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Abstract. In this paper we propose a parallel iterative hybrid methods for finding a common
element of the solution sets of a finite family of pseudomonotone equilibrium problems and the
fixed points set of a semigroup-nonexpensive mappings in Hilbert spaces. Under mild conditions,
we obtain the strong convergence of the proposed iterative process. Some numerical experiments
are given to verify the efficiency the proposed algorithm.
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1. INTRODUCTION

Throughout the paper we suppose that H is a real Hilbert space with inner product
h�; �i and the associated norm k � k, C is a closed convex subset in H and that fi W
C �C !R; i D 1;2; : : : ;N , T .s/ WC !C , s � 0. Conditions for fi ; i D 1;2; : : : ;N
and T .s/ will be detailed later. We are interested in a solution method for the system
defined as

Find x� 2 C W fi .x
�;y/� 0 8 y 2 C; i D 1;2; : : : ;N; (1.1)

x� D T .s/.x�/ 8s � 0: (1.2)

The problem (1.1) can be considered as a system of equilibrium problems, which
was first introduced by Blum and Oettli in [2]: Given f W C �C !R,

find x� 2 C such that f .x�;y/� 0 8y 2 C: (1.3)

The equilibrium problems play an important role in optimization and nonlinear ana-
lysis. It is well known that many problems, such as variational inequalities, Nash
equilibrium problems, saddle point problems, complementarity problems can be for-
mulated as special cases of equilibrium problems. There are different methods for

c
 2018 Miskolc University Press



1186 L.Q. THUY, C.-F. WEN, J.-C. YAO, AND T. N. HAI

solving (1.3), see, for example, [1–4], [5], [8], [12–16], [20], [21, 22], and the refer-
ences cited therein. Among them, we are interested in Extragradient method intro-
duced in [9, 20] due to its simplicity and efficiency:

8̂̂̂̂
<̂̂
ˆ̂̂̂:

x0 2 C;

yn D argmin
y2C

�
�f .xn;y/C

1

2
ky�xnk

2

�
;

xnC1 D argmin
y2C

�
�f .yn;y/C

1

2
ky�xnk

2

�
:

(1.4)

Under assumptions that the bifunctions f is pseudomonone and Lipschitz-type con-
tinuous, the authors proved that the sequence fxng generated by (1.4) weakly con-
verges to a solution of (1.3).

It is well known that the problems of finding common fixed points of nonexpans-
ive mappings and of nonexpansive semigroups is an important problem in fixed point
theory and applications; in particular, in image recovery, convex feasibility problem,
and signal processing problem (see e.g. [7], [14]). Iterative approximation meth-
ods for these problems in Hilbert or Banach spaces have been studied extensively by
many authors; see, for example, [6], [17], [23], [24, 25], and the references therein.
Finding a common element of the set of fixed points of nonexpansive mappings or a
semigroup of nonexpansive mappings and the set of solutions to a equilibrium prob-
lem has been studied extensively in the literature; see, for example, [4], [5], [12],
[17], [18], [21, 22], [25] and the references therein. The common approach in these
papers is to use a proximal point algorithm for handling the equilibrium problem.
For monotone equilibrium problems the subproblems needed to solve in the prox-
imal point method are strongly monotone, and therefore they have a unique solution
that can be approximated by available methods. However, for pseudomonone prob-
lems the subproblems, in general, may have nonconvex solution set due to the fact
that the regularized bifunctions do not inherit any pseudomonotoniciy property from
the original one.

In this article, motivated by [4, 11] and inspired by [9, 20], we propose a parallel
iterative method for finding a common element of the solution sets of a finite family of
pseudomonotone equilibrium problems and the set of fixed points of a nonexpansive
semigroup in Hilbert spaces. The main point here is that we combine a parallel
splitting-up technique and the extragradient procedure rather than a proximal point
algorithm for dealing with a finite family of pseudomonotone equilibrium problems
and Mann’s iterative algorithms for finding fixed points of nonexpansive mappings.
We obtain the strong convergence of iterative processes.

