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Abstract

We investigate monotone idempotent n-ary semigroups and provide
a generalization of the Czogala—Drewniak Theorem, which describes the
idempotent monotone associative functions having a neutral element. We
also present a complete characterization of idempotent monotone n-asso-
ciative functions on an interval that have neutral elements.
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1 Introduction

A function F': X™ — X is called n-associative if for every x1,...,29,-1 € X
and every i = 1,...,n — 1, we have
F(F(l‘l,...,J,'n),{E,H_l,...,xzn_l): (1)
F(zy, ... 2, F(Tig1, - Tign)s Tigng 1y - - T2n—1)-
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Throughout this paper we assume that the underlying sets of the algebraic
structures under consideration are partially ordered sets (poset). Some of our
results only work for totally ordered sets. In our main results we investigate
n-ary semigroups on an arbitrary nonempty subinterval of the real numbers.

A set X endowed with an n-associative function F': X" — X is called an
n-ary semigroup and is denoted by (X, F,). Clearly, we obtain a generaliza-
tion of associative functions, which are the 2-associative functions using our
terminology.

The main purpose of this paper is to describe a class of n-ary semigroups. An
n-ary semigroup is called idempotent if F(a,...,a) = a for all « € X. Another
important property is the monotonicity. An n-associative function is called
monotone in the i-th variable if for all fixed aq,...,a,-1,a;41,...,a, € X, the 1-
variable functions f;(z) := F(a1,...,a;-1,%,ait1,...,a,) is order-preserving or
order-reversing. An n-associative function is called monotone if it is monotone
in each of its variables. Further, we say that e € X is a neutral element for
an n-associative function F' if for every z € X and every i = 1,...,n, we have
F(e,...,e,xz,e,...,e) =z, where x is substituted for the i-th coordinate.

An important construction of n-ary semigroups is the following. Let (X, F»)
be a binary semigroup. Let F), := Fy 0 Fy 0...0 Fy, where

—_—————

n—1

Fo(z1,...,2,) =FyoFyo...0 Fa(x1,...,2p)
—— ——
n—1

= Fy(x1, Fy(xo, ..., Fo(Tn_1,7n))).

We get an n-associative function Fj,: X™ — X and an n-ary semigroup (X, F,).
In this case we say that (X, F,) is derived from the binary semigroup (X, F3)
or, simply, that F), is derived from F,. We also say that (X, F,) is a totally
(partially) ordered n-ary semigroup for emphasizing that X is totally (partially)
ordered.

It is easy to show (see Lemma Bl below) that if F, is derived from F and
F5 is either monotone or idempotent or has a neutral element, then so is Fj,.

An n-ary semigroup (X, F,) is called an n-ary group if for each i € {1,...,n},
every n—1 elements x1,...,2;—1,Tit1,...,Zy in X and every a € X, there exists
a unique b € X with F,(x1,...,2-1,b,Zi11,...,2,) = a. It is easy to see from

the definition that ordinary groups are exactly the 2-ary groups.

Clearly, a function F;, derived from a semigroup F5 is n-associative but not
every n-ary semigroup can be obtained in this way. Dudek and Mukhin [3] (see
also Proposition [Z3]) proved that an n-ary semigroup (X, F},) is derived from a
binary one if and only if (X, F},) contains a neutral element or one can adjoin a
neutral element to it. As a special case of this theorem they obtained that an
n-ary group is derived from a group if and only if it contains a neutral element.

This result allows one to construct n-ary groups that are not derived from
binary groups if n is odd. Indeed, let (X, +) be a group and n = 2k — 1. Define

Gn(@1,. .. 2n) = >0 (=1)'z;. It is easy to verify that G, is n-associative



and we obtain an n-ary group. Moreover G,, is clearly monotone. It is also easy
to check that there is no neutral element for G,,.

