

CONGRUENCES AND DECOMPOSITIONS OF AG-GROUPOIDS**

WAQAR KHAN, FAISAL YOUSAFZAI, AND KOSTAQ HILA

Received 12 January, 2017

Abstract. We introduce the concept of completely left inverse AG^{**} -groupoids and study some basic congruences and a congruence pair by means of the kernel and trace approach of completely left inverse AG^{**} -groupoids. Also, we provide separative and anti-separative decomposition of locally associative AG^{**} -groupoids.

2010 Mathematics Subject Classification: 20N02; 08A30

Keywords: AG**-groupoid, completely left inverse AG**-groupoid, trace of congruence, kernel of congruence, decomposition, locally associative AG**-groupoid

1. INTRODUCTION

An Abel-Grassmann's groupoid (abbreviated as AG-groupoid) or Left Almost Semigroup (briefly LA-semigroup) is a groupoid S satisfying the left invertive law, defined as, (ab)c = (cb)a for all $a, b, c \in S$. Inverse AG-groupoids, their different characterisations and congruences on inverse AG-groupoids using the kernel-normal system and kernel-trace approaches have been studied by many authors which can be found in the literature (see [1–4, 6, 7, 11]).

In this paper, we introduce *completely left inverse* AG^{**} -groupoids and investigate a congruence pair consisting a kernel and trace of a congruence of a completely left inverse AG^{**} -groupoid. In the second section, some preliminaries and basic results on completely inverse AG^{**} -groupoids are mentioned. In Section 3, we introduce completely left inverse AG^{**} -groupoids and investigate some basic congruences using the congruence pair. We show that if ρ is a congruence on a completely left inverse AG^{**} -groupoid, then (ker ρ , tr ρ) is a congruence. In Section 4, we discuss separative and anti-separative decompositions of a locally associative AG^{**} -groupoid. Before the proofs of the main results, it is important to recall the basic knowledge and necessary terminology.

2. Preliminaries

An AG-groupoid S is regular if $a \in (aS)a$ for all $a \in S$. If for $a \in S$, there exists an element a' such that a = (aa')a and a' = (a'a)a', then we say that a' is inverse

© 2018 Miskolc University Press

of a. In addition, if inverses commute, that is a'a = aa', then S is called completely regular. If $a \in S$, then

$$V(a) = \{a' \in S : a = (aa')a \text{ and } a' = (a'a)a'\}$$

is called the set of all inverses of $a \in S$. Note that if $a' \in V(a)$ and $b' \in V(b)$, then $a \in V(a')$ and $a'b' \in V(ab)$.

An AG-groupoid S in which every element has a unique inverse is called inverse AG-groupoid. If a^{-1} is the unique inverse of $a \in S$, then a groupoid satisfying the following identities is called a completely inverse AG^{**}-groupoid, that is for all $a, b, c \in S$

$$(ab)c = (cb)a, \ a(bc) = b(ac)$$

 $a = (aa^{-1})a, \ a^{-1} = (a^{-1}a)a^{-1} \text{ and } aa^{-1} = a^{-1}a.$

If S is a completely inverse AG^{**} -groupoid, then $a^{-1}a \in E_S$, where E_S is the set of idempotents of S. If S is a completely inverse AG^{**} -groupoid, then E_S is either empty or a semilattice. For any idempotent e in E_S , $e^{-1} = e$. Moreover, the set E_S of an AG-groupoid S is a rectangular AG-band, that is for all $e, f \in E_S, e = (ef)e$. For futher concepts and results, the reader is referred to [3]. The set of idempotents E_S of an AG-groupoid S is called left (respectively; right) regular AG-band if it satisfies

$$(ef)e = ef$$
 (respectively; $(ef)e = fe$) for all $e, f \in E_S$.

Note that if *S* is an AG^{**}-groupoid, then for $e, f \in E_S$

$$ef = (ee)(ff) = (ff)(ee) = fe$$

which shows left and right AG-bands serve the same purpose.

Lemma 1 ([3]). Let S be a completely inverse AG^{**} -groupoid and let $a, b \in S$ such that $ab \in E_S$. Then ab = ba.

