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1. INTRODUCTION

An Abel-Grassmann’s groupoid (abbreviated as AG-groupoid) or Left Almost
Semigroup (briefly LA-semigroup) is a groupoid S satisfying the left invertive law,
defined as, (ab)c = (ch)a for all a,b,c € S. Inverse AG-groupoids, their different
characterisations and congruences on inverse AG-groupoids using the kernel-normal
system and kernel-trace approaches have been studied by many authors which can be
found in the literature (see [1-4,6,7, 1 1]).

In this paper, we introduce completely left inverse AG**-groupoids and investigate
a congruence pair consisting a kernel and trace of a congruence of a completely left
inverse AG**-groupoid. In the second section, some preliminaries and basic results
on completely inverse AG**-groupoids are mentioned. In Section 3, we introduce
completely left inverse AG**-groupoids and investigate some basic congruences us-
ing the congruence pair. We show that if p is a congruence on a completely left in-
verse AG™*-groupoid, then (kerp, trp) is a congruence. In Section 4, we discuss sep-
arative and anti-separative decompositions of a locally associative AG**-groupoid.
Before the proofs of the main results, it is important to recall the basic knowledge
and necessary terminology.

2. PRELIMINARIES

An AG-groupoid S is regular if a € (aS)a forall a € S. If for a € S, there exists
an element ¢ such that a = (aa’)a and @' = (a'a)a’, then we say that & is inverse
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of a. In addition, if inverses commute, that is @'a = aa’, then S is called completely
regular. If a € S, then

Via) = {al €eS:a= (aa/)a anda = (a/a)a/}

is called the set of all inverses of a € S. Note that if ¢ € V(a) and b e V(b), then
acV(a)anda'b € V(ab).

An AG-groupoid S in which every element has a unique inverse is called inverse
AG-groupoid. If a~! is the unique inverse of a € S, then a groupoid satisfying
the following identities is called a completely inverse AG**-groupoid, that is for
alla,b,ce S

(ab)c = (¢h)a, a(bc) = b(ac)

a=(aaYa, a' =@ 'a)a! and aa™! !

=a ‘a.

If S is a completely inverse AG**-groupoid, then a~'a € Eg, where Eg is the set
of idempotents of S. If S is a completely inverse AG**-groupoid, then Eg is either
empty or a semilattice. For any idempotent e in Eg, e~! = e. Moreover, the set Eg
of an AG-groupoid S is a rectangular AG-band, that is for all e, f € Eg, e = (ef )e.
For futher concepts and results, the reader is referred to [3]. The set of idempotents
Eg of an AG-groupoid S is called left (respectively; right) regular AG-band if it
satisfies

(ef)e=-ef (respectively; (ef)e = fe)foralle, f € Eg.
Note that if S is an AG**-groupoid, then for e, f € Eg

ef =(ee)(ff)=(ff)lee) = fe

which shows left and right AG-bands serve the same purpose.

Lemma 1 ([3]). Let S be a completely inverse AG**-groupoid and let a,b € S
such that ab € Eg. Then ab = ba.

Lemma 2 ([3]). Completely inverse AG**-groupoids are idempotent-surjective.

If p is a congruence on a completely inverse AG**-groupoid, then S/p is also
completely inverse AG**-groupoid. The natural morphism maps S onto S/p by the
rule x — (x), and by the uniqueness of inverses (x_l)p = (x);l. If (a,b) € p, then
(@ ',b7 Y e pand (aa~t,bb7 1) € p.

3. CONGRUENCES IN COMPLETELY LEFT INVERSE AG**-GROUPOID

In this section, we introduce the notion of completely left inverse AG**-groupoids
and study certain congruences by means of their kernel and trace for this class of
groupoids. The essential part is to describe such congruence in terms of a congruence
pair which comprises of a normal subgroupoid and a congruence of a completely left
inverse AG**-groupoids.
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Definition 1. A completely inverse AG**-groupoid is called completely left in-
verse AG**-groupoid if the set Eg of idempotents of S is a left regular AG-band.