Finally, we say that an n-ary semigroup (X, F,,) is quasitrivial (or it is
said to be conservative) if for every x1,...,2, € X, we have F,(21,...,2,) €
{z1,...,x,}. Such an n-variable function F,, is called a choice function. One
might also say that F), preserves all subsets of X. Ackerman (see [I]) investi-
gated quasitrivial semigroups and also gave a characterization of them.

Our paper is organized as follows. In Section 2] we collect the main results
proved in the paper. In Section [3] we establish connections between n-ary semi-
groups and binary semigroups and prove Theorem 2.3l Section [ is devoted to
the proof of Theorems 2.4l and 2.6l Section [l contains a few concluding remarks.

2 Main results

Let I C R be a not necessarily bounded, nonempty interval. We denote by I
the compact linear closure of Il Let g: I — I be a decreasing function. For
every x € I, let g(z — 0) and g(x + 0) denote the limit of g at = from the left
and from the right, respectivelyE We denote by I'y the completed graph of g,
which is a subset of I? obtained by modifying the graph of the function g in
the following way. If z is a discontinuity point of g, then we add a vertical line
segment between the points (z, g(z —0)) and (x, g(x + 0)) to extend the graph
of g. Formally,

Ty ={(z,y) € I*: g(x +0) <y < g(x - 0)}.

We call T'y (id)-symmetric if T'y is symmetric to the line z = y.

The following theorem gives a description of idempotent monotone (2-ary)
semigroups with neutral elements. These semigroups were first investigated by
Crzogala and Drewniak [2], where the authors only dealt with closed subintervals
of R but the statement holds for any non-empty interval. On the other hand,
instead of monotonicity it was assumed that the binary function is monotone
increasing. However, Lemma shows that monotonicity implies monotone
increasingness in this case.

Theorem 2.1. Let I be an arbitrary nonempty real interval. If a function
Fy: I? — [ is associative idempotent monotone and has a neutral element e € I,
then there exits a monotone decreasing function g: I — I with g(e) = e such
that

min (2, y) ify <g(x),
Fy(x,y) =  max (z,y) ify>g(x),
min (z,y) or max (z,y) if y = g(x).

L1f I is bounded and we denote the end-points of I by m and M (m > M), then I = [m, M].
If I is not bounded from below (or above), then we let m = —oo (M = 400, respectively).
For instance, R = R U {4-00}.

2Let m and M be the boundary points of I. We use the convention that g(m — 0) = M
and g(M +0) = m.



Now we present a complete characterization of idempotent monotone in-
creasing (2-ary) semigroups with neutral elements. First this was proved by
Martin, Mayor, and Torrens [7] for I = [0,1]. Their theorem contained a small
error in the description, but essentially it was correct. In the original paper
[ the following condition for g was given instead of the symmetry of I'y. The
function g: [0,1] — [0, 1] satisfies

inf{y : g(y) = g(z)} < ¢*(x) <sup{y:g(y) = g(x)} for all z € [0,1].  (2)

Here (and below) g%(x) stands for (g o g)(x).

The authors of [§] proved that Theorem holds if F5 is commutative also
and shown that condition (2)) is not equivalent to the symmetry of I';. Recently,
Theorem [Z2 was reproved in an alternative way in [5] for any subinterval of R.

Theorem 2.2. Let I C R be an arbitrary nonempty interval. A function
Fy: I? — I is associative idempotent monotone and has a neutral element e € T
if and only if there exists a decreasing function g: I — I with g(e) = e € I such
that the completed graph Iy is symmetric and

z) and x < g*(x),
z) and x > g*(x),

min (z, y) ify <g(x) ory=g(
Fy(z,y) = { max (z,y) ify > glx) ory=g(
min (z,y) or max (z,y) ify=g(x) and z = g*(x).
(3)
Moreover, Fy(x,y) = Fo(y, ) except perhaps the set of points (z,y) € I? satis-
Jying y = g(z) and z = ¢*(x) = g(y).

