
ar
X

iv
:1

70
5.

00
71

9v
2 

 [
m

at
h.

R
A

] 
 2

7 
Fe

b 
20

19

CHARACTERIZATIONS OF QUASITRIVIAL SYMMETRIC

NONDECREASING ASSOCIATIVE OPERATIONS

JIMMY DEVILLET, GERGELY KISS, AND JEAN-LUC MARICHAL

Abstract. We provide a description of the class of n-ary operations
on an arbitrary chain that are quasitrivial, symmetric, nondecreasing,
and associative. We also prove that associativity can be replaced with
bisymmetry in the definition of this class. Finally we investigate the
special situation where the chain is finite.

1. Introduction

Let X be a nonempty set and let n ≥ 2 be an integer. The n-ary
operations F : Xn → X satisfying the associativity property (see Defini-
tion 2.1 below) have been extensively investigated since the pioneering work
by Dörnte [9] and Post [15]. In the algebraic language, when F is such an
operation, the pair (X,F ) is called an n-ary semigroup. For a background
on this topic see, e.g., [10, 11,16] and the references therein.

In this paper we investigate the class of n-ary operations F : Xn → X on
a chain (X,≤) that are quasitrivial, symmetric, nondecreasing, and associa-
tive (quasitriviality means that F always outputs one of its input values).
After presenting some definitions and preliminary results in Section 2, we
provide in Section 3 a characterization of these operations and show that
they are derived from associative binary operations (Theorems 3.2, 3.13,
and Corollary 3.4). We also discuss the special situation where these op-
erations have neutral elements (Proposition 3.14), in which case they are
derived from the so-called idempotent uninorms (Corollary 3.17). In Sec-
tion 4 we investigate certain bisymmetric n-ary operations and derive a few
equivalences among properties involving associativity and bisymmetry. For
instance we show that if an n-ary operation is quasitrivial and symmetric,
then it is associative if and only if it is bisymmetric (Corollary 4.9). This
observation enables us to replace associativity with bisymmetry in some of
our characterization results. Finally, in Section 5 we particularize our re-
sults to the special case where the operations are defined on finite chains
(Corollary 5.1 and Theorem 5.2).
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We use the following notation throughout. A chain (X,≤) will simply be
denoted by X if no confusion may arise. For any chain X and any x, y ∈ X,
we use the symbols x ∧ y and x ∨ y to represent min{x, y} and max{x, y},
respectively. For any integer k ≥ 0, we set [k] = {1, . . . , k}. Finally, for any
integer k ≥ 0 and any x ∈ X, we set k ·x = x, . . . , x (k times). For instance,
we have F (3 · x, 2 · y, 0 · z) = F (x, x, x, y, y).

2. Preliminaries

In this section we introduce some basic definitions and present some pre-
liminary results. Let X be an arbitrary nonempty set.

Definition 2.1. An operation F : Xn → X is said to be

• idempotent if F (n · x) = x for all x ∈ X;
• quasitrivial (or conservative, selective) if F (x1, . . . , xn) ∈ {x1, . . . , xn}
for all x1, . . . , xn ∈ X;

• symmetric if F (x1, . . . , xn) is invariant under any permutation of
x1, . . . , xn;

• associative if

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)

= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)

for all x1, . . . , x2n−1 ∈ X and all i ∈ [n− 1];
• bisymmetric if

F (F (r1), . . . , F (rn)) = F (F (c1), . . . , F (cn))

for all n× n matrices [c1 · · · cn] = [r1 · · · rn]
T ∈ Xn×n.

If (X,≤) is a chain, then F : Xn → X is said to be

• nondecreasing (for ≤) if F (x1, . . . , xn) ≤ F (x′1, . . . , x
′
n) whenever

xi ≤ x′i for all i ∈ [n].

Definition 2.2. Let F : Xn → X be an operation.

• An element e ∈ X is said to be a neutral element of F if

F ((i− 1) · e, x, (n − i) · e) = x

for all x ∈ X and all i ∈ [n]. A neutral element need not be unique
when n ≥ 3 (e.g., F (x1, x2, x3) ≡ x1 + x2 + x3 (mod 2) on X = Z2).

• The points x and y of Xn are said to be connected for F if F (x) =
F (y). The point x of Xn is said to be isolated for F if it is not
connected to another point in Xn.

Lemma 2.3. Let F : Xn → X be an idempotent operation. If x = (x1, . . . , xn) ∈
Xn is isolated for F , then necessarily x1 = · · · = xn.

Proof. Let x = (x1, . . . , xn) be isolated for F . From the identity F (x) =
F (n · F (x)) we immediately derive x = (n · F (x)), that is, x1 = · · · = xn =
F (x). �
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Remark 1. We observe that any quasitrivial operation F : Xn → X has at
most one isolated point. Indeed, such an operation F is necessarily idem-
potent and hence the result follows from Lemma 2.3 and the fact that we
have

F ((n− 1) · x, y) ∈ {x, y} = {F (n · x), F (n · y)}

for any x, y ∈ X.

Lemma 2.4. Let F : Xn → X be a quasitrivial operation and let e ∈ X. If
(n · e) is isolated for F , then e is a neutral element. The converse holds if
n = 2.

Proof. We proceed by contradiction. If e is not a neutral element, then there
exist i ∈ [n] and u ∈ X \ {e} such that

F ((i− 1) · e, u, (n − i) · e) = e = F (n · e).

