Although these controllers provided significantly
better results compared to existing medical protocols, they
are not exploiting the nonlinearities which could improve
the overall performance of the treatment. Nonlinear tech-
niques were investigated in Czakó et al. (2017) or Drexler
et al. (2017a) such as nonlinear model predictive control
(NMPC), robust fixed point transformation (RFPT) based
control and exact linearization in order to decrease the
total inhibitor concentration while improving robustness
of the controlled system.

In this paper, a different nonlinear strategy is proposed
which is not computationally expensive and shares the
important traits of the other controllers. Section 2 gives



a brief description on the considered tumor growth model,
while Section 3 and 4 presents the control concept in the
context of RFPT control design. In Section 5 the proposed
algorithm is validated by numerical simulations followed
by conclusions and further research possibilities in Section
6.

2. THE SIMPLIFIED TUMOR GROWTH MODEL

In order to create a stabilizing controller, a proper tumor
growth model under anti-angiogenic inhibition is indis-
pensable. The basic model is (still) considered the work
of Hanhfeldt et al. (1999) although some phenomena is
not covered by it.

As a result, several models were proposed by various
authors including Drexler et al. (2017b) and Csercsik
et al. (2017) in order to include recent pathophysiological
advancements in the process model, however in this paper
we are still considering the original Hahnfeldt model as
the main idea is to demonstrate the applicability of the
introduced control methodology in comparison with other
approaches used on the same model.

Based on Sapi et al. (2013) a simplification of the original
Hahnfeldt model can be carried out which has the follow-
ing form:

ẋ1 = −λx1ln

(
x1

x2

)
ẋ2 = bx1 − dx

2/3
1 x2 − ex2g(t)

y = x1

(1)

where x1 denotes the tumor volume (mm3) representing
the output of the model as well, x2 is the volume of the
tumor vasculature (mm3), λ is the growth parameter of
the tumor (1/day), b is the angiogenic factor (1/day), d
describes the cellular blocking mechanisms of the vascula-
ture (1/day ·mm2), e is the inhibition of the vasculature
by the drug (kg/day ·mg), and g(t) is the concentration of
the administered inhibitor (mg/kg) considered the input
of the model.

One should be aware, that the model has a singularity at
x1 = 0, x2 = 0 which implies that the tumor can not be
eradicated. However, the main goal of the research is to
tame the cancer by decreasing the size of the tumor to
a point where it does not pose any threat to the patient
health. Simulation parameters were chosen according to
Sápi et al. (2015) which are presented in Table 1.

Table 1. Simulation parameters

Parameter Value

λ 0.192
b 5.85
d 0.00873
e 0.66

With these parameters and constant zero inhibitor ad-
ministration, the final value of the state variables are
x1 = x2 = 1.734 · 104 mm3; hence, these values will be
used as initial conditions.

Therefore, the main goal of the control algorithm is to
govern the system from an arbitrary initial state (which is
less or equal than the maximal value without inhibition)
to a safe steady state tumor volume, preferably smaller
than 10 mm3.

3. THE FEEDBACK LINEARIZATION APPROACH

In order to steer the states to the desired regime, an appro-
priate controller should be designed. Besides, the controller
should minimize the control effort so that expenses are
smaller compared to current medical protocols. In this
paper, a feedback linearization-based controller is utilized,
with and LQR-based tuning rule. Suppose that the first
equation of 1 can be expressed as:

ẍ1 = −ẋ1λln

(
x1

x2

)
− λẋ1 + λ

x1ẋ2

x2
(2)

If ẋ2 is substituted into (2) one can obtain the following
form:

ẍ1 = −ẋ1λln

(
x1

x2

)
− λẋ1 + bλ

x2
1

x2
− λdx

5
3
1 − eλx1g(t) (3)

By choosing a suitable input signal, ẍ1 can be linearized.
Therefore, g(t) can be determined as:

g(t) = −
ẋ1λln

(x1
x2

)
+ λẋ1 − bλ

x2
1

x2
+ λdx

5
3
1 + u

eλx1
(4)

where u is an auxiliary control input. Note that now ẍ1 = u
which is linear. Equation (4) can be further simplified to:

g(t) = −
λ(ẋ1(ln

(x1
x2

)
+ 1)− b

x2
1

x2
+ dx

5
3
1 ) + u

eλx1
(5)