The paper is organized as follows: In Section 2, we collect some definitions and
results needed for further investigation. We describe a novel parallel hybrid iterative
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method in the Section 3. The convergence analysis for the proposed method is de-
tailed in Section 4. Some special cases and illustrative examples are provided in the
last section.

2. PRELIMINARIES

In this section, we recall some definitions and results that will be used in the sequel.
In what follows by xn * x we mean that the sequence fxng converges to x in the
weak topology. Let C be a nonempty closed convex of a Hilbert space H . We recall
that mapping T W C ! C is said to be nonexpansive on C if

kT x�Tyk � kx�yk for al x;y 2 C:

Let F.T / denote the set of fixed points of T . A family fT .s/ W s 2 RCg of map-
pings from C into itself is called a nonexpansive semigroup on C if it satisfies the
following conditions:

(i) for each s 2 RC; T .s/ is a nonexpansive mapping on C ;
(ii) T .0/x D x for all x 2 C ;

(iii) T .s1C s2/D T .s1/ıT .s2/ for all s1; s2 2 RC;
(iv) for each x 2 C , the mapping T .�/x from RC into C is continuous.

Let F D
T
s�0

F.T .s// be the set of all common fixed points of fT .s/ W s 2 RCg. We

know that F is nonempty if C is bounded (see [3]).
We begin with the following properties of nonexpansive mappings.

Lemma 1 ([10]). Let C be a closed convex subset of a Hilbert space H and let
S WC !C be a nonexpansive mapping such that F.S/¤¿. If a sequence fxng �C
such that xn*´ and xn�Sxn! 0, then ´D S´.

Lemma 2 ([23]). Let C be a nonempty bounded closed convex subset of H and
let fT .s/ W s 2 RCg be a nonexpansive semigroup on C . Then, for any h� 0

lim
s!1

sup
y2C




T .h/�1
s

Z s

0

T .t/ydt
�
�
1

s

Z s

0

T .t/ydt



D 0

Since C is a nonempty closed and convex subset of H , for every x 2 H , there
exists a unique element PCx; defined by

PCx D argminfky�xk W y 2 C g :

The mapping PC W H ! C is called the metric (orthogonal) projection of H onto
C . It is also known that PC is firmly nonexpansive, or 1-inverse strongly monotone
(1-ism), i.e.,

hPCx�PCy;x�yi � kPCx�PCyk
2
8x;y 2H: (2.1)

Besides, we have

kx�PCyk
2
CkPCy�yk

2
� kx�yk2 8x 2 C; 8y 2H: (2.2)
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Moreover, ´D PCx if only if

hx�´;´�yi � 0 for all y 2 C: (2.3)

The bifunction f W C �C ! R is called monotone on C if

f .x;y/Cf .y;x/� 0 for all x;y 2 C I

pseudomonotone on C if

f .x;y/� 0) f .y;x/� 0 for all x;y 2 C:

It is obvious that any monotone bifunction is a pseudomonotone one, but not vice
versa.
Throughout this paper we consider bifunctions with the following properties:
.C1/ f is pseudomonotone, i.e., for all x;y 2 C ,

f .x;y/� 0) f .y;x/� 0I

.C2/ f is Lipschitz-type continuous, i.e., there exist two positive constants c1; c2
such that

f .x;y/Cf .y;´/� f .x;´/� c1kx�yk
2
� c2ky�´k

2 for all x;y;´ 2 C I

.C3/ f is weakly continuous on C �C ;

.C4/ f .x; :/ is convex, subdifferentiable on C and f .x;x/D 0 for every x 2 C:
The following statements will be needed in the next section.

Lemma 3 ([1]). If the bifunction f satisfies Assumptions .C1/� .C4/, then the
solution set of equilibrium problems:

Find x� 2 C W f .x�;y/� 0 for all y 2 C

is weakly closed and convex.

Lemma 4 ([8]). Let C be a convex subset of a real Hilbert space H and g W C !
R be a convex and subdifferentiable function on C . Then, x� is a solution to the
following convex problem

minfg.x/ W x 2 C g

if only if 0 2 @g.x�/CNC .x
�/, where @g.:/ denotes the subdifferential of g and

NC .x
�/ is the normal cone of C at x�.