It follows that (n · e) is not isolated for F , which is a contradiction. The
case n = 2 was proved in [5]. �

Example 1. The following example shows that the converse of Lemma 2.4
does not hold when n ≥ 3. Let X = {a, b, e} and let F : X3 → X be defined
as

F (x, y, z) =







a, if there are more a’s than b’s among x, y, z,

b, if there are more b’s than a’s among x, y, z,

e, otherwise.

It is easy to see that this operation is quasitrivial and has e as the neutral
element. However, we have F (e, e, e) = F (a, b, e) and hence the point (e, e, e)
is not isolated for F .

3. Associative operations

In this section we provide a characterization of the n-ary operations on
a given chain that are quasitrivial, symmetric, nondecreasing, and associa-
tive, and we show that these operations are derived from associative binary
operations. We also examine the special case where these operations have
neutral elements.

Proposition 3.1. Let X be a chain. If G : X2 → X is quasitrivial, sym-
metric, and nondecreasing, then it is associative.

Proof. This result was established in the special case whereX is the real unit
interval [0, 1] in [14, Proposition 2]. The proof therein is purely algebraic
and works for any nonempty chain X. �

Theorem 3.2. Let X be a chain and let F : Xn → X (n ≥ 3) be quasitrivial,
symmetric, and nondecreasing. The following assertions are equivalent.

(i) F is associative.
(ii) F ((n − 1) · x, y) = F (x, (n − 1) · y) for all x, y ∈ X.
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(iii) There exists a quasitrivial and nondecreasing operation G : X2 → X
such that

(1) F (x1, . . . , xn) = G(
∧n

i=1 xi ,
∨n

i=1 xi), x1, . . . , xn ∈ X.

Moreover, the operation G is unique, symmetric, and associative in assertion
(iii).

Proof. (iii) ⇒ (i). Let x1, . . . , x2n−1 ∈ X and k ∈ [n − 1]. We only need to
prove that

F (x1, . . . , xk−1, F (xk, . . . , xk+n−1), xk+n, . . . , x2n−1)

= F (x1, . . . , xk, F (xk+1, . . . , xk+n), xk+n+1, . . . , x2n−1).(2)

Set a =
∧2n−1

i=1 xi and b =
∨2n−1

i=1 xi. By quasitriviality ofG we have G(a, b) ∈
{a, b}. Let us assume that G(a, b) = a (the other case can be dealt with
dually). We observe that if a ∈ {xℓ1 , . . . , xℓn} for some pairwise distinct
ℓ1, . . . , ℓn ∈ [2n−1], then F (xℓ1 , . . . , xℓn) = a. Indeed, by quasitriviality and
nondecreasing monotonicity of G, we have a = G(a, a) ≤ G(a,

∨n
i=1 xℓi) ≤

G(a, b) = a, where G(a,
∨n

i=1 xℓi) = F (xℓ1 , . . . , xℓn). Now, combining this
observation with the fact that a ∈ {x1, . . . , x2n−1} we immediately see that
both sides of Eq. (2) reduce to a.

(i) ⇒ (ii). Suppose that (i) holds and (ii) does not. Then by quasitrivi-
ality there exist x, y ∈ X with x 6= y such that

• either F ((n − 1) · x, y) = x and F (x, (n − 1) · y) = y,
• or F ((n− 1) · x, y) = y and F (x, (n − 1) · y) = x.

The second case cannot hold. Indeed, assuming for instance that x < y,
by nondecreasing monotonicity we would have x < y = F ((n − 1) · x, y) ≤
F (x, (n−1)·y) = x, a contradiction. Thus we must have F ((n−1)·x, y) = x
and F (x, (n − 1) · y) = y. We then have

F (F (n · x), (n − 1) · y) = y 6= x = F ((n − 1) · x, F (x, (n − 1) · y)),

which shows that F is not associative, a contradiction.
(ii) ⇒ (iii). Define G : X2 → X as

G(x, y) = F ((n − 1) · x, y) = F (x, (n − 1) · y).

By definition, G is quasitrivial, symmetric, and nondecreasing. It is also
associative by Proposition 3.1. Now, let x1, . . . , xn ∈ X and let a =

∧n
i=1 xi

and b =
∨n

i=1 xi. By symmetry and nondecreasing monotonicity of F , we
have

G(a, b) = F ((n− 1) ·a, b) ≤ F (x1, . . . , xn) ≤ F (a, (n− 1) · b) = G(a, b),

which proves (1). We then observe that G is necessarily unique. �

Remark 2. (a) Theorem 3.2 also holds for n = 2 but brings no informa-
tion in this case. However, Proposition 3.1 shows that associativ-
ity follows from quasitriviality, symmetry, and nondecreasing mono-
tonicity.
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(b) Each of the conditions of Theorem 3.2 is necessary as soon as n ≥ 3.
Indeed,

• the sum operation F (x1, . . . , xn) =
∑n

i=1 xi over the reals X =
R is symmetric, nondecreasing, and associative, but not qua-
sitrivial;

• the projection operation F (x1, . . . , xn) = x1 over any chain X is
quasitrivial, nondecreasing, and associative, but not symmetric;

• the ternary operation F : L2
3 → L3, with L3 = {1, 2, 3}, defined

as F (1, 1, 1) = 1, F (x, y, z) = 2, if 2 ∈ {x, y, z}, F (x, y, z) = 3
if 3 ∈ {x, y, z} and 2 /∈ {x, y, z} is quasitrivial, symmetric, and
associative, but it is not nondecreasing;

• the ternary median operation, defined on any chain by

median(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x),

is quasitrivial, symmetric, and nondecreasing, but it is not as-
sociative.

