
 1 

Unique Physicochemical Patterns of Residues in 

Protein-Protein Interfaces 

Tamas Lazar1,2, Mainak Guharoy1,2, Eva Schad3, Peter Tompa1,2,3,* 

 
1 VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 

1050 Brussels, Belgium. 

2 Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium. 

3 Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of 

Sciences, Magyar tudosok korutja 2, 1117 Budapest, Hungary. 

 

KEYWORDS: physicochemical patterning, protein interface, surface patches, binding specificity, 

interface propensity. 

 

ABSTRACT: Protein-protein interactions can be characterized by high-resolution structures of 

complexes, from which diverse features of the interfaces can be derived. For the majority of 

protein-protein interactions identified, however, there is no information on the structure of the 

complex or the interface involved in the interaction. Understanding what surface properties drive 
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certain interactions is crucial in the functional evaluation of protein complexes. Here we show that 

the local patterning of the physicochemical properties of amino acids within surface patches is 

characteristic of interfaces. To describe this feature in a quantitative manner, we have defined a 

statistical potential, iPat, as a measure of surface patterning. iPat, which does not take evolutionary 

conservation or knowledge of the interaction partner into consideration, represents a function 

principally different from algorithms that consider intermolecular contacts. We assess its 

suitability for characterizing protein and peptide interfaces, and we demonstrate that iPat is 

uniquely descriptive for interfaces of proteins that undergo large conformational changes or that 

are involved in the binding of intrinsically disordered protein (IDP) partners. We suggest that as a 

stand-alone propensity or in combination with other features, iPat represents a new feature in 

analyzing the functional binding specificity of protein-protein interactions that has better 

predictive potential than other simple 1D features, such as hydrophobicity or stickiness. 

 

1. Introduction 

 

Macromolecular interactions involving proteins are central to cellular functions [1]. Studying protein-

protein interactions to achieve an understanding of the underlying physicochemical principles have been in 

the focus of many studies at both the molecular and cellular levels [2–4]. The living cell represents a highly 

crowded environment, influencing the propensities of proteins to interact and also potentially promoting 

promiscuous binding [5,6]. Cells mitigate promiscuous, non-functional interactions by fine-tuning protein 

interfaces [7,8], and tightly regulating spatio-temporal aspects of protein abundance [9–11] for optimal 

affinity and specificity of interactions. Evolution has fine-tuned amino acid composition, solvent 

accessibility, geometry (shape complementarity, planarity, packing density) and physicochemical features 

https://paperpile.com/c/FY780Y/QJrHv
https://paperpile.com/c/FY780Y/rhEj9+rjDAq+mEq08
https://paperpile.com/c/FY780Y/xkKLR+QKvPU
https://paperpile.com/c/FY780Y/IHyiW+sQnbT
https://paperpile.com/c/FY780Y/vhvap+72LYn+1BvNw
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(hydrophobicity, stickiness, electrostatics, polarity, polarizability, amphiphilicity) of protein surfaces that 

mediate partner recognition [8,12–20]. An important goal of structural bioinformatics is to develop models 

based on these properties for the reliable description and prediction of binding sites on the protein surface. 

 

It is known for a long time what biophysical forces drive protein-protein interactions, and what roles 

different residues with different properties can have in mediating the formation of protein complexes [2]. 

Many analyses have addressed the principal role of hydrophobic interactions in protein-protein associations 

[21–24] demonstrating obvious preferences but concluding that this parameter alone is not sufficient to 

describe interacting surfaces. It has been described in detail that charged and polar residues represent a 

significant fraction of interfaces and they can stabilize - while also enhance the rates of – protein-protein 

association [25]. Taking into account the effects of different residue types, amino acid propensities are also 

often calculated to assess protein binding, since they can have specific signatures on interface patches, 

discriminating them from the general surface or the interior of the protein [2,24,26]. Levy and colleagues 

attempted to derive a general propensity scale by showing that interface regions tend to be enriched or 

depleted in specific amino acids relative to surface regions, distilling  a ‘stickiness’ scale [16], shown to be 

instrumental in identifying surface regions enabling homooligomerization [27]. 

 

As appears from these examples, statistical measures relying on single-residue features, such as 

hydrophobicity, stickiness, electrostatics, polarity, polarizability and amphiphilicity, have some power in 

discriminating interfaces from general surfaces. Machine learning approaches usually outperform these 

measures in predicting interfaces, but the exact physical picture of what lays behind specific interactions 

cannot be always uncovered. Here, we thought that a unique pattern of amino acids (amino acid features) 

on the surface characterizes interfaces better, as they encode specific surface information that can only be 

recognized by the cognate interaction partner. To approach this feature in a quantitative manner, we aimed 

to characterize protein-protein interfaces (or interface patches) by a function describing patterns of amino 