It is also known that H satisfies Opial’s condition. See the following definition in
[19].

Definition 1 ([19]). A Banach space X is said to satisfy Opial’s condition if
whenever fxng is a sequence in X which converges weakly to x, as k!1, then

lim
n!1

supkxn�xk< lim
n!1

supkxn�yk 8y 2X; with x ¤ y:
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3. MAIN RESULTS

In this section, based on the hybrid method in mathematical programming, pro-
jection, extragradient method and Mann’s iteration, we propose a parallel iterative
method for finding a common element of the solution sets of a finite family of equilib-
rium problems with pseudomonotone bifunctions ffigNiD1 and the set of fixed points
of nonexpansive semigroup mappings fT .s/ W s � 0g in a Hilbert space H .
We denote by Sol.C;fi / the set of (1.1), i D 1;2; : : : ;N;. In what follows, we assume
that the solution set

˝ D F
\�

N
\
iD1

Sol.C;fi /

�
is nonempty and each bifunction fi ; .i D 1; : : : ;N / satisfies all the conditions .C1/�
.C4/: Observe that we can choose the same Lipschitz coefficients fc1; c2g for all
bifunctions fi ; i D 1;2; : : : ;N: Indeed, condition .C2/ implies that

fi .x;´/�fi .x;y/�fi .y;´/� c1ikx�yk
2
Cc2iky�´k

2
� c1kx�yk

2
Cc2ky�´k

2;

where c1 D max
1�i�N

c1i and c2 D max
1�i�N

c2i : Hence,

fi .x;y/Cfi .y;´/� fi .x;´/� c1kx�yk
2
� c2ky�´k

2:

Further, since˝¤¿, by Lemma 3, the sets Sol.C;fi /; i D 1; : : : ;N are nonempty,
closed and convex, hence the solution set ˝ is a nonempty closed and convex subset
of C . Thus given any fixed element x0 2C there exists a unique element Nx WDP˝x0.

Algorithm 1. Choose positive number 0 < � < min
�
1
2c1
; 1
2c2

�
and the positive

sequences f�ng � Œa;1� for some a 2 .0;1/.
Seek a starting point x0 2 C and set n WD 0.
Step 1.

� Solve the strongly convex programs

yin D argminf�fi .xn;y/C
1

2
kxn�yk

2
W y 2 C g;

´in D argminf�fi .yin;y/C
1

2
kxn�yk

2
W y 2 C g; i D 1; : : : ;N I

� Find positive integer

in D argmax
1�i�N

fk´in�xnkg;

and set ´n WD ´
in
n I

Step 2. Compute un D .1��n/xnC�nTn´n; where Tn is defined as

Tnx WD
1

sn

Z sn

0

T .s/xds; 8x 2 C with lim
n!C1

sn DC1I
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xnC1 D P.Hn\Wn/x0; where

Hn D f´ 2H W kun�´k � kxn�´kg;

Wn D f´ 2H W hxn�´;x0�xni � 0g:

Increase n by 1 and go back to Step 1.

We now state and prove the convergence of the proposed iteration method.

4. CONVERGENCE RESULTS

In this section, we show the strong convergence of the sequences fxng and fung
defined by Algorithm 1 to the common element in a real Hilbert space.

For establishing the strong convergence of fxng and fung in Algorithm 1, we need
the following result (see [20]).

Lemma 5. Suppose that x� 2 Sol.C;fi / and xn; yin; ´
i
n; i D 1; : : : ;N; are as in

Step 1 of Algorithm 1. Then

k´in�x
�
k
2
� kxn�x

�
k
2
� .1�2�c1/ky

i
n�xnk

2
� .1�2�c2/ky

i
n�´

i
nk
2:

Theorem 1. Let C be a nonempty closed convex subset in a real Hilbert space H ,
fT .s/ W s 2 RCg be a nonexpansive semigroup on C , fi be a bifunction from C �C

to R satisfying conditions .C1/� .C4/. Suppose that ˝ ¤ ¿. Let fxng and fung
be sequences generated by the Algorithm 1, where f�ng � Œa;1� for some a 2 .0;1/.
Then, fxng and fung converge strongly to an element p� D P˝x0.