Lemma 2 ([3]). Completely inverse AG**-groupoids are idempotent-surjective.

If ρ is a congruence on a completely inverse AG^{**}-groupoid, then S/ρ is also completely inverse AG^{**}-groupoid. The natural morphism maps S onto S/ρ by the rule $x \to (x)_{\rho}$ and by the uniqueness of inverses $(x^{-1})_{\rho} = (x)_{\rho}^{-1}$. If $(a, b) \in \rho$, then $(a^{-1}, b^{-1}) \in \rho$ and $(aa^{-1}, bb^{-1}) \in \rho$.

3. Congruences in completely left inverse AG^{**} -groupoid

In this section, we introduce the notion of completely left inverse AG**-groupoids and study certain congruences by means of their kernel and trace for this class of groupoids. The essential part is to describe such congruence in terms of a congruence pair which comprises of a normal subgroupoid and a congruence of a completely left inverse AG**-groupoids.

Definition 1. A completely inverse AG^{**} -groupoid is called completely left inverse AG^{**} -groupoid if the set E_S of idempotents of S is a left regular AG-band.

Proposition 1. Let ρ be a congruence on a completely inverse AG^{**}-groupoid S. If $(a, e) \in \rho$ for $e \in E_S$, then $(a, a^{-1}) \in \rho$ and $(a, a^{-1}a) \in \rho$.

Lemma 3. Let *S* be a completely left inverse AG^{**} -groupoid. If ρ is a congruence on *S*, then *S*/ ρ is a completely left inverse AG^{**} -groupoid.

Proof. It is straightforward, and so it is omitted.

Definition 2. A nonempty subset N of a completely left inverse AG^{**} -groupoid S is called normal if

(1) $E_S \subseteq N$,

- (2) for every $x \in S$, $x \cdot Nx^{-1} \subseteq N$,
- (3) for every $a \in N$, $a^{-1} \in N$.

Let ρ be a congruence on a completely left inverse AG^{**}-groupoid S and E_S be the set of idempotents of S. The restriction of ρ on E_S , that is $\rho|_{E_S}$ is the trace of ρ denoted by tr ρ . The subset

$$\ker \rho = \{a \in S : (\exists e \in E_S)(a, e) \in \rho\}$$

is the kernel of ρ .

Lemma 4. Let ρ be a congruence on a completely left inverse AG^{**}-groupoid S. (1) ker ρ is a normal AG^{**}-subgroupoid of S.

(2) For any $a \in S$, $e \in E_S$, if $ea \in \ker \rho$ such that $(e, aa^{-1}) \in \operatorname{tr}\rho$, then $a \in \ker \rho$. (3) For any $a \in S$, if $a \in \ker \rho$, then $(a^{-1}a, aa^{-1}) \in \operatorname{tr}\rho$.

Proof. (1) Let ρ be a congruence. If $a, b \in \ker\rho$, then $(a, e) \in \rho$, $(b, f) \in \rho$ so that $(ab, ef) \in \rho$ for some $e, f \in E_S$. Hence $ab \in \ker\rho$ and $\ker\rho$ is a subgroupoid of S. Obviously, all the idempotents of S lie in ker ρ . Let $a \in \ker\rho$, then $(a, e) \in \rho$ for $e \in E_S$. Therefore for all $x \in S$, $(x^{-1} \cdot ax, x^{-1} \cdot ex) \in \rho$. Since $x^{-1} \cdot ex = e \cdot x^{-1}x \in E_S$, thus $x^{-1} \cdot ax \in \ker\rho$. Now if $a \in \ker\rho$, then for $g \in E_S$, $(a, g) \in \rho$. Since S/ρ , is left inverse, it is clear that $(a)_{\rho}^{-1} \in V((a)_{\rho})$. Moreover, if $h \in E_S$, then $a^{-1} \in V(h)$ so that $(a^{-1}, h) \in \rho$. That is $a^{-1} \in \ker\rho$ for every $a \in \ker\rho$.

(2) If for $a \in S$, $e \in E_S$ and $ea \in \ker\rho$, then there exists $f \in E_S$ such that $(ea, f) \in \rho$. Since $(e, aa^{-1}) \in \operatorname{tr}\rho$, then $a = aa^{-1} \cdot a \equiv_{\rho} ea \equiv_{\rho} f$. Hence $(a, f) \in \rho$ and $a \in \ker\rho$.