https://paperpile.com/c/FY780Y/DDKSR+XgluN+25gsC+qsJ7z+sQnbT+rxW5G+YDkUf+BXBPW+4DU4P+9xpmr
https://paperpile.com/c/FY780Y/rhEj9
https://paperpile.com/c/FY780Y/fvhO+jhSA+l2J1+GARw
https://paperpile.com/c/FY780Y/g02P
https://paperpile.com/c/FY780Y/rhEj9+WmH8+GARw
https://paperpile.com/c/FY780Y/WmH8
https://paperpile.com/c/FY780Y/0Mq1
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acid properties. This function, “interface patterning (iPat)” is a residue-pair pseudo-potential which 

measures the propensity of surface residues with different properties (hydrophobic, polar, negative or 

positively charged) to be positioned around a central residue with a given property. iPat, computed for all 

residues on the protein surface, shows biases for regions corresponding to recognition sites, and it can score 

intramolecular contacts for each protein partner independently, without prior knowledge on the binding 

partner or intermolecular contacts.  

 

Our main finding is that iPat can distinguish surface residues involved in protein-protein or protein-

peptide recognition interfaces from those located on the non-interacting surface better than a single-feature 

propensity scale such as hydrophobicity or stickiness. We suggest that its simplicity and performance 

should make it a useful complement to existing features and propensities for investigating the specificity of 

protein-protein interactions. 

 

2. Results 

In this work, we explore the physicochemical patterning of residues on protein surfaces (in terms of their 

side-chain properties, illustrated in Figure 1) and assess the applicability of this feature to discriminate 

between binding- versus non-binding surface patches on protein structures. 

 

2.1. Description of the iPat (interface patterning) function 

 

Referred to as ‘iPat’, this interface physicochemical patterning score measures the average propensity of 

residue types on the protein surface (Eq 1), grouped into hydrophobic, polar, negative and positively 

charged categories, to be located within a 12Å radial distance around a central residue with a given property 

(Figure 1). It is to be noted that a more powerful and sensitive function of surface patterning could be 

developed from amino acids (instead of amino acid types), but due to the combinatorial complexity that 
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would arise, it would be statistically untenable. Figure 1 illustrates the range of possible iPat values, 

computed for toy examples of different residue environments. As seen, a residue environment comprised 

entirely of hydrophobic residues (‘H’) acquires an iPat value of 0.4664; such a local  residue environment 

may, for example, be found in the interfaces of high-affinity obligate homomers [2]. In contrast, a local 

residue neighborhood comprising only negatively charged residues yields an iPat value of -1.1085. An 

environment comprising mixed residue types with different properties will yield intermediate iPat values 

(e.g. 0.0941). 

 

 

Figure 1. Scheme illustrating iPat score calculations for different patches 

(A) Patch consisting of only hydrophobic residues have a high iPat potential. (B) Patch consisting of only 

negatively charged residues have a low iPat potential. (C) Patch consisting of all types of properties have 

an intermediate iPat potential. (D) Since iPat is an intensive measure, patches with the same composition 

must have identical iPat potential. H: hydrophobic, P: polar uncharged, +: positively charged, -: negatively 

charged. 

https://paperpile.com/c/FY780Y/rhEj9
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iPat values were calculated using a large, homology-filtered set of 1307 protein complexes downloaded 

from PDBSelect [28]. 90% of iPat scores (Eq 2-3) are between -0.7150 and 0.2122, but there are residues 

with iPat values reaching the theoretical maximum (iPat = 0.4664), i.e., corresponding to central 

hydrophobic residues surrounded entirely by other hydrophobic residues. Furthermore, the lowest value in 

the training set is not the theoretical minimum (iPat = -1.1085), but it is slightly higher (-1.0545), due to 

the presence of opposite charges or negatively charged/polar uncharged pairs in addition to pairs of 

negatively charged residues. 

 

Next, we compared the relative iPat pair frequencies between residues forming the interface core and the 

non-binding surface. These propensities are computed using Eq 2 (Materials and methods) and are depicted 

in Figure 2 as the relative frequencies of physicochemical pairings of residues (with 4 different properties) 

in the local environment of non-interface surface residues and in the local environment of completely buried 

interface residues (interface core). These relative frequencies were derived from the interfaces of the 

training set of 1307 protein complexes (see Materials and methods). 

 

 

https://paperpile.com/c/FY780Y/pIkTB
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Figure 2. Heatmaps showing the propensities and observed frequencies of different 

physicochemical properties for residue pairs found within surface patches constructed using 12Å 

radius. 

(A) The propensity of residues with each of the 4 physicochemical properties (H: hydrophobic, P: polar 

uncharged, +: positively charged, -: negatively charged) within the cutoff distance from interface core 

residues of a given property. The propensities were computed as the log-ratio of the frequencies of 

observing the same types of contacts for residues on the protein surface not involved in binding (B) and the 

corresponding frequencies computed for interface core residues (C). For details see Eq. 2 of Materials and 

methods. 