Proof. It is obvious that Hn and Wn are closed and convex for every n � 0. So
that the fxng is well defined for every n � 0. Moreover, it is easy seen that Tn is
nonexpensive for all n� 0:

Now we divide the proof into several steps.
Step 1. Claim that ˝ �Hn\Wn for every n� 0.
Indeed, for each x� 2˝, by Lemma 5, we have

k´in�x
�
k � kxn�x

�
k for all n� 0:

From the definition of in, we have

k´n�x
�
k � kxn�x

�
k for all n� 0: (4.1)

From the convexity of k � k2, the nonexpansiveness of Tn and (4.1) it follows that

kun�x
�
k
2
D


.1��n/.xn�x�/C�n.Tn´n�x�/

2

� .1��n/kxn�x
�
k
2
C�nkTn´n�Tnx

�
k
2

� .1��n/kxn�x
�
k
2
C�nk´n�x

�
k
2

� .1��n/kxn�x
�
k
2
C�nkxn�x

�
k
2

D kxn�x
�
k
2
8n� 0; (4.2)
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which implies x� 2Hn. Hence ˝ �Hn for all n� 0.
Next we show ˝ �Wn for all n � 0. Indeed, when nD 0, we have x0 2 C and

W0 DH . Consequently, ˝ �H0\W0. By induction, suppose ˝ �Hm\Wm for
somem� 0. We have to prove that˝ �HmC1\WmC1. Since xmC1DPHm\Wm

x0,
by (2.3), for every ´ 2˝ �Hm\Wm, it holds that

hxmC1�´;x0�xmC1i � 0;

which means that ´ 2WmC1. Note that ˝ �Hn for all n � 0, we can conclude that
˝ �Hn\Wn for all n� 0.

Step 2. Claim that for all i D 1; : : : ;N , we have

lim
n!1

kxnC1�xnk D lim
n!1

kxn�unk D lim
n!1

kxn�´
i
nk D lim

n!1
kxn�y

i
nk D 0:

Indeed, from xn D PWn
x0 and (2.2), it follows that, for every u 2˝ �Wn, we get

kxn�x0k
2
� ku�x0k

2
�ku�xnk

2
� ku�x0k

2: (4.3)

This implies that the sequence fxng is bounded. From (4.2) and (4.1), it follows that
the sequences fung and f´ng are also bounded.

Observing that xnC1 D PHn\Wn
x0 2Wn;xn D PWn

x0, from (2.2) we have

kxn�x0k
2
� kxnC1�x0k

2
�kxnC1�xnk

2
� kxnC1�x0k

2 : (4.4)

Thus, the sequence fkxn�x0kg is nondecreasing, hence there exists the limit of the
sequence fkxn�x0kg. From (4.4) we obtain

kxnC1�xnk
2
� kxnC1�x0k

2
�kxn�x0k

2 :

Letting n!1, we find
lim
n!1

kxnC1�xnk D 0: (4.5)

Since xnC1 2Hn, it follows that kun�xnC1k � kxnC1�xnk. Thus

kun�xnk � kun�xnC1kCkxnC1�xnk � 2kxnC1�xnk:

The last inequality together with (4.5) implies that

lim
n!1

kun�xnk D 0 (4.6)

Moreover, from (4.2), Lemma 5 and the definition of in for any fixed x� 2 ˝; we
have

kun�x
�
k
2
� .1��n/kxn�x

�
k
2
C�nk´n�x

�
k
2

� kxn�x
�
k
2
��n

h
.1�2�c1/ky

in
n �xnk

2
C .1�2�c2/ky

in
n �´nk

2
i
:

Therefore

a
�
.1�2�c1/ky

in
n �xnk

2
C .1�2�c2/ky

in
n �´nk

2
�

� �n
�
.1�2�c1/ky

in
n �xnk

2
C .1�2�c2/ky

in
n �´nk

2
�
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� kxn�x
�
k
2
�kun�x

�
k
2

D
�
kxn�x

�
k�kun�x

�
k
��
kxn�x

�
kCkun�x

�
k
�

� kxn�unk
�
kxn�x

�
kCkun�x

�
k
�
: (4.7)

