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Abstract. The present study deals with some new properties for the Gottlieb polynomials in
one and several variables. The results obtained here include various families of multilinear and
multilateral generating functions, miscellaneous properties and also some special cases for these
polynomials.
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1. INTRODUCTION

A theoretical connection with the unification of generating functions has great
importance in the study of special functions. Steps forward in this directions has
been made by some researchers [1, 2, 7, 8].

The (univariate) Gottlieb polynomials were introduced and investigated in 1938,
and then have been cited in several articles. These polynomials are defined by [10]
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where 2F1 denotes Gauss’s hypergeometric series whose natural generalization of
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Here .�/� denotes the Pochhammer symbol defined (in terms of gamma function) by
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and Z�0 denotes the set of nonpositive integers and � .�/ is the familiar Gamma
function. Furthermore, the hypergeometric function 2F1 has the following integral
representation [12]:
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In addition to this, we can easily see the following relation for the Gottlieb poly-
nomials [14, p. 449, 20 (i)]:
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(1.3)
Recently, Khan and Akhlaq [11] introduced and investigated Gottlieb polynomials

in two and three variables to give their generating functions. Choi [5], by modify-
ing Khan and Akhlaq’s method, showed how to generalize the Gottlieb polynomials
in several variables to present two generating functions of the generalized Gottlieb
polynomials. Furthermore, he derives q-extension of a generalization of Gottlieb
polynomials in three variables and gives some formulas deducible from a generaliz-
ation of these polynomials in several variables (see [4]). Choi introduced a several
variable analogue of the Gottlieb polynomials as follows.
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Definition 1. An extension of the Gottlieb polynomials 'n .xI�/ inm variables is
defined by [5]
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where n;m 2N and, for convenience,
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It is noted that the special casemD 1 of (1.4) reduces immediately to the Gottlieb
polynomials in (1.1). Multivariable Gottlieb polynomials defined by (1.4) have the
following two generating functions [5]:
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where m 2N and �m is given in (1.5).
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where F .m/D Œ:� denotes one of the Lauricella series in m variables [13, p.33, Eq.(4)]
defined by
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The main object of this paper is to study different properties of Gottlieb polyno-
mials in one and several variables. Various families of multilinear and multilateral
generating functions are derived for these polynomials. Other miscellaneous proper-
ties of these multivariable polynomials are also discussed. Some special cases of the
results presented in this study are also indicated.

2. GENERATING FUNCTIONS

In this section, firstly, we prove a theorem which gives bilateral generating func-
tions relations for the Gottlieb polynomials defined by (1.1).
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Proof. If we denote the left-hand side of .2:2/ by T and use .2:1/; then we obtain
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Replacing n by nCqk and then using relation .1:3/ we may write
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which completes the proof. �
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Now we give a theorem which is about several families of bilinear and bilateral
generating functions for the multivariable Gottlieb polynomials
'mn .x1; :::;xmI�1; :::;�m/.
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It is possible to give many applications of our theorems with help of appropriate
choices of the multivariable functions ˝�C k.y1; :::;ys/; k 2N0; s 2N.

For example, set s D m and take ˝�C�k.y1; :::;ym/ D h
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Then, from Theorem 2, we obtain the following result which is a class of bilateral
generating functions for the multivariable Lagrange-Hermite polynomials and the
multivariable Gottlieb polynomials.
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Remark 1. Using the generating relation (2.5) for the multivariable Lagrange-
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�;� 2N0; in Theorem 2, we obtain the following class of bilinear generating func-
tions for the multivariable Gottlieb polynomials defined by (1.4).
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Furthermore, for every suitable choice of the coefficients ak .k 2N0/; if the mul-
tivariable function˝�C k.y1; :::;ys/ .s 2N/ is expressed as an appropriate product
of several simpler functions, the assertions of Theorems 1 and 2 can be applied in
order to derive various families of multilinear and multilateral generating functions
for the univariate and multivariate Gottlieb polynomials.

3. MISCELLANEOUS PROPERTIES

In this section, firstly, we obtain a recurrence relation for the multivariable Gottlieb
polynomials. Then, using the relation between Gottlieb and Jacobi polynomials, we
derive some properties for the Gottlieb polynomials.

Theorem 3. Multivariable Gottlieb polynomials have the following recurrence
relation:
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Equation (3.1) can be used to deduce numerous properties and characteristics of the
Gottlieb polynomials from those of the Jacobi polynomials.
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or, equivalently,
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Proof. .i/ Using relations (3.1) and (3.2), we arrived the result.
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Theorem 5. Gottlieb polynomials have the following integral representation:

'n .xI�/D�
sin�x
�en�

1Z
0

t�x�1 .1� t /x
�
1�

�
1� e�

�
t
�n
dt;

where �1 < x < 0:

Proof. If we use definition of Gottlieb polynomials given by (1.1) in (1.2) and
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Theorem 6. Gottlieb polynomials have the following integral representation:
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