If (X, F,,) is an n-semigroup having a neutral element e, then one can assign a
semigroup (X, Fy) to it by letting Fy(a,b) := F,,(a,e,...,e,b) for every a,b € X.
This map F,, — Fy will be denoted by F. Our main result in Section [ is the
following:

Theorem 2.3. For any totally ordered set X, the map F is a bijection between
the set of associative idempotent monotone functions on X having neutral ele-
ments and the set of n-associative idempotent monotone functions on X having
neutral elements.

We will get the following result as an easy consequence of our investigation.

Theorem 2.4. Let I C R be a nonempty interval, n > 2, and F,: I — I an
n-associative monotone increasing idempotent function with a neutral element.
Then F, is quasitrivial.

Applying Theorems and [Z2] we can obtain a practical method to cal-
culate the value of F,(aq,...,a,) for any ai,...,a, € I, where I C R is an
interval.

For every decreasing function g: I — I a pair (a,b) € I? is called critical if
g(a) = b and g(b) = a. By Theorem [Z2] and Lemma B.I0, for every idempotent
monotone semigroup (X, F») with a neutral element, there exists a unique de-
creasing function g satisfying ([B]). Theorem[Z2shows also that F commutes on



every non-critical pair (z,y) € I? (i.e., Fa(z,y) = Fa(y,x)). Since for a critical
pair (a,b) the value of Fy(a,b) and Fy(b,a) can be independently chosen from
g, we have two cases. We might have that F» commutes on a,b or not. A pair
(a,b) is called extra-critical if Fy(a,b) # F(b,a). We note that being critical or
extra-critical are both symmetric relations.

Finally, in order to simplify notation and give a compact way to express the

value of F,, at some n-tuple (ay,...,a,) of the elements from a totally ordered
set, we introduce the following. The smallest and the largest elements of the
set {ai,...,a,} are denoted by ¢ and d, respectively. There exist ¢,j with

1 <4< j <nsuchthat a; = cord, aj = cord and ax # c and d for every
k <iand k> j. We write e1 := a; and ep := a;.
The following statement was proved in [3]:

Proposition 2.5 (Dudek, Mukhin). If (X, F,) is an n-ary semigroup with a
neutral element e, then F, is derived from a binary function Fs, where

Fy(a,b) := Fy(a,e, ... eb). (4)

Theorem 2.6. Let F,,: I — I be an n-associative idempotent function with
a neutral element that is monotone in its first and last coordinates. If (¢, d)
is a not an extra-critical pair, then F,(a1,...,a,) = Fa(c,d). If (¢,d) is an
extra-critical pair, then F,(a1,...,a,) = Fa(e1,e2).

Now we point out three important consequences of Theorem First we
generalize Czogala-Drewniak’s theorem (Theorem 21)) as follows.

Theorem 2.7. Let I be an arbitrary nonempty real interval. If a function
F,: I" — I is n-associative idempotent monotone and has a neutral element
e € I, then there exits a monotone decreasing function g: I — I with g(e) = e
such that 'y is symmetric and

c if ¢ < g(d),
F.(a1,...,an)=<d if ¢ > g(d),
cord ifc=g(d),
where ¢ and d denote the minimum and the mazimum of the set {ai,...,an},
respectively.

We note that a generalization of Theorem is essentially stated in The-
orem In [§] the authors investigated idempotent uninorms, which are as-
sociative, commutative, monotone functions with a neutral element and idem-
potent also. We introduce n-uninorms, which are n-associative, commutative,
monotone functions with neutral element. Here we show a generalization of [8]
Theorem 3] for n-ary operations.

Theorem 2.8. An n-ary operator U, is an idempotent n-uninorm on [0,1]
with a neutral element e € [0, 1] if and only if there exists a decreasing function



g: [0,1] = [0,1] with g(e) = e and with symmetric graph Ty such that

c if e < g(d)) ord < g(c),
Unlar,...,an) =<d if ¢ > g(d) ord> g(c), (5)
cord ifc=g(d) and d = g(c),

where ¢ and d are as in Theorem [27 Moreover, if (c,d) is a critical pair
(¢ =g(d),d = g(c)), then the value of Uy (as,...,an) can be chosen to be ¢ or d
arbitrarily and independently from other critical pairs.