Proposition 1. Let p be a congruence on a completely inverse AG**-groupoid S.
If (a,e) € pfore € Eg, then (a,a™') € p and (a,a™'a) € p.

Lemma 3. Let S be a completely left inverse AG**-groupoid. If p is a congruence
on S, then S/p is a completely left inverse AG**-groupoid.

Proof. 1t is straightforward, and so it is omitted. O

Definition 2. A nonempty subset N of a completely left inverse
AG™*-groupoid S is called normal if

(1) Es €N,

(2) forevery x € S, x-Nx~1 C N,

(3) foreverya € N,a~ ! € N.

Let p be a congruence on a completely left inverse AG**-groupoid S and Eg be
the set of idempotents of S. The restriction of p on Eg, that is p| g is the trace of p
denoted by trp. The subset

kerp={ae S :(Fe € Es)(a,e) € p}
is the kernel of p.

Lemma 4. Let p be a congruence on a completely left inverse AG**-groupoid S.
(1) kerp is a normal AG**-subgroupoid of S.

(2) Foranya € S, e € Eg, if ea € kerp such that (e, aa™') € trp, then a € kerp.
(3) Foranya € S, ifa € kerp, then (a~'a, aa™') € trp.

Proof. (1) Let p be a congruence. If a,b € kerp, then (a,e) € p, (b, f) € p so
that (ab,ef) € p for some e, f € Eg. Hence ab € kerp and kerp is a subgroupoid of
S. Obviously, all the idempotents of S lie in kerp. Let a € kerp, then (a,e) € p for
e € Eg. Therefore forall x € S, (x !-ax, x l.ex) ep.Sincex l-ex =e-x71x
Eg, thus x~!.ax € kerp. Now if a € kerp, then for g € Eg, (a,g) € p. Since S/p,
is left inverse, it is clear that (a);1 € V((a),). Moreover, if h € Eg, thena™! € V(h)
so that (a1, h) € p. Thatis a~! € kerp for every a € kerp.

(2) If for a € S, e € Eg and ea € kerp, then there exists f € Eg such that
(ea, f) € p.Since (e, aa™1) etrp, thena =aa™1'-a=,ea =, f Hence (a, f)€p

and a € kerp.
(3) Let a € kerp. Then (a,e) € p for some e € Eg. By Proposition 1, we have
(a~a, a7'a) € p. Since trp = p| gy, it follows that (a~a,aa™1) € trp. O

Lemma 5. Let p be a congruence on a completely left inverse AG**-groupoid S.
Ifa='b € kerp, then ab™! € kerp and for all a,b € S,((a"'b-ab™1),a=1b) € p.

Proof. Let pbe acongruence on S. If a~!h € kerp, then (a~'h,e) € p for some e €
Es. Thenitis clear that (ab™1),, is inverse of (a~1b), in S/p and it follows immedi-
ately from the preliminaries and Lemma 3 that (¢~ 1) p € Es/,. Hence (ab™', fep
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for some f € Eg. Thus ab~! € kerp. Moreover, since S/p is inverse and E/p is a
left regular AG-band, we have

(@'b-ab™), = ()p(f)o = ((€)p()p)()p = (€)p = (a™'b),.
O

Lemma 6. Let p be a congruence on a completely left inverse AG**-groupoid S
andleta,be S ande € Eg. If (aa™", bb™') € trp and ab™! € kerp, then

(a-ea” ', b-eb™1) € trp.

Proof. Let p be a congruence on S. Leta,b € S such that (aa™!, bb~1) € trp and
ab™! e kerp. Then for all e € Eg, we have

V=q(e(@ta-a™ )

a-ea %

=a(e(b™'b-a™h)) (since (aa~t,bb™ 1) € trp)
=a(e(a™'b-b7h))
=a(e((@ b-(@ ') b)) (since (a 'b)p € Es;p)
=a((a ta-bb~ Y (eb™h))
=ab 'b-eb™t) (since (aa™!, bb™1) € trp)
=e-ab”!
=e(ab™'-a71b) (by Lemma 5)
=e(aa'-bb7 )
= b-eb! (since (aa™', bb™1) € trp).