None of the four operations above is of the form given in (1).
(c) In the proof of Theorem 3.2 the symmetry condition is used only to

prove that (ii) ⇒ (iii). We observe that this condition can then be
relaxed into the following one:

F ((i−1) ·x, y, (n− i) ·x) = F ((j−1) ·x, y, (n−j) ·x), i, j ∈ [n], x, y ∈ X.

Definition 3.3 (see [1, 11]). Let F : Xn → X and H : X2 → X be as-
sociative operations. F is said to be derived from (or reducible to) H if
F (x1, . . . , xn) = x1 ◦ · · · ◦ xn for all x1, . . . , xn ∈ X, where x ◦ y = H(x, y).

Corollary 3.4. Let X be a chain. If F : Xn → X is of the form (1),
where G : X2 → X is quasitrivial, symmetric, and nondecreasing, then F is
associative and derived from G.

Proof. Clearly, F is quasitrivial, symmetric, and nondecreasing. The fact
that it is also associative follows from Theorem 3.2. To see that F is derived
from G, let x1, . . . , xn ∈ X and set a =

∧n
i=1 xi and b =

∨n
i=1 xi. By

quasitriviality of G we have G(a, b) ∈ {a, b}. Let us assume that G(a, b) =
a (the other case can be dealt with dually). For every i ∈ [n], we have
G(a, xi) = a. Indeed, we have a = G(a, a) ≤ G(a, xi) ≤ G(a, b) = a. Now,
writing G(x, y) = x ◦ y, we have x1 ◦ · · · ◦ xn = a = G(a, b) = F (x1, . . . , xn),
which completes the proof. �

Remark 3. The operation H in Definition 3.3 need not be unique. For
instance, if X = {a, b, c}, then the constant ternary operation F : X3 → X
defined as F = a is derived from the associative operation H : X2 → X
defined as H(c, c) = b and H(x, y) = a for any (x, y) 6= (c, c). However, F is
also derived from the constant operation H ′ = a. To give a second example,
just consider the associative operations F (x1, x2, x3) ≡ x1+x2+x3 (mod 2),
H(x1, x2) ≡ x1 + x2 (mod 2), and H ′(x1, x2) ≡ x1 + x2 + 1 (mod 2) on
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X = Z2. It is clear that F is derived from both H and H ′. Interestingly, we
also observe that F is quasitrivial but neither H nor H ′ is quasitrivial.

Proposition 3.5. Assume that the operation F : Xn → X is associative
and derived from associative operations H : X2 → X and H ′ : X2 → X.
If H and H ′ are idempotent (resp. have the same neutral element), then
H = H ′.

Proof. Assume that H and H ′ are idempotent (the other case can be dealt
with similarly) and let us write H(x, y) = x ◦ y and H ′(x, y) = x ⋄ y. Then,
for any x, y ∈ X we have

x ◦ y = x ◦ · · · ◦ x
︸ ︷︷ ︸

n−1

◦ y = F ((n− 1) · x, y) = x ⋄ · · · ⋄ x
︸ ︷︷ ︸

n−1

⋄ y = x ⋄ y,

which shows that H = H ′. �

The following proposition provides a characterization of the class of qu-
asitrivial, symmetric, associative operations F : Xn → X that are derived
from quasitrivial and associative binary operations. This result was pre-
viously known and established by using algebraic arguments (see, e.g., [1,
Corollary 4.10] and the references therein). For the sake of self-containment
we provide a very elementary proof.

We first consider a lemma.

Lemma 3.6. Assume that the operation F : Xn → X is symmetric, asso-
ciative, and derived from a surjective (i.e., onto) and associative operation
H : X2 → X. Then H is symmetric.

Proof. Let us write H(x, y) = x ◦ y for all x, y ∈ X. For any x, y ∈ X there
exist y1, . . . , yn−2 ∈ X and z1, . . . , zn−2 ∈ X such that

H(x, y) = x ◦ y = x ◦ y1 ◦ z1 = x ◦ y1 ◦ y2 ◦ z2 = · · ·

= x ◦ y1 ◦ · · · ◦ yn−2 ◦ zn−2 = F (x, y1, . . . , yn−2, zn−2)

= F (y1, . . . , yn−2, zn−2, x) = · · · = y ◦ x = H(y, x),

which shows that H is symmetric. �

Proposition 3.7. A symmetric associative operation F : Xn → X is derived
from a quasitrivial and associative operation H : X2 → X if and only if there
exists a linear ordering � on X such that F is the maximum operation on
(X,�), i.e.,

(3) F (x1, . . . , xn) = x1 ∨� · · · ∨� xn , x1, . . . , xn ∈ X.

Proof. (Sufficiency) Trivial.
(Necessity) Since H is quasitrivial, it is idempotent and hence it is also

symmetric by Lemma 3.6. Using quasitriviality and associativity of H, it is
then easy to see that the binary relation � on X defined as

(4) x � y ⇔ H(x, y) = y , x, y ∈ X,
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is a linear order. Using symmetry, we then have H(x, y) = x ∨� y for all
x, y ∈ X. �

Remark 4. The second example given in Remark 3 shows that the quasitriv-
iality of H is necessary in Proposition 3.7.

For arbitrary chains (X,≤) and (X,�), the operations F : Xn → X of the
form (3) need not be nondecreasing for ≤. In the following proposition we
characterize the class of linear orderings � on X for which those operations
F are nondecreasing for ≤.

Definition 3.8. Let (X,≤) and (X,�) be chains. We say that the linear
ordering � is single-peaked for ≤ if for any a, b, c ∈ X such that a < b < c
we have b ≺ a or b ≺ c.