We may generalize our concept in the following way. Let X* = (J, oy X"
be the set of finite length words over the alphabet X. A multivariate function
F: X* — X is associative if it satisfies

F(x,x') = F(F(x),F(x))

for all x,x’ € X*. It is easy to check that F|x~ is n-associative for every n € N.
We say that F' is idempotent or monotone or that it has a neutral element if so
are the functions F|x» for every n € N.

Theorem 2.9. Let I be a nonempty real interval. Then F: I* — I is asso-
ciative idempotent monotone and has a neutral element if and only if there is a
decreasing function g: I — I with symmetric completed graph Ty such that F|x
satisfies @l). Furthermore F must be monotone increasing in each variable.

Concerning to associativity of multivariate functions the interested reader is
referred to [ [0].

3 From n-ary to binary semigroups

In this section we prove Theorem[Z3l Therefore the main purpose of this section

is to transfer properties from an n-ary semigroup to the corresponding binary

semigroup. We start with the converse. We have already mentioned that, given

a semigroup (X, Fy), one can easily construct the n-ary semigroup (X, F},),

where F,, = Fyo...0Fy. The following lemma is an easy consequence of the
—_——

n—1
definitions.

Lemma 3.1. Let (X, Fy) be a partially ordered semigroup. If F5 has any of the
following properties

(i) monotone
(i) idempotent
(i11) has a neutral element

then so does the function F,.



Observation 3.2. If I is defined by (@), the element e is also a neutral element
of Fy since Fy(e,a) = Fy(e,...,e,a) = a = Fy(a,e,...,e) = Fy(a,e) for every
acX.

Lemma 3.3. Let F,,: X" — X be an n-associative function on the partially
ordered set X. Assume F, is idempotent and monotone in the first and the
last coordinates and is derived from an associative function Fo. Then Fy is
monotone.

Proof. We show that if F,, is monotone in its last coordinate then so is Fb.
Take an arbitrary ¢ € X and let b = F,_1(a,...,a). In this case Fy(b,a) =
F,(a,...,a) = a. Substituting a = Fy(b,a), we obtain a = F5(b, F2(b,a)).
Using the same substitution n — 2 times, we get that a can be expressed as

F.-1(c1,...,¢n—1) for some c1,...,¢p—1. Then Fy(a,z) = F,(c1,...,¢pn1,2) is
clearly monotone in its last coordinate.
Similarly, F5 is monotone in its first coordinate if F), is. O

Remark 3.4. If F,, is n-associative idempotent and monotone in the first and

the last variables on a poset X, then, by Lemma 3.3 F» is also monotone. It

is easy to show that Fj := Fyo---0 Fy is k-associative and monotone in each
—_——

k—1
variable. In particular, F;, is monotone in each of its variables.

Lemma 3.5. Let F,,: X" — X be an n-associative function on a totally or-
dered set. Assume F,, is idempotent and monotone in each variable and F,
has a neutral element or is derived from an associative function Fy. Then Fy is
idempotent as well.

Proof. We prove that Fy, = Fso...o0 Fy is idempotent for every 2 < k < n.
We use backward induction. Arguing by contradiction, assume that for some k
with 3 < k < n there exists a € X such that has Fy_1(a,...,a) = b # a and
by the inductive hypothesis Fi(x,...,2) = x for every z € X. We note that
the second condition holds for & = n, since F}, is idempotent. Clearly, we may
assume without any loss that a < b. We compare the following terms:

Table 1:
Fy(a,...,a,b) | Fyp(a,...,a,b,b) | Fp(a,...,a,b,0,b) | ... | Fp(a,b,...,b,b)
Fy(a,...,a,a) | Fr(a,...,a,b,a) | Fi(a,...,a,b,b,a) | ... | Fr(a,b,...,b,a)

The function Fj is monotone in each variable by Remark 3.4l Observe that
in Table[ the elements in each column only differ in the last coordinate. Hence
each of the elements in the lower row is not greater than the element above it
by the monotonicity of Fy.