Using the last inequality together with (4.6) and taking into account the boundedness
of two sequences fung and fxng as well as the conditions of f�ng; �, we come to the
relations

lim
n!1




yinn �xn


D lim
n!1




yinn �´n


D 0: (4.8)

From k´n�xnk � k´n�y
in
n kCky

in
n �xnk and (4.8), we obtain

lim
n!1

k´n�xnk D 0: (4.9)

By the definition of in, we get

lim
n!1




´in�xn


D 0 (4.10)

for all i D 1; : : : ;N . From Lemma 5 and (4.10), we obtain

lim
n!1




yin�xn


D 0
for all i D 1; : : : ;N .

Since fxng is bounded, there exists a subsequence fxnk
g of fxng converging weakly

to some element p.
Step 3. Claim that p 2˝.

From (4.6) and (4.9), we obtain also that funk
g and f´nk

g converges weakly to p.
Since fung � C and C is a closed convex subset in H , we have p 2 C:

Now, we prove that p 2˝. To this end, first we show that p 2
N
\
iD1

Sol.C;fi /:

Noting that

yin D argminf�fi .xn;y/C
1

2
kxn�yk

2
W y 2 C g;

by Lemma 4, we obtain

0 2 @2

�
�fi .xn;y/C

1

2
kxn�yk

2

�
.yin/CNC .y

i
n/:

Therefore, there exists w 2 @2fi .xn;yin/ and Nw 2NC .yin/ such that

�wCxn�y
i
nC Nw D 0: (4.11)

Since Nw 2 NC .yin/,
˝
Nw;y�yin

˛
� 0 for all y 2 C . This together with (4.11) implies

that
�
D
w;y�yin

E
�

D
yin�xn;y�y

i
n

E
(4.12)
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for all y 2 C . Since w 2 @2fi .xn;yin/,

fi .xn;y/�fi .xn;y
i
n/�

D
w;y�yin

E
for all y 2 C: (4.13)

From (4.12) and (4.13), we get

�
�
fi .xn;y/�fi .xn;y

i
n/
�
�

D
yin�xn;y�y

i
n

E
for all y 2 C: (4.14)

Since xnk
*p and kxn�yink! 0 as n!1, we have yink

*p. Letting nD nk in
(4.14), passing to the limit as k!1 and using assumptions .C3/, we conclude that

fi .p;y/� 0 for all y 2 C; i D 1;2; : : : ;N: Thus, p 2
N
\
iD1

Sol.C;fi /:

Now, we prove that p D T .h/p for all h > 0. First, we obtain from Step 3 of the
algorithm that

akun�Tnunk � �nkun�Tnunk

� �n

�
kun�Tn´nkCkTn´n�Tnunk

�
� k�nun��nTn´nkC�nkTn´n�Tnunk

D k�nunC .1��n/xn�unkC�nkTn´n�Tnunk

� .1��n/kxn�unkC�nk´n�unk

� kun�xnkC�nk´n�xnk (4.15)

Taking into account kun�xnk! 0 and k´n�xnk! 0, it follows that

lim
n!1

kun�Tnunk D 0: (4.16)

Note that

kT .h/un�unk �



T .h/un�T .h/� 1

sn

Z sn

0

T .s/unds
�




C




T .h/� 1
sn

Z sn

0

T .s/unds
�
�
1

sn

Z sn

0

T .s/unds





C




 1
sn

Z sn

0

T .s/unds�un





� 2




 1
sn

Z sn

0

T .s/unds�un





C




T .h/� 1
sn

Z sn

0

T .s/unds
�
�
1

sn

Z sn

0

T .s/unds



: (4.17)

Since the sequence fung is bounded, we can apply Lemma 2 to get

lim
n!1




T .h/� 1
sn

Z sn

0

T .s/unds
�
�
1

sn

Z sn

0

T .s/unds



D 0; (4.18)
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for every h 2 .0;1/ and therefore, by (4.16), (4.17) and (4.18), we obtain

lim
n!1

kT .h/un�unk D 0

for each h > 0 from which we have by Lemma 1 that p is a fixed point of T .h/ for
all h > 0: Hence p 2 F .