Thus (a-ea™', b-eb™!) € trp. O

Definition 3. Let N be normal subgroupoid of a completely left inverse AG**-
groupoid S and t be congruence on a left regular AG-band Eg. Then (N,7) is a
congruence pair of S if for all a, b € § and e € Eg the following conditions hold.

(I)Ifea € N and (e, a~'a) € t, thena € N,

) If (aa™ 1, bb_l) eranda"!b € N, then (a cea™ 1, b-eb_l) €T.

Theorem 1. Let S be a completely left inverse AG**-groupoid and (N, t) is
congruence pair on S. Then the relation
PN, v) = {(a,b) e SxS: (aa ', bb™") et anda™'h e N}
is a congruence relation.
Proof. Clearly, (N, 1) is reflexive. p(y, ¢) is symmetric. In fact: t is symmetric

and by Definition 2 (3), a1l e N for any a € N. Also, if (a, b), (b, ¢) € p, then
(aa”!, bb~Y e, (bb™', cc™') e v and a b, b~ !c € N. Then by Lemma 1,
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ch~! € N. Hence (aa™!, cc™!) e 1. Since (¢ {(aa='-bb~1)c}) € Eg and N is
normal AG**-subgroupoid, then

(¢ Yaa - bb ™ Heate) ={c W ata-c) @ e) (since (a " ta, bb™Y) € 1)
={ala-c7leYa o)
={ata-b7'b}(a""¢) (since (b7, ccT) e 1)
= (bbYH(a"¢) (since (a"ta, bb~ 1) e 1)
= (cb H(a"tb) e N.
Moreover,
@'y Yate)y=c"Yaa " ¢)
=c Y(aa ' ceHe)re H(aa™t -bb™Ye)
(since b~ Lree™h).

Hence by Definition 3 (1), a~'c € N which implies that (a,c) € p(y,¢). Thus p(y, 1)
is equivalence relation.

Let (a.b) € p(n, 7). then (ac, bc) € p(y, ¢). In fact: if (aa=', bb~ )Y epanda~lb e
kerp, then by Definition 2 (2), (ac)~!(bc) € N. Further, using Definition 3 (2), we
have

(ac)ac) ™' = (@aa Hec™) = (cte)aa™) =alce-a Heb(e te-b7h).

Hence by definition of the relation p(y, 1), (ac, bc) € py, o)
Similarly, since T is a congruence, then (aa—', bb~1) € t implies that

(ca)(ca) ' =ca-cla'=ata-ccV =claa™ - e Hreb™ 7).
It remains to show that (ca)~(ch) € N. Therefore
b7 (e e-aa b)) ((ca)T (eb)) = ((¢Tle-aa” (BT )) (T T - eb)
=((cYeraaH)BTb)) (e e-aT D)
= (¢ 'e)(aa™ b7 b)Y (¢ )@ D)
= ((c7'e)aa™" b7 b)) (a7 b)
(since Es is left regular)
= (b ((@aa " -cc™Hb)) (@ 'h) € N.
Moreover,
b~ (¢ te-aa™Mb) = (¢ Ye-aa V(e e))(b™1b) (since Eg is left regular)
=((a tcrac™h (T e)) (b7 h)
= ((ac-c™ a7 o) (b7 D)
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=B -aY) b e e-a)).

Thus (b~ ((c"'c-aa=1)b))t(b(cc™ -a= 1)) (b~ (c"!c-a)). Hence by Definition 3
(1) it follows that a—Y(c~c-b) € N. Thus (ca, cb) € P(N, ©)-
O

Corollary 1. Let S be a completely left inverse AG**-groupoid and (N, t) is
congruence pair on S. Then the relation

PN, v) = {(a,b) e SxS: (aa ' ,bb™") et andba' € N}
is a congruence relation.