 

iPat was then used to contrast the properties of interfaces versus the non-binding surface. It was assessed 

if iPat can: 1) discriminate between residues that form known protein-protein interfaces and surface residues 

that are not part of known interfaces; 2) discriminate between residues in known (functional) interfaces and 

those involved in non-functional crystal contact interfaces, and, 3) discriminate between interface residues 

derived from known protein-peptide complexes and non-binding residues on the surface of peptide-binding 

domains. 

 

Further, we derived the iPatprot (Eq 4) score measuring the difference of iPat values between the interface 

core and the surface of a protein, and evaluated its applicability to protein systems in which large 

conformational changes occur upon complex formation. Last, we provide a comparison of iPat with two 

one-dimensional residue propensity scales (Kyte-Doolittle hydrophobicity and stickiness), and show that 

this higher-order feature overcomes 1D propensity scales in discriminating interfaces from non-interacting 

surfaces. 

 

2.2. Discriminating between interface residues and residues on the protein surface 
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A) Functional interfaces in protein complexes 

To evaluate the potential of iPat in discriminating between interface residues and surface residues not 

involved in binding, we compared the distribution of iPat values of residues in the interface core to that of 

non-interface residues on the protein surface. 

 

To this end, we applied iPat to proteins in the 1307 and 455 complexes of the training set and test set, 

respectively. Patches of iPat usually consist of 15-16 residues (AVG=15.41, SD=4.27, by limiting 

neighborhood of a central residue to surface residues within C – C distance of 12Å, cf. Materials and 

methods) and this number for the local environments of interface and non-interface surface residues does 

not differ. However, we investigated whether the number of residues in patches correlated with iPat scores 

but we did not find any significant linear correlations. 

 

Figure 3 shows that significantly higher iPat values characterize the local environment of interface core 

residues (for definition, we used a burial threshold of >75% to assign the interface core residues, while the 

rest is assigned as rim residues) than of residues on the remainder of the protein surface, for both the training 

set (Figure 3A, p-value < 10-100, U-test), and the test set (Figure 3B, p-value < 10-100, U-test). These 

differences show that interfaces are characterized by property patterns distinct from those of the protein 

surface overall. 
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Figure 3. Distribution of iPat values of residues in the interface core and on the non-binding 

surface in different data sets 

(A) Training set; (B) Test set; (C) Crystal contact set; (D) Disordered protein/peptide set. For all complexes, 

we distinguished residues that belong to the surface or the interface. In all the sets, interface core residues 

(without the rim) had significantly higher iPat values computed for their local environments (residue Cα 

atoms closer than 12Å) than non-binding surface residues. Residues in interface cores of crystal contacts 

have significantly lower iPat scores than of functional interfaces. All p-values in U-test were very 

significant (see in the Results). Red lines show the medians and red diamonds show the mean values of the 

distributions on the box plots. 

 

By averaging the per-residue iPat values over all the residues in each type of environment, e.g. interface 

core and protein surface, respectively, we found that 91.27% and 92.53% of the protein chains in the 

training and test sets, respectively, had higher average iPat values for the interface core than for the non-

binding surfaces (Figures 4A-B, p-value < 10-100, Wilcoxon signed-rank test). By further analyzing the few 

outliers of the test set, we found that the interface core of proteins with unsuccessful classification had 
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exceptionally lower (34.9% vs. 53.5%) while the non-interface surface much higher (40.5% vs. 32.7%) 

fraction of hydrophobic amino acids. 

 

Supplementary figure S1 shows a nice example for a homotrimeric enterotoxin complex, where two 

interfaces on the same protein structure have very different physicochemical patch composition (one is a 

charged interface, the other is a classical hydrophobic interface), thus the first is much less interface-like 

than the second (Fig. S1B) (even less interface-like than the general surface (Fig. S1A)). Interestingly, the 

general surface of the enterotoxin has many more residues having interface-like local environment, and 

indeed by mining PDB, one can identify one of these patches as being a binding site of a protein called 

claudin-4 (Fig. S1C-D). 
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Figure 4. Scatter plots of average iPat values for all interface core residues and non-binding 

surface residues in individual protein chains of the analyzed data sets 

For all complexes, we distinguished non-binding surface- and interface residues, and determined their iPat 

scores. For each protein, the average of scores of their non-binding surface vs. the average of scores of their 

interface core residues was plotted. Interface core residues (without the rim), on average, have significantly 

higher values than non-binding surface residues in both the training set (A) and the test set (B). In the 

training set 91.27% while in the test set 92.53% of the chains had higher iPat values for the interface core 

than for the non-binding surface. For crystal contacts (C), this trend was much less prominent, only 75.95% 

of the chains had higher iPat values for the interface core than for the non-binding surface. 
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These observations indicate that the interface core within functional interfaces have a significantly 

different physicochemical patterning than non-binding surface residues. This is further illustrated by the 

average contributions of each of the property pair terms of the statistical potential to the iPat scores 

computed for surface and interface residues (Figures 2B-C). Fig. 2A indicates that the environment of 

interfaces residues is characterized by a more significant contribution of HH and much less of PP, whereas 

P+, P-, +-, and -- pairs are less frequent in the interface core. 