Step 4. The sequence fxng converges strongly to p� WD P˝x0.
Indeed, from p� 2˝ and (4.3), we obtain

kxn�x0k � kp
�
�x0k 8n� 0:

The last inequality together with xnk
*p and the weak lower semicontinuity of the

norm k:k imply that

kp�x0k � lim inf
k!1

kxnk
�x0k � lim sup

k!1

kxnk
�x0k � kp

�
�x0k:

On the other hand, since p� WD P˝x0, we have kp � x0k � kp� � x0k. Hence,
p� D p and lim

k!1
kxnk

�x0k D kp
��x0k. Taking into account xnk

*p�, we have

xnk
! p�. Finally, suppose that

˚
xnj

	
is an another weakly convergent subsequence

of fxng. By a similar argument as above, we conclude that
˚
xnj

	
converges strongly

to p� WD P˝x0. Therefore, the sequence fxng generated by the Algorithm 1 con-
verges strongly to P˝x0. Then the strong convergence of the sequences fung to p is
followed from (4.6). The proof is now completed. �

5. SPECIAL CASES AND ILLUSTRATIVE EXAMPLES

IfN D 1, Algorithm 1 reduces to the following one for finding a common element
in the solution set of pseudomonotone equilibrium problems and the set of the fixed
points of a nonexpansive semigroup in Hilbert spaces.

Corollary 1. Let C be a nonempty closed convex subset in a real Hilbert space
H ;fT .s/ W s 2RCg be a nonexpansive semigroup on C; f be a bifunction from C �C
to R satisfying conditions .C1/� .C4/. Suppose that ˝ D F \Sol.f;C /¤ ¿. Let
fxng and fung be sequences generated by

x0 2 C chosen arbitrarily;

yn D argminf�f .xn;y/C
1

2
kxn�yk

2
W y 2 C g;

´n D argminf�f .yn;y/C
1

2
kxn�yk

2
W y 2 C g;

un D .1��n/xnC�nTn´n;

Hn D f´ 2H W kun�´k � kxn�´kg;

Wn D f´ 2H W hxn�´;x0�xni � 0g;

xnC1 D P.Hn\Wn/x0;
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where f�ng � Œa;1�, a 2 .0;1/. Then, fxng and fung converge strongly to an element
p� 2˝.

Proof. Taking N D 1 in Theorem 1, we get the desired conclusion easily.
Now putting fi .x;y/D 0; i D 1;2; : : : ;N; for all x;y 2C , we obtain the following

result for finding a common fixed point of a nonexpansive semigroup fT .s/ W s 2RCg
on C . �

Corollary 2. Let C be a nonempty closed convex subset in a real Hilbert space
H ;fT .s/ W s 2 RCg be a nonexpansive semigroup on C such that F ¤ ¿. Let fxng
and fung be sequences generated by

x0 2 C chosen arbit rarily;

un D .1��n/xnC�nTnxn;

Hn D f´ 2H W kun�´k � kxn�´kg;

Wn D f´ 2H W hxn�´;x0�xni � 0g;

xnC1 D P.Hn\Wn/x0;

where f�ng � Œa;1�, a 2 .0;1/: Then, fxng and fung converge strongly to an element
p� 2 F .

If T .s/xD x for all s > 0 and x 2C , Algorithm 1 reduces to the following one for
finding a common element in the solution-set of a finite family of pseudomonotone
equilibrium problems in Hilbert spaces.