Theorem 2. Let S be a completely left inverse AG**-groupoid. If p is a congru-
ence on S, then (kerp, trp) is a congruence of S. Conversely, if (N, t) is congruence
pair on S, then the relation

PN, ) = {(a,b) e SxS: (aa"',bb™')etanda 'h e N}
is a congruence relation on S. Furthermore,
kerp(y,o) = N.ttp(n,) = T and perp,ip) = P-

Proof. The proof of the first part can be followed from Lemma 4, 6 and Theorem
1. We show that kerp(y, ;) = N and tro(y, ) = 7. Let a € kerp(y,¢), then for some e €
Es, (a,e) € p(n, 7). It follows that (ee7',aa™") € r and ea € N. Thus by Definition
3(1),a € N, thatis kerp(y, ) © N. Conversely, suppose thata € N. Then aleN.
Leta=la = e, itis clear that (ee™!, aa~ ) erande la=ea=a"'a-a=a e N.
Thus (e,a) € p(n,r)- Hence a € (€)p . ., S kerp(y,r). Thus kerp(y, ) = N.

Similarly, we show that trp(y, ;) € 7 and 7 C trp(y, 7). Let e, f € Eg such that
(e, f) € trp(n,7). Then since Eg is left regular, therefore e = (ee Ve =ee ! =,
ff~Y=(ff~Yf = f and hence tro(y, r) € . Conversely, if e =; f, then ee” ! =
e=; f=ff!and el f € Eg C N. Thus by definition of P(N,7). it follows
(e. f)epw, rnNEsxEg =trp. Thus tro(y, ) = 7.

Finally, suppose that (a,b) € p. Then (a~'a,a='h) € p so that a='b € kerp.
If a~! is the inverse of a and since S/p is completely left inverse, then (¢~ 1) o €
V((@),) = V((b)p). Also, (b1, € V((b),) = V((a),). Itis clear that (a),(a™ 1), =
(@)p(b™Y), = (b),(b™ 1), which further implies that
(aa=t, bb™1) € trp. Thus (a, b) € Pkerpytrp) AN P S P(ierp, 1rp)- Conversely, let
(a, b) € pkerp,irp)- Then (aa™', bb~ 1) etrpanda~'h ckerp. By Lemma 5, ab™ ! €
kerp and (ab_l)p € Eg/,. Then there exists e € Eg such that (ab_l)p = (e)p, where
(e)p € E|p. Since Eg/, is left regular, thus by Lemma 5, we have

(ab_l)p = (ab_l)p((ab_l)_l)p-
Then

a=, aa"'-a=bb"'-a (since (aa”!, bb™1) € trp)
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=, ab™l.b
=, ((ab™")(@b™")™Hb
=p a a
=, (aa"'-b71h)b

=, bbb (since (aa™!, bb™ 1) € trp)
=, b.
Hence p(kerp,irp) = p- This completes the proof. O

4. DECOMPOSITIONS OF LOCALLY ASSOCIATIVE AG**-GROUPOIDS

An AG-groupoid has many characteristics similar to that of a commutative semi-
group. Let us consider x2y? = y2?x2, which holds for all x,y in a commutative
semigroup. On the other hand one can easily see that it holds in an AG™*-groupoid.
This simply gives that how an AG™*-groupoid has closed connections with commut-
ative algebra. In this section, we generalize the results of Hewitt and Zuckerman for
commutative semigroups [5].

An AG-groupoid S is called a locally associative AG-groupoid if a-aa =aa-a
foralla € S [8].

Note that a locally associative AG-groupoid does not necessarily have associative
powers. For example, in a locally associative AG-groupoid S = {a,b,c}, defined by
the following table [8]:

(a-aa)a =b # c =a(a-aa).

Definition 4. A locally associative AG"*-groupoid is an AG™-groupoid S satis-
fying an identity a-aa = aa-a foralla € §S.

Example 1. Let us consider an AG™"-groupoid S = {a,b,c,d, e} in the following
multiplication table.

a b ¢ d e
ala a a a a
bla e e ¢ e
cla e e b e
dla b ¢ d e
ela e e e e

It is easy to verify that S is a locally associative AG**-groupoid.

Proposition 2. The following statements hold:



938 WAQAR KHAN, FAISAL YOUSAFZAI, AND KOSTAQ HILA

(1) Every locally associative AG**-groupoid has associative powers, that is
aa™ =a"a for all a € S and positive integer n [8].