Now we calculate expressions in Table[Il It is clear that Fy(a,...,a) = a by
the inductive assumption. Before we continue, we present two useful lemmas.



Lemma 3.6. Let a and b be as above. Further, let x1 = ... = x; = a and
Zig1 = ... =x =b. Then for every m € Sym(k) we have

Fk(Il, ce ,wk) = Fk(.%'ﬂ.(l), ce ,.I'ﬂ.(k)).

Proof. Substituting b = Fi_1(a,...,a) in the expression above, it is easy to see
that we may rearrange a’s and b’s arbitrarily. O

Lemma 3.7. Let | and m be fixed andl +m =k. If 1 <m < k — 2, then

Fy(a,...,a,b,...,b) = F(a,...,a).
—— N———

l m l

In particular, if m =k — 1, then

Proof. A direct calculation shows that the statement holds. Indeed,

Fr(a,...,a,b,....b) = Fy(a,...,a,Fp_1(a,...,a),..., Fx_1(a,...,a)).
S—— — N——

l m l m

Now using associativity of F» and idempotency of Fj, we obtain
Fy(a,Fy-1(a,...,a)) = F(a,...,a) = a.
Applying Lemma and the previous observation m times, we obtain

Fr(a,...,a,Fx_1(a,...,a),..., Fr_1(a,...,a)) = Fi(a,...,a).
——

l m

Using Lemma [3.0] and Lemma 3.7, we get that

Fi(a,...,a)=a
Fy(a,...,a,a,b,a) =Fy(a,...,a,a,a,b) = Fx_1(a,..., a),
Fy(a,...,a,b,b,a) =F;(a,...,a,a,b,b) = Fy_s(a,...,a),

Fk(aabvba"'vbaa) :Fk(aaavba"'vbab):FQ(aaa)v
Fy(a,b,...,b,b) =a.

Since in each column of the table we just change the last coordinate, we can
use monotonicity. We note that F}, is increasing (order-preserving) in the last



variable since Fj(a...,a,b) =b > a = Fi(a,...,a,a). Substituting the results
of (@) into the table, we get the following;:

Fip_q(a,...,a) | Fx—2(a,...,a) | Fr_s(a,...,a) | ... | a
T T T Tt
a Fip_1(a,...,a) | Fx—a2(a,...,a) | ... | Fa(a,a)

Here the notation T means that an element in the lower row is less than or equal
to the corresponding element in the upper row. Thus,

a< Fy1(a,...,a) < Fr_a(a,...,a) < - < Fy(a,a) <a

This gives
a=Fi_1(a,...,a) = Fy_s(a,...,a) =+ = Fy(a,a),

a contradiction, since Fy_1(a,,...,a) = b # a by our assumption. This shows
that Fj is idempotent for every k > 2, finishing the proof of Lemma [3.5] O

The underlying set of the n-associative function in Lemma is totally
ordered. The following example shows that this requirement is essential.

Example 3.8. For k > 3 we construct a k-ary semigroup (X, Fy), which is
derived from a non-idempotent semigroup (X, Fy), where F5 is monotone in
both of its variables and has a neutral element. Thus, Fj_; and F} are also
monotone having neutral element. We show that Fj is idempotent and Fj_; is
not idempotent, thus Fs cannot be idempotent by LemmaB:[I This example
shows that the condition that X is a totally ordered set is crucial in Lemma [3.5]

Let X = {m, M} U Zi_1, where Zy_; is the cyclic group of order k — 1. We
define a partial ordering on X in the following way. M and m are the largest
and smallest elements of X, respectively. The elements of Z;_1 are mutually
incomparable but they are all larger than m and smaller than M. The set X
endowed with this partial ordering is a modular lattice. Further we build an
associative function Fy as follows:

M ifx=Mory=DM,
Fy(z,y)=<m ifz=mory=mandz,y< M,
xy ifx,y€ Zi_1.