 

B) Functional interfaces versus crystal contacts 

Next, we compared the iPat scores of nonspecific crystal packing contacts (of core residues involved in 

the contacts), denoted as “crystal interfaces” to that of core residues within functional protein interfaces 

and of surface residues, respectively. Figures 3A-C show that iPat scores of interface core residues tend to 

be higher than those of crystal interfaces (p-value = 4.18*10-93, U-test), which, in turn, are significantly 

higher than those of non-binding surface residues (p-value = 7.73*10-58, U-test). 

 

A comparison of the averages of iPat values of crystal contacts to those of surface residues for individual 

proteins in the dataset shows that only 76% of the proteins in the data set of crystal contacts display higher 

scores for their interfaces (Figure 4C) compared to about 92% of the proteins in the data set of functional 

interfaces (Figures 4A-B). This smaller fraction of proteins, which display higher average iPat values for 

residues in crystal-contact interfaces than on the protein surface, is not surprising, given the much weaker 

and non-specific character of crystal contacts [8]. On the other hand, the fact that a large fraction of residues 

in crystal contacts still display higher iPat values than surface residues, indicates that these contacts are 

governed by the same physical principles as the contacts in functional interfaces, and probably involve 

regions of the protein surface that feature some propensity to interact, albeit weakly. Trends of this 

propensity can be gleaned from plots of the average contribution of each of the property pair terms of the 

pi,j statistical potential to the iPat scores computed for core residues in crystal contacts (Figure S2). 

https://paperpile.com/c/FY780Y/sQnbT
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C) Interfaces of protein-peptide complexes 

It has been well documented that intrinsically disordered proteins/regions (IDPs/IDRs) often engage in 

protein-protein interactions, mediated by short motifs or elongated domain-like regions [29]. These 

interacting regions are frequently made up of a continuous stretch of conserved amino acids in the 

polypeptide chain bound to structured domains [30]. Therefore, we also examined the extent to which iPat 

can discriminate between protein interfaces of structured domains that bind IDPs/IDRs, because IDPs/IDRs 

often undergo large-scale structural rearrangements (disorder-to-order transition or induced folding) upon 

binding [29]. Generally, protein-peptide interactions are thought of having lower affinities than those 

between structured subunits, especially when the bound peptide segments are short [31]. It is therefore of 

particular interest to see if these properties are reflected by particular trends in the iPat values. 

 

Interestingly, a comparison of the distribution of iPat scores of core residues in the interfaces of the 

globular partner for 50 protein-peptide complexes (see Materials and methods) to those of surface residues 

shows that peptide-binding interfaces are also characterized by significantly higher iPat values than surface 

residues (Figure 3D, p-value = 3.05*10-27, U-test). Nevertheless, when plotting iPat values averaged over 

core residues in these interfaces against those of surface residues for individual complexes, only 78% of 

the subunits feature higher average scores, a proportion much closer to that of crystal contacts (76%) than 

globular interfaces (~92%). In spite of that, there is a statistically significant difference between the iPat 

score distributions of peptide-binding interfaces and crystal contact interfaces (p-value = 2.33*10-4, U-test). 

 

2.3. Robustness to conformational changes 

 

We derived iPatprot, an iPat-based scoring function, which reflects how different the physical patterning 

is for the interface than for the surface of a protein (see in Materials and methods). Since proteins can 

https://paperpile.com/c/FY780Y/qazV1
https://paperpile.com/c/FY780Y/nySAF
https://paperpile.com/c/FY780Y/qazV1
https://paperpile.com/c/FY780Y/TEVTg
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undergo large conformational changes, which is known to seriously compromise many bioinformatics 

applications, we tested how much the interface iPat score is affected the conformational transition between 

the unbound and the bound conformations. Pairs of structures were compared in their bound and unbound 

forms and the interface conformational change was characterized using an interface RMSD (iRMSD) value. 

The results show (Figure 5A) that –  aside from a few exceptions – even large conformational changes 

(interface RMSD ≥ 2.26Å, defined by Protein-protein docking benchmark 5.0) at the interface had only 

negligible effect on the iPatprot scores, with no apparent effect on the iPat score even at higher iRMSD 

values. This robustness to conformational changes at the interface may stem from the fact that the iPatprot 

function scores surface patches of the individual interacting subunits, rather than the intermolecular contacts 

(and other features of the binding interface between different subunits). Since a fraction of amino acids in 

interface patches are covalently bonded and moves like a kinematic chain, usually an interface patch has 

less degrees of freedom than intermolecular contacts in general. 

 



 15 

 

Figure 5. Changes in iPatprot scores due to conformational changes upon binding (measured in 

iRMSD) using the Protein-Protein Docking Benchmark 5.0 (dimeric difficult targets) data set 

(A) Difference in the iPatprot scores calculated for the pairs of unbound and bound structures as the function 

of iRMSD. In most of the cases, a large change of the interface structure does not affect the iPatprot score. 