In order to govern the volume of the tumor one should
consider defining the error between the desired and actual
states, namely:

e = x1 − xd
1 (6)

where xd
1 is the desired tumor volume which is determined

by the control objective. Differentiating the error two times
leads to:

ė = ẋ1 − ẋd
1

ë = ẍ1 − ẍd
1

(7)

One can see that the second equation contains the linear
term ẍ1 which produces:

ë = ẍ1 − ẍd
1 = u− ẍd

1 = û (8)

If one defines the error vector as e = [e ė]T the following
linear system can be obtained:



[
ė

ë

]
=

[
0 1

0 0

][
e

ė

]
+

[
0

1

]
û (9)

which is equivalent to:

ė = Ae+Bû (10)

Assume that a static feedback is defined in the form of
û = −Ke, where K is constructed so that it minimizes
the functional:

J =

∫ ∞

0

eTQe+ µû2dt (11)

In (11), µ > 1 penalize the control effort (note that in
general the second term should be ûTRû, but R is now
just a constant term), and Q is the error weighting matrix
as follows:

Q =

[
ξ1 0

0 ξ2

]
(12)

where ξ1 and ξ2 are responsible for the tracking precision.
Upon possessing A,B,Q,R, one can calculate the gain
matrixK analytically byK = R−1BTP , where P is the so-
lution of the Ricatti equation ATP +PA−PBR−1BTP +
Q = 0. In this case, the gain matrix K is just a vector,
precisely K = [k1 k2]. Substituting û = −Ke into (8) one
can calculate u as follows:

u = ẍ1 + û = ẍ1 − k2ė− k1e (13)

The last step is to obtain x2 in (5). In this case, x2 can be
calculated from the desired tumor volume as follows:

x2 = xd
1 exp−1

(
ẋd
1

−λxd
1

)
(14)

Using these equations, a stable controller can be utilized.
In each control cycle the error between the desired and
actual tumor volume is computed altogether with its first
derivative so that e can be obtained by (6) and (7). In
the next step, the value of u is determined by (13) based
on preliminary calculation of the gain vector K. By using
(14), the appropriate value of x2 can be carried out which
then substituted into (5) in conjunction with u results in
the control signal g(t) that is applied to the plant.

In the next section, a slightly robust version of the con-
troller is presented which uses the RFPT based control
technique. In theory this augmentation improves the per-
formance of the controller; however, there is no tuning
technique of the RFPT method which results in an optimal
control sequence, therefore it can not be utilized by itself.

4. AUGMENTED ROBUST FIXED POINT
TRANSFORMATION BASED CONTROLLER

The idea of the RFPT method originates from Tar et al.
(2009) in which the underlying idea is to construct an
inverse model of the system that is connected to a sliding
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Fig. 1. A schematic depiction of the control loop.

mode (SM) controller, called the kinematic block. This SM
controller is then connected to a deformation block that
can properly manipulate the corresponding state variables
which then applied on the inverse model results in a proper
control input. A more detailed explanation of the method
can be found in Tar et al. (2012).

The original idea was applied in Czakó et al. (2017) never-
theless it does not impose any penalty on the input signal.
In this paper a slightly modified version of the RFPT
controller was designed which only uses the deformation
block altogether with the feedback linearization approach.
This entails that the kinematic block is replaced by (13),
where the gains are determined by the LQR tuning and
not the original operator which is:

(
d

dt
+ Λ)n+1eint = 0 (15)

where eint is the integral of the error, Λ is a controller
parameter and n is the order of the control task. Note that
in this case, the controller does not require the integral of
the error term. Using the fact that ẍ1 = u, based on the
inverse model (5), a deformation is applied to the system.
In this SISO case, the deform function can be defined as:

G(r|u) def
= (r +K)[1 +B tanh(A[f(r)− u])]−K

G(u∗|u) = u∗ if f(u∗) = u

G(−K|u) = −K if r = −K
(16)

which then is iterated as rn+1 = G (rn|u). In (16), A,B
and K are the control parameters, f(r) is the response of
the system for the deformed input r, u∗ is the fixed point of
the equation, and the role of r is to maintain the iteration.