Remark 5. The concept of single-peaked linear ordering was introduced for
finite chains in social choice theory by Black [3,4] (see [2,12] for more recent
references). Here we simply apply the same definition to arbitrary chains.
Thus defined, � is single-peaked for ≤ if and only if, from among three
distinct elements of X, the centrist one (for ≤) is never ranked last by �.

Proposition 3.9. Let (X,≤) and (X,�) be chains and let F : Xn → X
be of the form (3). Then F is nondecreasing for ≤ if and only if � is
single-peaked for ≤.

Proof. (Necessity) We proceed by contradiction. Suppose that there exist
a, b, c ∈ X satisfying a < b < c such that b ≻ a and b ≻ c. Then by
nondecreasing monotonicity we clearly have

b = F (a, (n − 1) · b) ≤ F (a, (n − 1) · c) ≤ F (b, (n − 1) · c) = b

and hence F (a, (n − 1) · c) = b, which contradicts quasitriviality.
(Sufficiency) We proceed by contradiction. Suppose that there exist k ∈

[n] and (x1, . . . , xn), (x
′
1, . . . , x

′
n) ∈ Xn such that xk < x′k and xi = x′i for all

i ∈ [n] \ {k} and F (x1, . . . , xn) > F (x′1, . . . , x
′
n), that is,

xj ∨� xk > xj ∨� x′k ,

where xj = x1 ∨� · · · ∨� xk−1 ∨� xk+1 ∨� · · · ∨� xn.
We only have two relevant cases to consider.

• If xk � xj � x′k, then we obtain xk < x′k < xj .
• If x′k � xj � xk, then we obtain xj < xk < x′k.

We immediately reach a contradiction since � cannot be single-peaked for
≤ in each of these two cases. �

The following two propositions provide characterizations of single-peaked-
ness. Recall first that, for any chain (X,≤), a subset C of X is said to be
convex for ≤ if for any a, b, c ∈ X such that a < b < c we have that a, c ∈ C
implies b ∈ C.
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Proposition 3.10. Let (X,≤) and (X,�) be chains. Then � is single-
peaked for ≤ if and only if for every t ∈ X the set {x ∈ X | x � t} is convex
for ≤.

Proof. (Necessity) We proceed by contradiction. Suppose that there exist
a, b, c, t0 ∈ X satisfying a < b < c such that a, c ∈ {x ∈ X | x � t0} and
b /∈ {x ∈ X | x � t0}. This means that a � t0 ≺ b and c � t0 ≺ b, a
contradiction.

(Sufficiency) We proceed by contradiction. Suppose that there exist
a, b, c ∈ X satisfying a < b < c such that b ≻ a and b ≻ c. Setting
t0 = a ∨� c, we have a, c ∈ {x ∈ X | x � t0}. By convexity we also have
b ∈ {x ∈ X | x � t0}. Therefore a ∨� c ≺ b � t0 = a ∨� c, a contradic-
tion. �

Proposition 3.11. Let (X,≤) and (X,�) be chains. Then � is single-
peaked for ≤ if and only if for any x0, x1, x2 ∈ X such that x0 ≺ x1 and
x0 ≺ x2 we have

(5) x0 < x1 < x2 or x2 < x1 < x0 ⇒ x1 ≺ x2.

Proof. (Necessity) We proceed by contradiction. Suppose that there exist
x0, x1, x2 ∈ X satisfying x0 ≺ x1 and x0 ≺ x2 for which (5) fails to hold, i.e.,
either (x0 < x1 < x2 and x0 ≺ x2 ≺ x1) or (x2 < x1 < x0 and x0 ≺ x2 ≺ x1),
which clearly shows that � is not single-peaked for ≤.

(Sufficiency) We proceed by contradiction. Suppose that there exist
a, b, c ∈ X satisfying a < b < c such that b ≻ a and b ≻ c. Letting
x0 = a ∧� c, x1 = b, and x2 = a ∨� c, we obtain either (x0 < x1 < x2 and
x0 ≺ x2 ≺ x1) or (x2 < x1 < x0 and x0 ≺ x2 ≺ x1), which shows that (5)
fails to hold, a contradiction. �

Corollary 3.12. Let (X,≤) and (X,�) be chains and suppose that (X,�)
has a minimal element x0. Then � is single-peaked for ≤ if and only if (5)
holds for all x1, x2 ∈ X.

Proof. (Necessity) The result follows from Proposition 3.11.
(Sufficiency) We proceed by contradiction. Suppose that there exist

a, b, c ∈ X satisfying a < b < c such that b ≻ a and b ≻ c. Since x0 is
the minimal element of (X,�), we must have x0 6= b. If x0 < b, then setting
x1 = b and x2 = c, we obtain x0 < x1 < x2 and x2 ≺ x1, a contradiction.
We arrive at a similar contradiction if x0 > b. �

Using Propositions 3.1, 3.7, 3.9, Theorem 3.2, and Corollary 3.4, we easily
derive the following theorem.

Theorem 3.13. Let X be a chain and let F : Xn → X be an operation.
The following assertions are equivalent.

(i) F is quasitrivial, symmetric, nondecreasing, and associative (asso-
ciativity can be ignored when n = 2).
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(ii) F is of the form (1), where G : X2 → X is quasitrivial, symmetric,
and nondecreasing.

(iii) F is of the form (3) for some linear ordering � on X that is single-
peaked for ≤.

If any of these assertions holds, then G is associative and F is derived from
G.

We now investigate the particular case where the operations satisfying
any of the assertions of Theorem 3.2 have neutral elements.