It is easy to verify that F3 is associative and monotone increasing in both of its
variables. The identity element e of Zj_1 is the neutral element of (X, F3). One
can define F),_1 and F}, as before. By Lemma [3.1] the functions Fj,_; and F}, are
(k — 1)- and k-associative functions, respectively. Both of them are monotone
having neutral element. Finally, it is easy to check that Fy_; is not idempotent
since Fr_1(a,...,a) = e for every a € Zy_1 while Fi(z,...,x) = x for every
x € X. Note that the cyclic group Zx_; might have been substituted by any
nontrivial group whose exponent divides k — 1.



Remark 3.9. For distributive lattices the statement of Lemma [B.5] seems true,
but a potential proof would be basically different from the proof of the lemma.
Thus, it goes beyond the topic of the current paper. (See also Question in
Section )

The following lemma provides extra information about monotone, associative
and idempotent semigroups.

Lemma 3.10. Let X be a partially ordered set. If Fo: X2 — X is associative
idempotent and monotone in each variable, then Fs is monotone increasing in
each variable.

Proof. Assume that F, is not monotone increasing in each variable. Let us
assume that F5 is decreasing in the second variable. We also exclude the case
when F; is both increasing and decreasing in the second variable (i.e., Fa(z, ) is
constant for any fixed € X)), so that we may assume that there exist z,y,z € X
such that y < z and Fa(z,y) > Fa(z, 2).

Now by the idempotency of Fy we have Fy(Fy(z,z),y) = Fa(x,y) and
Fy(Fa(z,2),2) = Fa(z, z). Our assumption then gives

Fy(Fy(z,2),y) > Fo(Fa(x,x), 2).

Using the associativity of Fy we get Fy(x, Fo(z,y)) > Fa(x, Fy(x, 2)).

On the other hand, since Fh(z,y) > Fy(z,z) and Fy is decreasing in the
second variable we get Fy(x, Fa(z,y)) < Fa(x, Fa(x, z)), which contradicts our
assumption.

One can get the same type of contradiction if we switch the role of the
coordinates. Thus, Fy is monotone increasing in both variables. O

Remark 3.11. The following examples demonstrate that if we omit any of the
conditions of Lemma [B.10 the conclusion of the lemma fails.

1. Let Fy(x,x) = x for € R and Fy(z,y) =0 if 2,y € R, © # y. Then I,
is associative and idempotent, but not monotone in each variable.

2. Let Fy(x,y) =2z —y for x,y € R. Then F; is idempotent and monotone
in each variable, but not associative and clearly not monotone increasing.

3. Let Fy(x,y) = —x, if 2,y > 0, and Fy(x,y) = 0 otherwise. Then Fj is as-
sociative, since Fy(x, Fy(y, 2)) = Fo(Fa(z,y),2)) = 0 and Fy is monotone
decreasing in each variable and F3 is not idempotent.

Corollary 3.12. If (X, F,) is a totally ordered n-ary semigroup, where F, =
Fy o Fyo---0Fy is idempotent and monotone in the first and the last variables,
—_—————

n—1
then F,, is monotone increasing in each wvariable. Moreover, Fj, = Fyo---0 Fy
—_—

k—1
is monotone increasing for every k > 2.

10



Proof. By definition, F» is associative. Since F), is monotone in each variable,
so is Fy by Lemma By Lemma B8] Fb is idempotent. Thus by Lemma
BI0 it is monotone increasing. Thus Fy, = Fy 0 Fy 0 --- 0 Fy is also monotone
increasing for every k > 2. O

If F, is n-associative and has a neutral element, then there exists F5 such
that F,, = Fy 0o Fy 0o---0 F,. Using the results of this section, we prove the
following proposition.