(2) In an AG™ -groupoid S, a™a™ = a™*" for all a € S and positive integers
m,n [8].

(3) In a locally associative AG™"-groupoid S, (a™)"* = a™" for all a € S and
positive integers m,n [10].

4) If S is a locally associative AG™*-groupoid and a,b € S, then (ab)"* = a"b"
forany n > 1 and (ab)" = b"a" for any n > 2 [9].

(5) Let S be a locally associative AG™"-groupoid. Then a™ = a
foralla e S andn >1[10].

(6) If S is a locally associative AG™*-groupoid and a,b € S, then a™b™ = b™a"
form,n > 1 [8].

Note that a”'a = ((((aa)a)a)...a)a and aa™ ' = a((((aa)a)a)...a).

n—la — aan—l

4.1. Separative decomposition

If S is a locally associative AG™"-groupoid, then ab™ - ¢ = a -b"c is not generally
true for all a,b,c € S, thatis (Sx")S # S(x"S) for some x € S.
Let us define the relations A and u in a locally associative AG**-groupoid S as

follows:
for all a,b € S, alb <= there exists n € N, such that a” € S(b"S) and b" €
S@"s).
for all a,b € S, aub <> there exists n € N, such that a” € (§b")S and b" €
(Sa™)Ss.
Theorem 3. A is equivalent to |1 on a locally associative AG**-groupoid S.
Proof. Leta™ € S(b"S). Then by using Proposition 2(3), we get
a® = (@")? e (S-b"S)*> = (S-b"S)(S-b"S) = (SS)(B"S-b"S)
=(SS)B"b"-SS)
=(@"b")(SS-SS)=(SS-SS)(B"b") = (b"b"-SS)(SS)
=(SS-b"b")(SS)
C (Sh?™)S.
Similarly, we can show that 5" € S(a”S) implies b?" € (Sa®")S.
Conversely, assume that a” € (S5")S. Then by using Proposition 2(3), we get
a®" = (a")? € (Sb"-S)? = (Sb™-S)(Sb"-S) = (Sb"™-Sb™)(SS)
=(S5S-b"b")(SS)
=(SS)(b"b"-SS) C S(b*"S).

Similarly, we can show that b” € (Sa™)S implies b>"* € S(a*"S). Thus A is equi-
valent to [. U
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Theorem 4. The relation A on a locally associative AG**-groupoid S is a con-
gruence relation.

Proof. Clearly A is reflexive and symmetric. For transitivity, let us suppose that
aAb and bAc, such that ¢ € S(b"S) and b" € S -¢"S for all a,b,c € S with as-
sumption that n > 1. By using Proposition 2(3), we get

a" € S(b"S)=b"(SS) S (S-c"S)S =(c"-55)S C (c"S)S = (5S)c"
=S5S-c"le=cc" 1885 =c"(SS) = S(c"S).

Similarly, we can show that ¢” € S(a”S). Hence A is an equivalence relation. To
show that A is compatible, assume that aAb such that for n > 1, a” € S(b"S) and
b" € S(a"S) foralla,b € S.Letc € S, then

(ac)" =d"c" € (S-b"S)c" = (b"-SS)c" = (B"'b-SS)c" = (SS-bb"N)c"
= (SS-b")c" =c"p"-SS =b"c"-SS = S(b"c"-S) =S (bc)"S.

Similarly, we can show that (ca)” € S((cb)"S). Hence A is a congruence relation
on S. .

Definition 5. A congruence o is said to be separative congruence in S, if ab =4 a?
and ab =, b? implies that a =, b.
Theorem 5. The relation A on a locally associative AG™"-groupoid S is separative.

Proof. Leta,b € S such that ab =, a? and ab =, b?. Then for a positive integer
n,
(ab)* € S-(@®"S, (@*)" e S-(ab)"S
and
(ab)" € S-(b*)"S, (b*)" €S -(ab)"Ss.
Now
a®" = (@*>" e S-(ab)"S €S-(S-(b*"S)S = (S-(b>)"S)(SS)
= ((b*)"-SS)(SS)
=(5S-SS)(B"p") = (b"b")(SS-SS) = (SS)(B"b"-SS) C S(b>"S).
Similarly we can show that 2" € S(a?"S). Hence A is separative. 0

Proposition 3. If S is a locally associative AG**-groupoid, then ab = ba for all
a,b €8, that is A is commutative.