Proposition 3.14. Let X be a chain and let e ∈ X. Assume that F : Xn →
X is of the form (1), where G : X2 → X is quasitrivial and symmetric. Then
the following assertions are equivalent.

(i) e is a neutral element of F .
(ii) e is a neutral element of G.
(iii) The point (e, e) is isolated for G.
(iv) The point (n · e) is isolated for F .

In particular, if F has a neutral element, then it is unique.

Proof. The equivalence (i) ⇔ (ii) is straightforward. The equivalence (ii)
⇔ (iii) and the implication (iv) ⇒ (i) follow from Lemma 2.4. Let us now
prove the implication (iii) ⇒ (iv). Suppose that (e, e) is isolated for G and
that (n · e) is not isolated for F . Then, there exists (x1, . . . , xn) 6= (n · e)
such that G(e, e) = F (n · e) = F (x1, . . . , xn) = G(

∧n
i=1 xi,

∨n
i=1 xi), which

contradicts the assumption that (e, e) is isolated for G. �

Remark 6. We observe that if an operation F : Xn → X is of the form (3)
for some linear ordering � on X, then F has a neutral element e ∈ X if and
only if (X,�) has a minimal element x0. In this case e = x0.

Example 2. Consider the real operation F : [0, 1]n → [0, 1] of the form (1),
where G : [0, 1]2 → [0, 1] is defined as G(x1, x2) = x1 ∨ x2, if x1, x2 > 0, and
G(x1, x2) = 0, otherwise. It is easy to see that F satisfies the conditions of
assertion (ii) of Theorem 3.13 and that G does not have any neutral element.
It follows that F has no neutral element either by Proposition 3.14. By
Proposition 3.7 and (4) we see that F is of the form (3), where � is the
single-peaked linear ordering on [0, 1] defined as

x � y ⇔ 0 < x ≤ y or y = 0 , x, y ∈ [0, 1].

From this representation it is easy to see that F can also be expressed as

F (x1, . . . , xn) = f(
∨n

i=1 f
−1(xi)), x1, . . . , xn ∈ [0, 1],

where f : ]0, 1]∪{2} → [0, 1] is defined as f(y) = y, if y ∈ ]0, 1], and f(2) = 0.

Example 3. Consider the real operation F : [0, 1]2 → [0, 1] defined as F (x, y) =
x ∨ y, if x+ y ≥ 1, and F (x, y) = x ∧ y, otherwise. It is easy to see that F
satisfies the conditions of assertion (ii) of Theorem 3.13 (with G = F ) and
that it has the neutral element e = 1

2
. By Proposition 3.7 and (4) we see
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that F is of the form (3), where � is the single-peaked linear ordering on
[0, 1] defined as

x � y ⇔ (y ≤ x < 1− y or 1− y ≤ x ≤ y) , x, y ∈ [0, 1].

Interestingly, we observe that for every x ∈ [0, 1], there is no y ∈ [0, 1] such
that x ≺ y ≺ 1 − x or 1 − x ≺ y ≺ x. From this observation we can show
that the chain ([0, 1],�) cannot be embedded into the real chain (R,≤).
Indeed, suppose on the contrary that there exits an injective (i.e., one-to-
one) map g : ([0, 1],�) → (R,≤) such that x � y if and only if g(x) ≤ g(y)
for all x, y ∈ [0, 1]. For any x ∈ [0, 1] \ {1

2
} we have x 6= 1 − x and hence

g(x) 6= g(1 − x). Let Ix denote the real open interval having g(x) and
g(1 − x) as endpoints. We can always pick a rational number qx in Ix. For
any distinct x, y ∈ [0, 1] \ {1

2
} we have Ix ∩ Iy = ∅ and hence qx 6= qy. It

follows that the set {qx | x ∈ [0, 1] \ {1
2
}} is uncountable, a contradiction.

Recall that a uninorm on a chain X is a binary operation U : X2 → X
that is associative, symmetric, nondecreasing, and has a neutral element
(see [7, 17]). It is noteworthy that any idempotent uninorm is quasitrivial.
This fact can be easily verified by following the first few steps of the proof
of [6, Theorem 3], which actually hold on any chain.

The concept of uninorm can be easily extended to n-ary operations as
follows.

Definition 3.15 (see [13]). Let X be a chain. An n-ary uninorm is an
operation F : Xn → X that is associative, symmetric, nondecreasing, and
has a neutral element.

Lemma 3.16 (see [11]). If F : Xn → X is associative and has a neutral
element e ∈ X, then F is derived from the associative operation H : X2 → X
defined as H(x, y) = F (x, (n − 2) · e, y).

Corollary 3.17. Let X be a chain. Any idempotent n-ary uninorm F : Xn →
X satisfies the assertions of Theorem 3.13. In particular,

• F has a unique neutral element e;
• F ((n − 1) · x, y) = F (x, (n − 1) · y) = F (x, (n − 2) · e, y) for all
x, y ∈ X;

• the operation G in assertion (ii) is an idempotent uninorm with e
as the neutral element;

• the chain (X,�) in assertion (iii) has the minimal element e.