Corollary 3. Let C be a nonempty closed convex subset in a real Hilbert space
H , fi be bifunctions from C �C to R satisfying conditions .C1/� .C4/. Suppose

that ˝ D
NT
iD1

Sol.fi ;C /¤¿. Let fxng and fung be sequences generated by

x0 2 C chosen arbit rarily;

yin D argminf�fi .xn;y/C
1

2
kxn�yk

2
W y 2 C g; i D 1; : : : ;N;

´in D argminf�fi .yin;y/C
1

2
kxn�yk

2
W y 2 C g; i D 1; : : : ;N;

in D argmax
1�i�N

fk´in�xnkg; ´n WD ´
in
n ;

un D .1��n/xnC�n´n;

Hn D f´ 2H W kun�´k � kxn�´kg;

Wn D f´ 2H W hxn�´;x0�xni � 0g;

xnC1 D P.Hn\Wn/x0:

where f�ng � Œa;1� for some a 2 .0;1/. Then, fxng and fung converge strongly to an
element p 2˝.
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To illustrate the proposed algorithm, we consider the following examples. The
computer used in these experiments had an Intel Boxed Core CPU Q9400 6M Cache,
2.66 GHz, 1333 MHz FSB and 4 GB of memory. The language was MATLAB 2010b.

Example 1. Let H DRk with the inner product hx;yi WD x1y1C�� �Cxkyk for all
xD .x1;x2; � � � ;xk/;yD .y1;y2; � � � ;yk/2H . Let C WD Œ�1;1�k be a k-dimensional
box in H : For all x;y 2 C and for each i 2 f1;2; : : : ;N g, we define the operator fi
by

fi .x;y/ WD

kX
jD1

˛ij .y
2
j �x

2
j /

where ˛ij 2 .0;1/ are randomly generated. An elementary computation shows that
conditions .C1/� .C4/ are satisfied for all fi ; i D 1;2; : : : ;N . To define a nonex-
pansive semigroup let us consider the matrix

T .s/D

0BBBBB@
e�s 0 0 � � � 0

0 e�s 0 � � � 0

0 0 1 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � 1

1CCCCCA ; s 2 R;

and let

T .s/x D

0BBBBB@
e�s 0 0 � � � 0

0 e�s 0 � � � 0

0 0 1 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � 1

1CCCCCAx

D

0BBBBB@
e�s 0 0 � � � 0

0 e�s 0 � � � 0

0 0 1 � � � 0
:::

:::
:::
: : :

:::

0 0 0 � � � 1

1CCCCCA
0BBB@
x1
x2
:::

xk

1CCCA :
It is easy to verify that fT .s/ W s � 0g is a nonexpansive semigroup on C and that the

common solution-set is ˝ D F
T� N
\
iD1

Sol.C;fi /
�
D f.0;0;0; : : : ;0/T g.

We apply Algorithm 1 to solve problem (1.1)-(1.2). Note that the mapping Tn in
Algorithm 1 can be found in a closed form:

Tn´D .´1
1� e�sn

sn
;´2

1� e�sn

sn
;´3; : : : ;´k/

T :

We choose the parameters as follows:
� �D 10;
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� �n D 0:9 8n� 1;
� sn D n 8n� 1;
� the stopping rule: kxn� x�k � 5:10�3, where x� D .0;0;0; : : : ;0/T is the

unique solution of problem (1.1)-(1.2).
First, we test Algorithm 1 with k D 6, N D 3, x0 D .1;1;1;1;1/T . The results are
presented in Table 1. The approximate solution is obtained after 198 iterations.

TABLE 1. Iterations of Algorithm 1 in Example 1 with starting point
x0 D .1;1;1;1;1;1/

T

Iter(n) x1n x2n x3n x4n x5n x6n kxn�x
�k

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.4495
1 0.5810 0.5720 0.6221 0.5845 0.5796 0.6328 1.4593
2 0.3339 0.3348 0.3715 0.3507 0.3485 0.3787 0.8657
3 0.2029 0.1925 0.2287 0.1993 0.1949 0.2360 0.5137
4 0.0879 0.1278 0.1129 0.1499 0.1588 0.1103 0.3109
5 0.3335 0.0252 0.2648 -0.0727 -0.1500 0.3029 0.5491
6 0.1932 0.0471 0.1795 -0.0013 -0.0393 0.2039 0.3390
7 0.1034 0.0715 0.1194 0.0610 0.0514 0.1309 0.2314
� � � � � � � � � � � � � � � � � � � � � � � �

198 0.0017 0.0017 0.0022 0.0017 0.0024 0.0023 0.0049

Next, we test our algorithm with different choices of k, N and x0. The results are
presented in Table 2.