There are 3 outliers in this plot: two in the positive direction (PDB: 2ot3_A ← 1txu_A, 1fq1_B ← 

1b39_A), meaning that the interface resembles the non-binding surface in the unbound state; and one in 

the negative direction (PDB: 2o3b_B ← 1j57_A), meaning that the interface core is already “interface-

like” in the unbound form. 

(B) Sugar-nonspecific nuclease inhibitor from Nostoc sp. in the unbound (PDB: 1j57_A) and bound 

(PDB: 2o3b_B) states in complex with nucA nuclease, with the iPat scores projected onto the surface. In 
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both panels, the sugar-nonspecific nuclease inhibitor is colored and rotated to the same orientation (by 

superposition). The blue-red color scale ranges from the theoretical minimum to the maximum of iPat 

score. Non-binding surface residues are colored with green. 

(C) Gelsolin fragment (aa. 412-742) in the unbound (PDB: 1d0n_B) and bound (PDB: 1h1v_G) states in 

complex with actin, with the iPat scores projected onto the surface. In both panels, the gelsolin is colored 

and rotated to the same orientation (by superposition). The blue-red color scale ranges from the 

theoretical minimum to the maximum of iPat score. Non-binding surface residues are colored with green. 

 

 

Within each interacting patch, the residues in general tend to preserve the same surrounding local 

physicochemical environment even when a large conformational change accompanies the binding event. 

Only one exception was found in which the interface core residues of the unbound form were harder to 

differentiate based on their physical patterning. Comparing the iPat potentials projected onto the surface of 

the unbound structure of the Nostoc sp. sugar-nonspecific nuclease inhibitor (1j57_A) and its bound 

structure in complex with nucA nuclease (2o3b_B) (Figure 5B), there are clear differences between the two 

states. There is a visible conformational rearrangement in the non-interface and interface regions (iRMSD 

= 3.13Å) that has a substantial effect on the iPat scores. Interestingly, in the unbound form, residues of 

high- and low statistical potential are intermixed on the surface, due to which the interface of nucA is harder 

to distinguish. In the case of the bound form, a bit less interface-like residue environments with the higher 

potentials (red) can be seen in the interface. Except for this special case, iPatprot performs very well for the 

rest of the targets. An example (Gelsolin : Actin, PDB: 1h1v) of extreme conformational change (iRMSD 

= 6.62Å) is shown in Figure 5C, demonstrating the robustness of iPatprot score.  

 

2.4. Comparison of iPat to one-dimensional propensity scales 
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The central idea behind the iPat potential is that interfaces not only have special physicochemical 

characteristics, they also carry unique information in the pattern of their residues, which may ensure 

discrimination between a given surface patch (interface) and a sea of competing, non-specific surfaces. In 

accord, this specific arrangement of residues can carry more information than the propensity of residues 

and/or their physicochemical properties. To demonstrate this conjecture, we compared the performance of 

iPat in discriminating interfaces and surfaces to two propensity scales often referred to in interpreting 

interface characteristics and specificity: stickiness [16] and hydrophobicity [32].  

 

In these comparisons, we found that interface residues (with the rim included), on average, had 

significantly higher iPat values than non-binding surface residues (85.3%) (Figure S3A). In a collection of 

protein complexes with disordered protein/peptide binding sites, 67.81% of the chains had higher iPat 

values for the interface (Figure S3B). On the other hand, less than half of the chains had higher average 

stickiness or hydrophobicity values for the protein-protein and protein-peptide interfaces than for the non-

binding surface (Figures S3C-D), although the same statistics restricted to the interface core gave a 

separation similar to iPat for stickiness and hydrophobicity as proteins had a stickier and more hydrophobic 

interface core than non-interacting surface (91-94% for protein-protein interfaces and 79-85% for 

disordered protein/peptide binding sites). 

 

Analysis of the predictive power of iPat, compared to the other two propensity scales, yielded better 

results in the Receiver Operating Characteristic (ROC) analysis for all true positive and false positive rate 

cutoffs on our test set (Figure S4). Areas under the curves (AUCs) are comparable for hydrophobicity and 

stickiness, but AUC for iPat was better for both the interface core vs. non-interface distinction (0.65 vs. 