In each control cycle, the value of r is used to compute
x2 by (14) that is substituted into (5) in conjunction with
u. The missing x1 and ẋ1 can be computed from r by
integrating it two times. Note that if r = u∗ the input of
the deform block equals with the output, so that u∗ = ẍ1,
which justifies the integration. It is also worth mentioning
that the iteration entails two time delays which coincide
with the step size of the simulation. On Fig. 1 a simple
sketch of the control loop is presented in order to facilitate
the understanding of the RFPT algorithm.

For the desired trajectory, multiple prescriptions were con-
sidered. First, a heuristic tanh() function based trajectory
is proposed based on Czakó et al. (2017), which has the
following general form:

xd
1(t) = (−tanh(ct) + 1)(xs

1 − xf
1 ) + xf

1 (17)



where c > 0 is a scaling constant, xs
1 is the initial value of

the tumor volume and 0 < xf
1 ≤ 10 denotes its final value.

Differentiating the expression above twice leads to:

ẋd
1(t) = c(xs

1 − xf
1 )sech

2(ct)

ẍd
1(t) = −2c2(xf

1 − xs
1)sech

2(ct)tanh(ct)
(18)

The problem with this prescription is that at t = 0 the
first derivative is not zero which may cause high initial
dosage levels. A remedy to this issue could be provided by
an exponential function based trajectory which is defined
according to Rymansaib et al. (2013) as:

xd
1(t) = exp((−ct)3)(xs

1 − xf
1 ) + xf

1 (19)

and their first and second derivatives are:

ẋd
1(t) = 3c3exp(−c3t3)(xf

1 − xs
1)t

2

ẍd
1(t) = −3c3exp(−c3t3)(xf

1 − xs
1)t(−2 + 3c3t3)

(20)

Observing the above expressions one can easily deduce
that at t = 0 the derivatives are both zero which solves the
problem. A third set point prescription was also defined as

a constant xd
1(t) = xf

1 with zero derivatives.

5. NUMERICAL SIMULATION

Several simulations were conducted in order to measure
the qualitative behaviour of the proposed control algo-
rithms. The model parameters were indicated in Table
1. before, with the corresponding initial values of the
tumor and its vasculature of x1 = x2 = 1.734 · 104 mm3.
Therefore, the value xs

1 = 1.734 · 104 mm3 was assigned

to the prescriptions in conjunction with xf
1 = 1 mm3. The

scaling constant of the tanh() and exponential case were
both c = 0.1. By these choices, the tumor volume reduces
to a safe level in 30 days both cases. The initial controller
parameters can be seen in Table 2 which was determined
on the basis of numerical simulations. In order to tune
the controller, the RFPT part must be adjusted first with
the original operator (15) in conjunction with Λ = 1 so
that the tracking error is minimal. After that the LQR
parameters can be set so that they fulfill the treatment cri-
teria. The simulation time was 100 days, and a continuous
therapy was assumed. One should note, that continuous
treatment is not likely to be possible because a proper
feedback is not available, however it can be employed to
investigate the basic properties of the controllers.

Table 2. Initial controller parameters for the
tanh() tracking

Parameter Value

ξ1 107

ξ2 1
µ 10
K 7 · 1010
A 10−11

B −1

The simple LQR controller was scrutinised first. Simu-
lations showed that it could track the tanh() signal ef-

ficiently. On Fig. 3. one can see, that the error for the
initial control parameters was high at the beginning, but
reduces to zero in finite time. If one increase the value of
ξ1, more accurate tracking can be obtained. On Fig. 4. the
administration protocol can be viewed. It is notable that
because the trajectory prescription has non zero derivative
at time t = 0, there is a jump at the beginning of the
administration. It should also be clear, that negative input
is not possible (one can not remove inhibitor from the pa-
tient) which means that a saturation had to be employed to
the system that limits the input signal magnitude between
0 mg/kg and 30 mg/kg. The purpose of the upper bound
is to avoid high dosage profiles which could jeopardize the
health of the patient. The reduction of both tumor and
vasculature volume can be seen on Fig. 2.
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Fig. 2. Reduction of the volumes by using tanh() prescrip-
tion.
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Fig. 3. Error of the tumor volume by using tanh() pre-
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Fig. 4. Inhibitor profile by using tanh() prescription.