Proof. By Lemma 3.16, F is derived from the associative operationH : X2 →
X defined as H(x, y) = x ◦ y = F (x, (n − 2) · e, y). By definition, H is as-
sociative, symmetric, nondecreasing, and has a neutral element. We now
show that it is also idempotent. Although this property immediately fol-
lows from [13, Lemma 3.5] we present here an alternative and very simple
proof of it. Suppose that H(x, x) = z 6= x. If x < z (the case x > z is
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similar), then by nondecreasing monotonicity of H we have

x < z = x ◦ x ≤ z ◦ x = x ◦ x ◦ x ≤ z ◦ x ◦ x = x ◦ x ◦ x ◦ x ≤ · · ·

= x ◦ · · · ◦ x
︸ ︷︷ ︸

n

= F (x, . . . , x) = x,

a contradiction. Therefore H is an idempotent uninorm and hence it is
quasitrivial (as observed above). It follows that F is quasitrivial and hence
satisfies assertion (i) of Theorem 3.13. Also, we have

F (x, (n − 2) · e, y) = x ◦ y = x ◦ · · · ◦ x
︸ ︷︷ ︸

n−1

◦ y = x ◦ y ◦ · · · ◦ y
︸ ︷︷ ︸

n−1

.

The rest of the corollary follows from Proposition 3.14 and Remark 6. �

Corollary 3.18. Let X be a chain and let F : Xn → X be an operation.
Then F is an idempotent n-ary uninorm if and only if there exists an idem-
potent uninorm U : X2 → X such that

F (x1, . . . , xn) = U(
∧n

i=1 xi ,
∨n

i=1 xi), x1, . . . , xn ∈ X.

In this case, the uninorm U is uniquely defined as U(x, y) = F ((n−1) ·x, y).

Remark 7. The results presented in this section strongly rely on the sym-
metry of the operations F : Xn → X. The generalization of these results to
the nonsymmetric case is a topic of ongoing research. On this issue, partial
results can be found, e.g., in [13, Lemma 3.15].

4. Bisymmetric operations

In this section we investigate bisymmetric n-ary operations and derive a
few equivalences involving associativity and bisymmetry. For instance we
show that if an n-ary operation has a neutral element, then it is bisymmetric
if and only if it is associative and symmetric. Also, if an n-ary operation is
quasitrivial and symmetric, then it is associative if and only if it is bisymmet-
ric. In particular this latter observation enables us to replace associativity
with bisymmetry in Theorems 3.2, 3.13, and Corollary 3.4.

Lemma 4.1 (see [5]). Let F : X2 → X be an operation. Then the following
assertions hold.

(a) If F is bisymmetric and has a neutral element, then it is associative
and symmetric.

(b) If F is associative and symmetric, then it is bisymmetric.
(c) If F is bisymmetric and quasitrivial, then it is associative.

Definition 4.2. We say that a function F : Xn → X is ultrabisymmetric if

F (F (r1), . . . , F (rn)) = F (F (r′1), . . . , F (r′n))

for all n× n matrices [r1 · · · rn]
T , [r′1 · · · r′n]

T ∈ Xn×n, where [r′1 · · · r′n]
T

is obtained from [r1 · · · rn]
T by exchanging two entries only.
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Proposition 4.3. Let F : Xn → X be an operation. If F is ultrabisymmet-
ric, then it is bisymmetric. The converse holds whenever F is symmetric.

Proof. We immediately see that any ultrabisymmetric operation is bisym-
metric (just apply ultrabisymmetry repeatedly to exchange the (i, j)- and
(j, i)-entries for all i, j ∈ [n]).

Now suppose that F : Xn → X is symmetric and bisymmetric. Then we
have

F (F (r1), . . . , F (rn)) = F (F (r′1), . . . , F (r′n))

for all matrices [r1 · · · rn]
T , [r′1 · · · r′n]

T ∈ Xn×n, where [r′1 · · · r′n]
T is

obtained from [r1 · · · rn]
T by permuting the entries of any column or any

row. By applying three times this property, we can easily exchange two
arbitrary entries of the matrix. Indeed, exchanging the (i, j)- and (k, l)-
entries can be performed through the following three steps: exchange the
(i, j)- and (i, l)-entries in row i, exchange the (i, l)- and (k, l)-entries in
column l, and exchange the (i, j)- and (i, l)-entries in row i. �

Remark 8. (a) The symmetry property is necessary in Proposition 4.3.
Indeed, for any k ∈ [n], the kth projection operation F : Xn → X
defined as F (x1, . . . , xn) = xk is bisymmetric but not ultrabisym-
metric.

(b) An ultrabisymmetric operation need not be symmetric. For instance,
consider the operation F : X2 → X, where X = {a, b, c}, defined by
F (a, c) = a and F (x, y) = b for every (x, y) 6= (a, c). Clearly, this
operation is not symmetric. However, it is ultrabisymmetric since
F (F (x, y), F (u, v)) = b for all x, y, u, v ∈ X.

Lemma 4.4. If F : Xn → X is surjective (i.e., onto) and ultrabisymmetric,
then it is symmetric.

Proof. Let x1, . . . , xn ∈ X. Then there exists a matrix [r1 · · · rn]
T ∈ Xn×n

such that xi = F (ri) for i = 1, . . . , n. By ultrabisymmetry,

F (x1, . . . , xn) = F (F (r1), . . . , F (rn))

is symmetric in x1, . . . , xn. �

Remark 9. We observe that if F : Xn → X is idempotent or quasitrivial or
has a neutral element, then it is surjective.

Lemma 4.5. If F : Xn → X is quasitrivial, then for any x, y ∈ X, there
exists k ∈ [n] such that

F ((k − 1) · x, (n − k + 1) · y) = y and F (k · x, (n − k) · y) = x.

Proof. We proceed by contradiction. Suppose that there exist x, y ∈ X,
with x 6= y, such that for every k ∈ [n] we have

(6) F ((k − 1) · x, (n − k + 1) · y) = x or F (k · x, (n− k) · y) = y.