0.60) and total interface vs. non-interface distinction (0.60 vs. 0.55). Although this performance is still 

lower than the performance of multi-feature interface predictors, it clearly points out that going beyond a 

1D scale, by incorporating information coming from the local environment of a residue, has obvious 

benefits. 

https://paperpile.com/c/FY780Y/WmH8
https://paperpile.com/c/FY780Y/Uc4s5
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3. Discussion 

Although deciphering the problem of protein recognition is actively pursued in molecular biology for 

decades, the case is far from being solved. With the explosion of high-throughput approaches in generating 

sequence, structure and interaction data, in silico characterization of protein binding sites plays increasingly 

important roles in the exploration of the protein-protein interaction space. This intensifying activity puts 

increasing demand on expanding the toolkit of protein interface analysis, in an attempt to bridge the gap 

between the number of monomeric structures solved or the number of interactions discovered and the 

number of protein complexes described at atomistic detail. Two particular, important aspects of interface 

analysis are that i) a large fraction of protein-protein interactions is mediated by IDPs, which lack well-

defined structures in the unbound state, and that ii) judging the specificity of interactions is a complex and 

context-dependent problem.  

 

Here, we introduce a novel concept in interface analysis, by suggesting that residue patterns may carry 

information on the uniqueness of a given surface region. We approach this feature by a statistical pseudo-

potential, iPat, derived from amino acid (property) pair propensities. iPat measures the physicochemical 

patterning of surface patches, with the underlying assumption that functional, specific protein-protein 

interactions are mediated by surface regions (interfaces), that have a specific and non-random patterning 

different from that of competing non-binding surface patches. It is important to emphasize that iPat does 

not look at protein-protein contacts but considers the unique features of individual interacting proteins, 

which makes it distinct from other interface- and interaction scoring algorithms. 

 

We verified the applicability of iPat for the recognition and characterization of interfaces by showing its 

ability to distinguish them from non-binding surfaces and non-specific crystal contacts. Its performance 

suggests its potential suitability in a broad spectrum of interface analysis applications. In addition, its 
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insensitivity to structural flexibility and conformational changes upon complex formation can be a 

significant benefit in studying specificity of interactions mediated by disordered regions of IDPs/IDRs, for 

example. This robustness most probably is achieved by the strategy of scoring the two subunits separately 

instead of scoring the contact observed in the complex.  

 

The higher-than-random scores of crystal contact interfaces can be rationalized by the fact that proteins 

can have multiple, not yet discovered, interface regions at crystal contact sites, i.e. that they have some 

inclination to engage in protein-protein interactions, probably expressed in their behavior under 

crystallization conditions. In accord, it was recently proposed that the surfaces of proteins are largely 

covered (up to three-quarters of their area) by protein binding patches [33], and also that the surprisingly 

slow evolution of the physicochemical properties of protein surfaces can be accounted for by their 

extensive, mostly uncharacterized, functional interactions with other proteins (giving rise to the concept of 

“quinary” structure) [34]. 

 

In all, the statistical analyses and the examples detailed here show that iPat expresses a special and 

specific feature of surfaces engaged in protein-protein interactions, and it may turn out to be a useful tool 

in assessing binding specificity and functional and evolutionary studies of protein-protein interactions. The 

main assets of using iPat derive from it being: i) quick, simple and transparent (and yielding a score 

amenable for structural-functional interpretation), ii) robust to conformational changes induced by binding 

(up to very high levels, on the order of 2-9Å), and iii) applicable even in the absence of information about 

the exact partner of the query structure. 

 

Altogether, these favorable characteristics mean that the function can be easily combined with other 

features (such as structural complementarity, atomic packing or evolutionary information) and can be 

incorporated into practical applications, such as protein docking or interface prediction, in the future. 

https://paperpile.com/c/FY780Y/w5uCK
https://paperpile.com/c/FY780Y/dldLG
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Moreover, the function could be reparameterized to characterize other types of protein interfaces, such as 

binding sites of small ligands, DNA or RNA. 

 

4. Materials and methods 

 

4.1. Data sets of protein complexes for deriving and testing the iPat statistical potential 

Training set: In order to define interface and non-interface residues on protein surfaces and compute the 

statistics on the “patterning” of physicochemical properties of amino acids in the two types of environments, 

a data set of protein-protein complexes was compiled as follows. PDB entries corresponding to proteins 

displaying sequence identity not exceeding 25% [35] were downloaded from the Nov 2012 version of 

PDBselect [28]. Only X-ray structures of protein-protein complexes, determined at a resolution of 3.5Å or 

better, with < 5% of unresolved residues, and whose subunits comprise at least 40 residues were retained. 

The resulting data set comprised 1307 complexes listed in S1A Table. For each complex, atomic 

coordinates corresponding to the biological assembly (“biological assembly 1” description provided by the 

PDB) were downloaded. 

 

Test set: A set of protein complexes not included, or only distantly related, to the proteins in the training 

set was derived as follows: X-ray structure of protein-protein complexes, with resolution of 3Å or better, 

deposited in the PDB after November 2012 (following publication of the PDBselect data set used above) 

were downloaded. Homologous sequences were filtered out using a 25% sequence identity thresholds based 

on HSSP files [35], followed by a standard CD-HIT [36] 30% sequence identity filter. The second filtering 

step was required because HSSP files were not available for some newer PDB entries. This yielded a test 

set comprising 455 complexes listed in S1B Table. 