Proof. Let a,b € S such that a =) b and n be a positive integer. Then by using
Proposition 2(4), we get

(ab)* =d"b" € (S-b"S)(S-a"S)=(SS)(b"S-d"S)
=(SS)»"a"-SS) < Sha)*-S.
Similarly, we can show that (ba)” € S(ab)”-S. Hence abAba. O
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Corollary 2. Let S be a locally associative AG**-groupoid. Then S /A is a sep-
arative commutative image of S.

Let us define a relation y on a locally associative AG**-groupoid S as follows:
for all x,y € §, xyy <= there exists n € N, such that (xa)"” € (ya)"S and
(ya)® € (xa)" S, forsomea € S.

Theorem 6. The relation y is a congruence relation on a locally associative
AG**-groupoid S.

Proof. Clearly y is reflexive and symmetric. For transitivity let us suppose that
xyy and yyz, then there exist positive integers m,n such that (xa)” € (ya)"S,
(ya)" € (xa)"S and (ya)™ € (za)™S and (za)™ € (ya)™S, for some a € S. More
specifically, there exists 7y € S such that (xa)” = (ya)”t;. Assume that m,n > 1.
Now by using Proposition 2(3) and Proposition 2(4), we get

(xa)™" = ((xa)")" = ((ya)"t1)" = ((ya)™)" £* < ((za)™S)" §
— (Za)mn Sn . S
= (58" (za)™" = (SS™)-(za)™ (za) = (za)(za)™" "' - (S"S)
C (za)™Ss.

Similarly we can show that (za)™" € (xa)™"S. Hence y is an equivalence relation
on S.

To show compatibility, let xyy, then there exists a positive integer n such that
(xa)" € (ya)"S and (ya)" € (xa)"S. Hence there exists 3 € S such that (xa)" =
(ya)"t3. Now using Proposition 2(3), Proposition 2(4) and Proposition 2(6) with
assumption that n > 1, we get

(xz-a)*" = ((xz-a)")* = ((x2)"d") = (x"z"-a")* = ("x" -a")?
— (a"x" _Zn)z = (x"a" -Zn)2 _ ((xa)"z,")z _ ((ya)"l‘3 _Zn)2
= (") (ya)")? = (22" (ya)?" = (2"2" - 1313)(ya) "
= (t313-2"2")(ya)™"
= (132" (ya)?" = (12" (ya)")? = ((ya)"z" - 13)°
= ("aMz"13)°
= ((@"y")z" 1) = (("y")a" -13)* = (" 2")a" -13)
= (vz-a)"13)°
= (yz 'a)Zn 2

12 € (yz-a)*"s.
Similarly, we can show that (yz-a)?" € (xz-a)?"S. Therefore xzyyz. Similarly
we can show that y is left compatible. Hence y is a congruence relation on S. U
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4.2. Anti-separative decomposition

In this section, we show that S/t is a maximal anti-separative commutative image
of a locally associative AG**-groupoid S, where 7 is defined as follows:
ath if and only if ab™ = "1 and ba™ = a"*! for all a,b € S and a positive
integer n.

Lemma 7. Let S be a locally associative AG**-groupoid. If ab™ = b+ and
ba™ = a"t! fora,b € S and positive integers m,n, then atbh.

Proof. Without loss of generality let us suppose that n > m. Thus by using Pro-
position 2(2), we get
bn—mbm+1 = pM gp™ = . PP — gp".
Hence atb. O

Theorem 7. The relation t on a locally associative AG**-groupoid S is a con-
gruence relation.