Using the fact that F (n · y) = y we see that only the second condition of
(6) holds. When k = n this gives F (n · x) = y, a contradiction. �
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Proposition 4.6. If F : Xn → X is quasitrivial and ultrabisymmetric, then
it is associative and symmetric.

Proof. Symmetry immediately follows from Lemma 4.4 and Remark 9. Let
us prove that associativity holds. Let x1, . . . , x2n−1 ∈ X and let i ∈ [n− 1].
By Lemma 4.5 there exists k ∈ [n] such that

F ((k−1) ·xi, (n−k+1) ·xi+n) = xi+n and F (k ·xi, (n−k) ·xi+n) = xi.

We then have

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)

= F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), F ((k−1)·xi, (n−k+1)·xi+n), xi+n+1, . . . , x2n−1)

Replacing xj with F (n · xj) for all j ∈ [2n − 1] \ {i, . . . , i + n} and then
applying ultrabisymmetry repeatedly to exchange the (n− 1)-tuples

(xi+1, . . . , xi+n−1) and ((k − 1) · xi, (n − k) · xi+n),

we see that the latter expression becomes

F (x1, . . . , xi−1, F (k·xi, (n−k)·xi+n), F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)

= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1).

This shows that F is associative. �

Remark 10. Ultrabisymmetry cannot be relaxed into bisymmetry in Propo-
sition 4.6. For instance, the ternary operation F (x, y, z) = y is quasitrivial
and bisymmetric, but it is neither associative nor symmetric. This example
also shows that the result stated in Lemma 4.1(c) cannot be extended to
n-ary operations.

Proposition 4.7. If F : Xn → X is associative and symmetric, then it is
ultrabisymmetric.

Proof. Let [r1 · · · rn]
T , [r′1 · · · r′n]

T ∈ Xn×n, where [r′1 · · · r′n]
T is ob-

tained from [r1 · · · rn]
T by exchanging the (i, j)- and (k, l)-entries for some

i, j, k, l ∈ [n]. We only need to prove that

F (F (r1), . . . , F (rn)) = F (F (r′1), . . . , F (r′n)).

Permuting the rows of [r1 · · · rn]
T if necessary (this is allowed by symmetry),

we may assume that k = i + 1. Denote by xi,j (resp. xk,l) the (i, j)-entry

(resp. (k, l)-entry) of [r1 · · · rn]
T .

Using associativity and symmetry, we see that there exist p, q ∈ {1, . . . , n},
with p 6= j and q 6= l, such that

F (F (r1), . . . , F (rn))

= F (F (r1), . . . , F (ri−1), F (xi,p, . . . , xi,j), F (xk,l, . . . , xk,q), F (rk+1), . . . , F (rn))

= F (F (r1), . . . , F (ri−1), xi,p, F (. . . , xi,j, F (xk,l, . . . , xk,q)), F (rk+1), . . . , F (rn))

= F (F (r1), . . . , F (ri−1), xi,p, F (. . . , F (xi,j , xk,l, . . .), xk,q), F (rk+1), . . . , F (rn)).
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This shows that F is ultrabisymmetric since the latter expression is sym-
metric in xi,j and xk,l. �

Corollary 4.8. If F : Xn → X is quasitrivial, then it is associative and
symmetric if and only if it is ultrabisymmetric.

Proof. The statement immediately follows from Propositions 4.6 and 4.7.
�

Remark 11. If F : Xn → X is ultrabisymmetric but not quasitrivial, then it
need not be associative (e.g., F (x, y, z) = 2x+ 2y + 2z when X = R).

Corollary 4.9. If F : Xn → X is quasitrivial and symmetric, then it is
associative if and only if it is bisymmetric.

Proof. The statement immediately follows from Propositions 4.3, 4.6, and
4.7. �

From Corollary 4.9 we immediately derive the following theorem, which
is an important but surprising result.

Theorem 4.10. In Theorems 3.2, 3.13, and Corollary 3.4 we can replace
associativity with bisymmetry.

We end this section by investigating bisymmetric operations that have
neutral elements.

Proposition 4.11. If F : Xn → X is bisymmetric and has a neutral ele-
ment, then it is associative and symmetric.

Proof. Let e be a neutral element of F . Let us first prove symmetry. Let
x1, . . . , xn ∈ X, let i, j ∈ [n], and let [c1 · · · cn] = [r1 · · · rn]

T ∈ Xn×n be
defined as

rk =







((j − 1) · e, xi, (n− j) · e), if k = i

((i − 1) · e, xj , (n − i) · e), if k = j

((k − 1) · e, xk, (n − k) · e), otherwise.

By bisymmetry we have

F (x1, . . . , xi, . . . , xj , . . . , xn) = F (F (r1), . . . , F (rn)) = F (F (c1), . . . , F (cn))

= F (x1, . . . , xj, . . . , xi, . . . , xn).

This shows that F is symmetric.
Let us now show that F is associative by using ultrabisymmetry (which

follows from bisymmetry and symmetry by Proposition 4.3). Let x1, . . . , x2n−1 ∈
X, let i ∈ [n− 1] and let [r1 · · · rn]

T , [r′1 · · · r′n]
T ∈ Xn×n be defined as

rk =







(xk, (n − 1) · e), if k < i

(xi, . . . , xi+n−1), if k = i

(xk+n−1, (n − 1) · e), if k > i
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and

r′k =







(xk, (n− 1) · e), if k < i+ 1

(xi+1, . . . , xi+n), if k = i+ 1

(xk+n−1, (n − 1) · e), if k > i+ 1.