 

https://paperpile.com/c/FY780Y/ATzS1
https://paperpile.com/c/FY780Y/pIkTB
https://paperpile.com/c/FY780Y/ATzS1
https://paperpile.com/c/FY780Y/AS67X
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Data set of crystal packing interfaces: To test the extent of discrimination between interfaces of 

biological assemblies and crystal packing interfaces, a set of crystal packing interfaces was assembled from 

two data sets. The first data set comprised 87 dimeric crystal interfaces representing non-specific dimers 

from Bahadur et al. [37] with interface areas larger than 800Å2 (contributed by both subunits). The second 

was the Duarte-Capitani data set (DCxtal) [38] which comprises large crystal contacts with buried interface 

area of at least 1000Å2 (per subunit). As a quality control step, we used the PISA [39] and EPPIC [38] web 

servers to remove interfaces corresponding to an inferred biologically assembly from the DCxtal data. If 

both servers predicted a dimer to be a biological assembly, or if the crystal contact was not found in the 

asymmetric unit, the entry was removed. In total, only 25 entries from DCxtal were retained. The final data 

set comprised 111 crystal dimers listed in S1C Table. 

 

Data set of protein-peptide complexes: Co-crystal structures of globular protein domains bound to peptide 

fragments belonging to intrinsically disordered proteins/regions (IDPs/IDRs) were downloaded from the 

PDB. Limits of disordered regions were inferred from the amino acid sequences in the DisProt 7.0 [40,41] 

database. The retrieved data set was then manually pruned to remove disordered regions gaining proper 

tertiary fold upon binding. The final set contained a total of 50 protein-peptide complexes listed in S1D 

Table. 

 

Data set of protein complexes where the subunits display conformational changes upon association: To 

evaluate the robustness of our score to conformational changes of protein subunits upon association, we 

used structures from the Protein-protein docking benchmark 5.0 [42]. This benchmark provides structures 

of both isolated subunits and their complexes along with the interface root-mean-square deviation (iRMSD) 

values. For the ‘difficult’ dimeric complexes (iRMSD at least 2.26Å), we calculated the scores for both the 

bound and unbound structures after mapping the interface residues of the bound subunits onto the 

corresponding unbound protein structure. 

https://paperpile.com/c/FY780Y/CYRKh
https://paperpile.com/c/FY780Y/zk5Gv
https://paperpile.com/c/FY780Y/JYMbz
https://paperpile.com/c/FY780Y/zk5Gv
https://paperpile.com/c/FY780Y/YjQxb+psCao
https://paperpile.com/c/FY780Y/2NXN5
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4.2. Definition of surface and interface residues 

Surface residues in a protein are defined as residues having a solvent accessibility of at least 10%. 

Accessibility values were computed using STRIDE [43] as follows: 

Accessibility(aa) = ASAp (aa) / ASAref (aa) (1) 

where ASAp(aa) is the solvent accessible surface area of the amino acid residue (aa) in the protein (subunit 

or complex), and ASAref(aa) is the solvent accessible surface area of the same amino acid (aa) in the Gly-

aa-Gly tripeptide [44]. 

 

Residues belonging to a binding interface are defined as residues that lose accessible surface area upon 

complex formation, as compared to the unbound state of the protein subunit. Interface residues were 

separated into 2 classes, core residues and rim residues, using the definition of Schärer [45], which employs 

a percent burial threshold to assign the core residues. Here, we chose this threshold as greater than 75% 

burial (i.e., Accessibility (aa) ≤ 25%). In a few complexes that had no core residues in their interface, the 

interface rim was used for the analysis. 

 

4.3. Deriving the iPat score 

Each amino acid is assigned to one of four basic physicochemical properties: 

Hydrophobic: Ala, Leu, Met, Phe, Pro, Tyr, Trp, Ile, Val 

Polar (uncharged): Asn, Cys, Gln, Ser, Thr, Gly 

Positively charged: Arg, Lys, His 

Negatively charged: Asp, Glu 

 

There are several advantages to considering amino acid properties rather than the 20 amino acid types, 

besides the extreme combinatorial complexity of using 20 different amino acids: 1) amino acid properties 

https://paperpile.com/c/FY780Y/IHv2a
https://paperpile.com/c/FY780Y/dvagE
https://paperpile.com/c/FY780Y/mfiiC
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influence the distribution of amino acids across the protein matrix and therefore also their binding 

propensities, 2) grouping amino acids by properties enables to compile more robust statistics for features 

of binding interfaces, 3) amino acid properties are more conserved in evolution than specific amino acids; 

4) amino acid properties were shown to confer advantages in computational protein design [46], fold 

recognition [47] and  disorder prediction [48]; and 5) they do reflect basic modes of interactions (such as 

hydrophobic, electrostatic, H-bond) across interfaces. Calculating pairwise propensities for protein-protein 

interactions using a reduced set of amino acids were not carried out so far -- as far as we know -- but the 

applicability of 202/2 amino acid doublet propensities in analyzing protein-RNA interfaces was 

demonstrated by Kim et al. [49]. 