Proof. Clearly t is reflexive and symmetric. For transitivity, let ath and btc, so
there exist positive integers m,n such that ab™ = b"1, ba" = a"*! and bc™ =
Tl ep™ = p™m Tl Letk = (n+1)(m+1)—1, thatis k = n(m + 1) +m. Now by
using Proposition 2(3) and Proposition 2(6), we get

ack — acn(m+1)+m
=a- (bncmn)cm
— bncmn ‘acm — bna.cmncm — Cmcmn _abl’l — cmcmn .bn‘l‘l

— cm(n+1)bn+1

= q- "D M — g (emHYIEm = g (be™YT ™

— cm(n+1)—lc_bnb — bb" _ccm(n—i—l)—l — bn—i—lcm(n-i-l) — (bcm)n—i-l
— (Cm+l)n+l
— mED@+D) _ k1

Similarly, we can show that ca® = a**+1. Thus 7 is an equivalence relation. To
show that 7 is compatible, assume that ath such that for some integer 7,

ab" = bp" ! and ba" = a1,
Let ¢ € S. By using Proposition 2(4), we get
(ac)(be)* = ac-b"c" =ab™-cc™ = b = (be)t .

Similarly, we can show that (bc)(ac)” = (ac)" 1. Hence 7 is a congruence rela-
tion on S. O]

Definition 6. A congruence o is said to be anti-separative congruence in S, if
ab =4 a? and ba =, b? implies that a =4 b.
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Theorem 8. The relation t is anti-separative.

Proof. Let a,b € S such that ab =; a? and ba =, b?. Then by definition of ¢
there exist positive integers m and n such that

(ab)(@)™ = (a*)"*!, a*(ab)™ = (ab)"™*,
and
(ba)(bz)” — (b2)n+l’ bZ(ba)n — (ba)”+1,
Now by using Proposition 2(2) and Proposition 2(3), we get
ba*" ' =p.a?>"q = a®" . ba = a™a™ -ba = ab-a™a™ = ab-a*™

— (ab)(az)m — (a2)m+1 — a2m+2’

and
ab* ! =a-b*b=0>"-ab=b"b"-a = ba-b"b" = ba-b*"
— (ba)(bz)” — (bZ)n—H — b2n+2.
Thus by using Lemma 7, a =; b. Hence 7 is anti-separative. i

Proposition 4. If S is a locally AG**-groupoid, then ab = ba for all a,b € S,
that is T is commutative.

Proof. Let a,b € S and n be a positive integer. Then by using Proposition 2(6),
Proposition 2(2) and Proposition 2(4) with assumption that n > 1, we get

(ab)(ba)* =ab-b"a" =ab-a"b" =aa"-bb" =b"b-a"a =b"T1a" T = (ba)" 1.
Similarly we can show that (ha)(ab)* = (ab)"**'. Hence ab = ba. 0

Theorem 9. Let S be a locally associative AG**-groupoid. Then S/t is a max-
imal anti-separative commutative image of S.

Proof. By Theorem 8, 7 is anti-separative, and hence S/t is anti-separative. We
now show that 7 is contained in every anti-separative congruence relation £ on S. Let
a = b so that there exists a positive integer n such that

ab™ = b" ! and ba" = a" 1.

We need to show that a =¢ b, where § is an anti-separative congruence on S. Let
k be a positive integer such that

abk = b**1 and ba* =¢ ak+1,
Suppose that k > 2. Now by using Proposition 2(2), we get
(abk—l)Z — abk—l -abk_l = aa 'bk_lbk_l — a2b2k—2
a2b2k_2 = aa 'bk_zbk — abk_z-abkéabk_z-karl

= abk=2.pkp = gbk .pk2p = ¥ . pF1
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and from above, we have
a2b2k_2 ES abk 'bk_l — bk—lbk ca= bkbk—l ca = abk_l 'bk.

Thus (ab*~1)2 = ab® - bk=1. Since abk = pk+1 implies that abk . pk—1 =¢
pk+1.pk=1 Hence (abk—1)2 =¢ (b%)2. 1t further implies that

(abk_1)2 = a2b2k—2 — b2k—2a2 = (bk)Z‘

Thus ab*~1 = b¥. Similarly we can show that ba £ ak

By induction down from k, it follows that for k = 1, ab =¢ b? and ba = az.
Hence by using anti-separativity and Proposition 4, it follows that S/t is a maximal
anti-separative commutative image of S. g

k-1 —
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