TABLE 2. Performance of Algorithm 1 in Example 1 with different
k, N and x0

x0 D .1;1;1; � � � ;1/
T x0 D .�1;�1;�1; � � � ;�1/

T

CPU times Iter. CPU times Iter.

k=6, N=3 32.0823 135 32.7314 140
k=6, N=6 85.4715 171 110.8062 241
k=10, N=6 244.5807 423 231.3017 393
k=20, N=3 364.0974 889 351.2896 862

Example 2. Consider problem (1.1)-(1.2) with N D 2

find x� 2˝ WDEP.C;f1/\EP.C;f2/\F; (5.1)

where
f1 WR

3
�R3

!R; f1.x;y/D kyk
4
�kxk4 8x;y 2R3;
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f2 WR
3
�R3

!R; f2.x;y/D hAxCByCq;y�xi 8x;y 2R3;

AD

0@3 0 4

2 6 3

3 6 8

1A ;B D
0@1 0 3

2 3 4

2 7 6

1A ;q D
0@21
1

1A ;
F is the set of fixed points of the nonexpansive semigroup T .t/ defined by

T .t/ WR3
!R3; T .t/x D

0@cos t �sin t 0

sin t cos t 0

0 0 1

1A0@x1x2
x3

1A ; 8x 2R3; t > 0:

The feasible set is C WD Œ0;1�3 � R3. It is easy seen that f1, f2 is pseudomono-
tone and all the conditions of Theorem 1 are satisfied. Moreover, we can check that
˝ D fx�g where x� D .0;0;0/T is the unique solution of problem (5.1). We apply
Algorithm 1 to problem (5.1). Note that if we choose sn D n 8n � 1, the mappings
Tn can be expressed in the form

Tn.x/D
1

n

0@x1 sinnCx2.cosn�1/
x1.1� cosn/Cx2 sinn

nx3

1A :
Now, we compute the Lipschitz constants of fi . It is easy seen that f1 is Lipschitz-
type continuous with any constants c1; c2 > 0. For f2, we have

f2.x;y/Cf2.y;´/�f2.x;´/D hAxCByCq;y�xiChAyCB´Cq;´�yi

�hAxCB´Cq;´�xi

D hA.y�x/;´�yiChB.y�´/;y�xi

� �
.kAkCkBk/

2
kx�yk2�

.kAkCkBk/

2
ky�´k2:

Hence, 1
2c1
D

1
2c2
D

1
kAkCkBk

D 0:0418. The parameters in Algorithm 1 are chosen
as follows

� �D 0:04;
� �D 0:5;
� sn D n 8n� 1;
� x0 D .1;1;1/

T ;
� the stopping rule: kxn�x�k � 5:10�3.

The results are presented in Table 3. The approximate solution is obtained after 137
iterations.

CONCLUSION

We have proposed a parallel iterative method for finding a common element in the
solution sets of a finite family of pseudomonotone equilibrium problems and the set
of fixed points for a semigroup nonexpansive mappings. For handling a finite family
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TABLE 3. Iterations of Algorithm 1 in Example 2.

Iter(n) x1n x2n x3n kxn�x
�k

0 1.0000 1.0000 1.0000 1.7321
1 0.8401 0.9462 0.8360 1.5166
2 0.5758 0.8754 0.7388 1.2820
3 0.4044 0.6031 0.6616 0.9823
4 0.3552 0.3659 0.5562 0.7546
5 0.2393 0.3172 0.4439 0.5957
6 0.3476 0.1376 0.3436 0.5078
7 0.1764 0.2634 0.3484 0.4711
� � � � � � � � � � � � � � �

137 -0.0020 0.0010 0.0010 0.0024

of pseudomonotone equilibrium we have used a parallel splitting-up technique and
the extragrandient with the Lipschitz-type continuous. The strong convergence of the
proposed method has been established by using cutting planes.
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