 

For a given interface or non-interface residue k, with a given property i, we computed the frequency of 

observing the property pairs fij, where j=1,4 are properties of the surrounding residues within a defined 

cutoff distance from residue k. The fij for interface residues were computed only for the interface core 

residues. Interface rim residues were not considered since they are believed to contribute less to the affinity 

and specificity of the binding and their properties represent a transition between the surface and interface 

core [8]. 

 

The statistical potentials (pij) for each property pair (a 4x4 matrix of property pairs) (Fig. 2A) were 

calculated as the logarithm of the ratio of the relative frequency (fij) of this pair in the local environment of 

interface core residues, and in the local environment of surface residues that are not part of an interface: 

pij = log ( fi,j (interface core) / fi,j (non-interface surface) ) (2) 

where 

fi,j = ni,j / ∑ni,j
i,j

 

nij represents the number of instances of a residue pair with properties i and j in the local environment 

considered. 

https://paperpile.com/c/FY780Y/5pof5
https://paperpile.com/c/FY780Y/uUqDm
https://paperpile.com/c/FY780Y/OHLGq
https://paperpile.com/c/FY780Y/AUJE1
https://paperpile.com/c/FY780Y/sQnbT
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The local environment of a given surface or interface residue was computed using a 12Å radial distance 

cutoff defining a surface patch around the residue represented by its Cα atom. C atom could also be used 

for this purpose and would produce highly similar results, since the difference in distance between Cα and 

C is negligible compared to the overlap between areas defined by the radial distance (12Å) cutoffs around 

these atoms. The radial distance cutoff was selected on the basis of an exploratory analysis of the 

distribution of maximum Cα-Cα distances between residues in interfaces of complexes of the training set 

(Fig. S5). Furthermore, the 12Å had previously been found to generate an  optimal contrast between specific 

and nonspecific interfaces in terms of their local packing density by Janin  and colleagues [37]. At this 

cutoff value, even the smallest binding interface comprised multiple patches. We then define the iPat score 

for a given interface or surface residue k, with property i as follows: 

iPat(k, i) = ∑  pi,j / N i,j  (3) 

 

The averaging in Eq 3 is carried out over all property pairs i,j where i is the central residue and j 

corresponds to all residues within the 12Å cutoff from the central residue (k) (Fig. 1). pi,j is defined in Eq 2 

and N is the number of residues in the given patch. 

 

4.4. Using iPat to score entire protein surfaces 

To be able to score proteins considering the difference in the average iPat score for its interface and for 

its general surface, we used the following expression: 

iPatprot =

{
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c = <iPat (interface core) > ;    s = <iPat (surface) > (4) 

 

where <iPat (interface core) > represents the average of scores for all interface core residues belonging to a 

given subunit in a protein complex and <iPat (surface) > represents the average of scores for all non-

interacting surface residues for the corresponding subunit of the complex. iPatprot represents the Euclidean 

distance of a given data point from the diagonal on the scatter plots (Fig. 4). When <iPat (interface core) > 

is greater than <iPat (surface) >, the data point is below the diagonal and iPatprot has a negative value, 

representing a favorable score. 

 

4.5. Implementation, statistics and figure generation 

The property pair frequencies and statistical potential calculations were implemented in Python (2.7.6) 

using the ‘numpy’ and ‘panda’ modules. Input and output files were processed by in-house Python and Perl 

(v5.18.2) scripts. Statistical analysis of the data was carried out using Python. To evaluate if two 

distributions are significantly different, the Mann-Whitney U nonparametric unpaired test was used. 

Significant differences between paired samples were tested by the Wilcoxon signed-rank test. Both tests 

were computed in Python using the ‘scipy’ module. Box plots and scatter plots were generated with the 

‘matplotlib’ module. Visual displays of protein structures were obtained with PyMOL 1.7 

(http://pymol.org). 

The source codes of iPat are available in GitHub: https://github.com/lazartomi/iPat/ 

 

ASSOCIATED CONTENT: 

Supporting information: 

 

Supplementary figures (5): Figure S1. (Clostridium perfringens enterotoxin trimer (PDB: 

3ZIW) with the iPat scores projected onto the surface), Figure S2. (Heatmaps calculated for crystal 
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packing dimers showing the frequencies of middle-range contacts between residues of different 

physical properties.), Figure S3. (Scatter plots of average iPat, stickiness and hydrophobicity 

values for all interface residues (rim residues included) and non-binding surface residues in 

individual protein chains of the analyzed data sets.), Figure S4. (Receiver Operating Characteristic 

(ROC) analysis of iPat, hydrophobicity and stickiness on the test set.) and Figure S5. (Frequency 

distribution of maximum Cα-Cα atom distances of interfaces in the training set.) + Supplementary 

table: Table S1. (Protein Data Bank identifiers of proteins in the data sets.) – file type: DOCX 
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