The next simulations targeted the constant reference case.

Here, the desired volume was xd
1(t) = xf

1 = 1 mm3 and the
derivatives were both zero. Multiple simulations showed,
that the best results can be obtained if one sets ξ1 = ξ2 = 1
altogether with µ ∈ [100; 1000]. By varying µ different



settling times and inhibitor profiles can be achieved, which
entails that larger µ values leads to slower settling time
and lower dosage profile. On Fig. 5. one can view the
reduction of the tumor and vasculature volumes. It has
similar characteristic as the tanh() case, but it reaches a
safe level considerably faster. The corresponding inhibitor
profile can be seen on Fig. 6. It should be noted that under
a 100 days period the volume only reached 1.79 mm3,
which is not identical to the desired prescription. However,
one should consider that under 10 mm3 tumor volume the
treatment is successful, and by increasing the simulation
time the error term vanishes.

In the case of the exponential trajectory, the results
were unsatisfying. While the controller could track the
trajectory with minimal error, the inhibitor dosage profile
was unacceptable due to high concentration levels, hence
this type of trajectory is omitted.

Simulations showed, that the augmented RFPT controller
has not proven to be useful with parameters included in
Table 2. The tracking error grew significantly, while the
inhibitor profile became inconsistent which can be seen
on Fig. 7. It was not possible to remove the negative
values with a saturation as well, because it destabilized
the system. On Fig. 8. one can see that compared to
the tanh() case, the error differs considerably and the
corresponding reduction is shown on Fig. 9. The poor
performance of the controller can be attributed to the
structure of the kinematic block. Compared to the original
prescription (15), the LQR based PID controller has slower
convergence rate which results in higher tracking error and
initial oscillations in the control signal. Unfortunately this
behaviour can not be alleviated by varying the control
parameters of the LQR or RFPT functions which means
that the PD type structure of the kinematic block is
inadequate for the RFPT controller.
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Fig. 5. Reduction of the volumes by using constant set
point tracking.

Compared to other controllers, the augmented RFPT con-
troller obviously did not perform well, however the PID
controller in the constant reference case has many promis-
ing features. By varying parameter µ different control
strategies can be created which may have a longer time
span but uses lower dosages. This is also true for the tanh()
case, where by changing the value of parameter c in the
trajectory prescription leads to the same effect as before.
In addition the huge similarity between the constant and
tanh() inhibitor profiles implies some connection between
both methods, which means that by using the tanh()

prescription, a fully customized treatment plan can be
constructed.
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Fig. 6. Inhibitor profile by using constant set point track-
ing.
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Fig. 7. Inhibitor profile in the case of the augmented RFPT
controller.
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Fig. 8. Error of the tumor volume in the case of the
augmented RFPT controller.
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6. CONCLUSION

In this paper a control engineering based approach was
presented in order to lower the medical expenses of the
antiangiogenic TMT treatment. A feedback linearization-
based controller was designed, which based on the Hahn-
feldt model could track various tumor volume prescriptions
including set point tracking as well. A modified approach
was presented as well which in theory could improve the
performance of the PID controller. Simulations showed
however that this augmented RFPT controller was not
operated as expected. In order to be applicable, several
other features of the PID controller has to be investigated.
Robustness for example rises many questions regard to
model parameters and measurement disturbances. Since
system parameters are highly unlikely to be an accurate
representation of the reality, the parameter robustness of
the system is essential in order to be employed in every
day practice. Discrete time control also has to be sim-
ulated due to the lack of continuous measurement, and
has to compensate for the time intervals between inhibitor
dosages. These effects altogether can cause the system to
be unstable which leads to ineffective treatment.
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