Proposition 3.13. Let (X, F,,) be a totally ordered n-ary semigroup, which is
monotone idempotent and has a neutral element. Then F, is derived from a
binary semigroup (X, Fy), where Fy is also monotone idempotent and it also
has a neutral element. Moreover F,, is monotone increasing in each variables.

Proof. Since F,, is idempotent n-associative and has a neutral element, it follows
from Proposition 25l that F}, = Fho---0 Fy, where Fy: X2 — X is associative.
By Lemmas B3] B.5 and B0, F5 is monotone increasing and idempotent. By
Observation 3.2 that in this case I5 has a neutral element, as well. O

Proof of Theorem [Z.3. By Proposition [313] every n-associative function
F,, which is monotone idempotent and has a neutral element, is derived from
an associative function Fy determined by Fy(a,b) := F,(a,e,...,e,b) which is
monotone idempotent and has a neutral element. Then we have

F.(a,...,a,b) = F,(a,e,...,e,b) = F,(a,b,...,b) = F(a,b). (7)

Recall that the map that assigns Fy to F,, was denoted by F. By Lemma [B.]]
and Proposition B3] for every F, there exists F,, satisfying () whence F is
surjective. The map F is injective since F» uniquely defines F,,. This finishes
the proof of Theorem O

Remark 3.14. Using Corollary [3.12] we may weaken the assumptions of The-
orem 23] where F), is assumed to be monotone in each variable. Instead, we
might have assumed that F;, is monotone in the first and last variables.

Lemma 3.15. Let (X, F,) be a totally ordered n-ary semigroup derived from
(X, Fy), where Fy is idempotent, associative, monotone increasing and has a
neutral element. Then

Fn(aaylu"'uyn—2ub):FQ(aub) (8)
whenever a < Yy, ..., Yn—2 < b.

Proof. By Theorem [Z.3] the function F, is monotone, and therefore, the claim
directly comes from (). O

11



4 Proof of the main results

Proof of Theorem[2): 1t follows from Proposition B13] that F}, is derived from
an associative function F. Moreover F5 is monotone, idempotent and has a
neutral element. Therefore, we may apply Theorem 2.2]in a special form which
we obtain when Fj is a choice function (i.e., when (X, F») is quasitrivial). Since
F,, is obtained as the composition of n — 1 copies of Fs, we get that F;, is also
a choice function. O

Proof of Theorem[2.4. First assume that ¢ and d commute with every element
of the set A := {a1,...,a,} C I. In this case we may assume, using idempotency
of F», that there exists k < n such that Fy,(a1,...,a,) = F(c,ah,...,a}_;,d)
and ¢ < a} < dforalli=2,...,k—1. By PropositionB.I3 we can apply Lemma
BI8 that gives Fy,(a1,...,a,) = Fa(c,d).

Now assume that d does not commute with an element of A but ¢ commutes
with all of them. In this case g(d) € A is the one not commuting with d. Since
¢ is the smallest element of A we get ¢ < g(d). Further, d is the largest element
of A and g is decreasing so g(a;) > ¢ for all i = 1,...,n. Theorem gives
Fy(c,a;) = Fo(a;,¢) = ¢ for all i = 1,...,n. Therefore F,(ai,...,a,) = c.
Since Fs(c,a;) = c for every i, we get Fp,(a1,...,a,) = Fa(c,d) = c¢. A similar
argument shows that F,(ai,...,a,) = d = Fx(c,d) if ¢ and d switch the roles.

Finally, assume that neither ¢ nor d commutes with every element of A. In
this case the set A contains g(c) and g(d) and g(g(c)) = ¢, g(g(d)) = d. We
claim that g(c¢) = d and g(d) = ¢. Indeed, if g(c) € A, then g(c) < d since d
is the largest element of A, and similarly g(d) > ¢. Since g is monotone and
9(9(d)) = d, we get d = g(g(d)) < g(c). Therefore g(c) = d. Similarly using
¢ = g(g(e)) > g(d) we get g(d) = ¢. What we obtained is that (¢,d) is an
extra-critical pair in this case.