Using ultrabisymmetry, we then have

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1) = F (F (r1), . . . , F (rn))

= F (F (r′1), . . . , F (r′n)) = F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1).

This shows that F is associative. �

Corollary 4.12. Assume that F : Xn → X has a neutral element. Then
the following assertions are equivalent.

(i) F is bisymmetric.
(ii) F is associative and symmetric.
(iii) F is ultrabisymmetric.

Proof. We have (i) ⇒ (ii) by Proposition 4.11. We have (ii) ⇒ (iii) by
Proposition 4.7. Finally we have (iii) ⇒ (i) by Proposition 4.3. �

Remark 12. If F : Xn → X is bisymmetric and does not have a neutral
element, then it need not be associative nor symmetric (e.g., F (x, y, z) =
x+2y+3z when X = R). If F : Xn → X is ultrabisymmetric and does not
have a neutral element, then it need not be associative (e.g., F (x, y, z) =
2x+ 2y + 2z when X = R).

5. Operations on finite chains

We now consider the special case whenX is a finite chain. Without loss of
generality we will only consider the k-element chains Lk = {1, . . . , k}, k ≥ 1,
endowed with the usual ordering relation ≤. It is known (see, e.g., [2]) that
there are exactly 2k−1 linear orderings � on Lk that are single-peaked for
≤.

Corollary 5.1. Let F : Ln
k → Lk be an operation. The following assertions

are equivalent.

(i) F is quasitrivial, symmetric, nondecreasing, and associative (asso-
ciativity can be ignored when n = 2).

(ii) F is an idempotent n-ary uninorm.
(iii) There exists a linear ordering � on Lk that is single-peaked for ≤

such that

(7) F (x1, . . . , xn) = x1 ∨� · · · ∨� xn , x1, . . . , xn ∈ Lk.

If any of these assertions is satisfied, then F has the neutral element a1,
where a1 is the minimal element of (Ln,�). Also, there are exactly 2k−1

such operations.
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Proof. (i) ⇒ (iii). This implication follows from Theorem 3.13.
(iii) ⇒ (ii). This is immediate since the minimal element of (Ln,�) is the

neutral element of F .
(ii) ⇒ (i). This implication follows from Corollary 3.17. �

Remark 13. By Corollary 4.9 (resp. Corollary 4.8) we can replace associa-
tivity with bisymmetry (resp. associativity and symmetry with ultrabisym-
metry) in Corollary 5.1.

It is easy to see that any single-peaked linear ordering a1 ≺ · · · ≺ ak on
Lk can be constructed as follows.

1. Choose a1 ∈ Lk.
2. For i = 2, . . . , k, choose for ai a closest element to the set Ci−1 in

Lk \ Ci−1, where Ci = {a1, . . . , ai}.

From this observation we can now provide a graphical characterization of
the idempotent n-ary uninorms F : Ln

k → Lk in terms of their contour plots.
Recall that the contour plot of any operation F : Ln

k → Lk is the undirected
graph (Ln

k , E), where

E = {{x,y} | x 6= y and F (x) = F (y)}.

Theorem 5.2. The following algorithm outputs the contour plot of an ar-
bitrary idempotent n-ary uninorm F : Ln

k → Lk.

Step 1. Choose the neutral element a1 ∈ Lk and set C1 = {a1}. The point
(n · a1) is necessarily isolated for F with value a1

Step 2. For i = 2, . . . , k
1. Pick a closest element ai to Ci−1 in Lk \ Ci−1

2. Set Ci = {ai} ∪ Ci−1

3. Connect all the points in Cn
i \ Cn

i−1 with common value ai

Proof. The algorithm provides a single-peaked linear ordering a1 ≺ · · · ≺ ak
on Lk together with the operation F : Ln

k → Lk defined as

F (x1, . . . , xn) =







a1, if a1 ∈ {x1, . . . , xn} and a2, . . . , ak /∈ {x1, . . . , xn},

a2, if a2 ∈ {x1, . . . , xn} and a3, . . . , ak /∈ {x1, . . . , xn},
...

ak, if ak ∈ {x1, . . . , xn}.

This means that F has precisely the form (7). �

Figure 1 shows the contour plot of an idempotent binary uninorm on
L6. To simplify the figure, we have omitted edges obtained by transitivity
(i.e., connected points are joined by paths). The value shown on each path
indicates the corresponding value.

Remark 14. We remark that the binary versions of Corollary 5.1 and Theo-
rem 5.2 were established in [5] by means of elementary proofs without using
Proposition 3.7.
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Figure 1. An idempotent binary uninorm on L6 (contour plot)

We end this section by the following alternative description of the class
of idempotent n-ary uninorms.

Theorem 5.3. An operation F : Ln
k → Lk with a neutral element e is

an idempotent uninorm if and only if there exists a nonincreasing map
g : {1, . . . , e} → {e, . . . , k} (nonincreasing means that g(x) ≥ g(y) whenever
x ≤ y), with g(e) = e, such that

F (x1, . . . , xn) =

{∧n
i=1 xi, if

∨n
i=1 xi ≤ g(

∧n
i=1 xi) and

∧n
i=1 xi ≤ g(1),

∨n
i=1 xi, otherwise,

where g : Lk → Lk is defined by

g(x) =







g(x), if x ≤ e,

max{z ∈ {1, . . . , e} | g(z) ≥ x}, if e ≤ x ≤ g(1),

1, if x > g(1).

Proof. This result was established when n = 2 in [8, Theorem 3]. The
general n-ary version then follows from Theorem 3.13. �
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