Now ¢ and d are the elements in A that do not commute. This also implies
that ¢ and d commute with all other element of A.

By definition of e; and ez (see Section [2)), e; and es are the value of the
first and respectively the last appearance of ¢ or d. Since e; commutes with its
left neighbours and ea commutes with its right neighbours, we may assume that
a1 = e1 and as = ez. We get the following cases:

(i) If ey # eq, then by Lemma BIH F,,(eq, ..., e3) = Fa(e1, e2).
(ii) If e; = eq, then we show that F,(eq,...,e2) = Fa(e1,ea) = e1.

Using Lemma for arbitrary number of variables, we get that every subse-
quence of aq, ..., a, consisting of elements lying strictly between ¢ and d can be
eliminated. Thus, one can write F,(a1,...,a,) = Fr(b1,...,br), where k < n
and b; = cord for every 1 < ¢ < k and, in our case, by = by = e;. Since
Fy is idempotent, we may assume b; # b;41 for 1 < i < k — 1. Using idem-
potency and associativity of Fy again, we have Fy(Fx(c,d), Fa(c,d)) = Fs(c,d)
and Fy(Fy(d,c), F5(d,c)) = Fa(d, c). Therefore Fy(by,...,bx) can be reduced to
either F3(c,d, c) or F3(d, ¢, d).
If Fy(c,d) = ¢, then Fs(c,d,c) = Fa(Fa(c,d),c) = Fa(c,c) = c = e.
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If Fy(c,d) = d, then F3(c,d,c) = Fy(Fs(c,d),c) = Fa(d,c). Since ¢ and d do
not commute we get Fy(d,c) = ¢ = e;.

Similarly, one can verify that F3(d,c,d) = d = e;. This finishes the proof of
Theorem O

5 Concluding remarks

In this paper we have investigated the n-ary associative, idempotent, monotone
functions F,,: X™ — X that have neutral elements. We have shown that such
an F,, in general setting when the underlying set X is totally ordered implies
the existence of binary functions F»: X2 — X with similar properties such that
F,, is derived from F;. However many of the properties of F,, are inherited by
Fy if X is only a partially ordered set. We summarize the results of Section
(if X is a totally ordered set) in the following table.

Properties of F), Properties of Fy

n-assoc. with a neutral element —> assoc. with a neutral element
Now we assume F,, = F50---0 Fy:

n-assoc., idempotent, monotone —> monotone

n-assoc., idempotent, monotone —>  idempotent

n-assoc., idempotent, monotone = monotone increasing
Some easy observations show:

n-associative <= associative

monotone increasing <= monotone increasing
idempotent <= idempotent

has a neutral element <= has a neutral element
Thus:

n-assoc., idempotent, mon. incr. <= assoc., idemp., mon. incr.
with a neutral element with a neutral element

In the main results we have obtained a characterization of m-associative,
idempotent, monotone functions on any (not necessarily bounded) subinterval
of R in the spirit of the characterization of the binary case. We also generalize
the classical Czogala—Drewniak theorem. In addition, we get that every n-
associative, idempotent and monotone function with a neutral element must be
quasitrivial (conservative).

Further improvement would be based on the elimination of any of the proper-
ties of F,. The most crucial property seems to be that F;, has a neutral element
since all of our results based on this condition as otherwise Fj, is not necessarily
derived from Fy. On the other hand, in [7] one can be found a characterization
of associative, conservative, monotone increasing, idempotent binary functions
defined on [0, 1] without assumption of having a neutral element. Therefore, we
suggest the following questions for further investigation.

Question 5.1. How can we characterize n-associative, monotone, idempotent
functions on a subinterval of R?
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Question 5.2. How can we characterize n-associative functions on distributive
lattices provided that the functions are monotone idempotent and have neutral
elements?
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