(3) Let $a \in \ker \rho$. Then $(a, e) \in \rho$ for some $e \in E_S$. By Proposition 1, we have $(a^{-1}a, a^{-1}a) \in \rho$. Since $\operatorname{tr} \rho = \rho|_{E_S}$, it follows that $(a^{-1}a, aa^{-1}) \in \operatorname{tr} \rho$.

Lemma 5. Let ρ be a congruence on a completely left inverse AG^{**}-groupoid S. If $a^{-1}b \in \ker \rho$, then $ab^{-1} \in \ker \rho$ and for all $a, b \in S$, $((a^{-1}b \cdot ab^{-1}), a^{-1}b) \in \rho$.

Proof. Let ρ be a congruence on S. If $a^{-1}b \in \ker\rho$, then $(a^{-1}b, e) \in \rho$ for some $e \in E_S$. Then it is clear that $(ab^{-1})_{\rho}$ is inverse of $(a^{-1}b)_{\rho}$ in S/ρ and it follows immediately from the preliminaries and Lemma 3 that $(a^{-1}b)_{\rho} \in E_{S/\rho}$. Hence $(ab^{-1}, f) \in \rho$

for some $f \in E_S$. Thus $ab^{-1} \in \ker \rho$. Moreover, since S/ρ is inverse and E/ρ is a left regular AG-band, we have

$$(a^{-1}b \cdot ab^{-1})_{\rho} = (e)_{\rho}(f)_{\rho} = ((e)_{\rho}(f)_{\rho})(e)_{\rho} = (e)_{\rho} = (a^{-1}b)_{\rho}.$$

Lemma 6. Let ρ be a congruence on a completely left inverse AG^{**}-groupoid S and let $a, b \in S$ and $e \in E_S$. If $(aa^{-1}, bb^{-1}) \in \operatorname{tr}\rho$ and $ab^{-1} \in \ker\rho$, then

 $(a \cdot ea^{-1}, b \cdot eb^{-1}) \in \operatorname{tr}\rho.$

Proof. Let ρ be a congruence on S. Let $a, b \in S$ such that $(aa^{-1}, bb^{-1}) \in tr\rho$ and $ab^{-1} \in \ker \rho$. Then for all $e \in E_S$, we have

$$\begin{aligned} a \cdot ea^{-1} &= a(e(a^{-1}a \cdot a^{-1})) &= a(e(b^{-1}b \cdot a^{-1})) &(\text{since } (aa^{-1}, bb^{-1}) \in \text{tr}\rho) \\ &\equiv a(e(a^{-1}b \cdot b^{-1})) &= a(e((a^{-1}b \cdot (a^{-1}b)^{-1})b^{-1})) &(\text{since } (a^{-1}b)\rho \in E_{S/\rho}) \\ &\equiv a(e((a^{-1}a \cdot bb^{-1})(eb^{-1})) &(\text{since } (aa^{-1}, bb^{-1}) \in \text{tr}\rho) \\ &\equiv a(b^{-1}b \cdot eb^{-1}) &(\text{since } (aa^{-1}, bb^{-1}) \in \text{tr}\rho) \\ &\equiv e(ab^{-1} \cdot a^{-1}b) &(\text{by Lemma 5}) \\ &\equiv e(aa^{-1} \cdot bb^{-1}) \\ &\equiv b \cdot eb^{-1} &(\text{since } (aa^{-1}, bb^{-1}) \in \text{tr}\rho). \end{aligned}$$

Thus $(a \cdot ea^{-1}, b \cdot eb^{-1}) \in \text{tr}\rho$.

Definition 3. Let N be normal subgroupoid of a completely left inverse AG^{**} groupoid S and τ be congruence on a left regular AG-band E_S . Then (N, τ) is a congruence pair of S if for all $a, b \in S$ and $e \in E_S$ the following conditions hold.

(1) If $ea \in N$ and $(e, a^{-1}a) \in \tau$, then $a \in N$, (2) If $(aa^{-1}, bb^{-1}) \in \tau$ and $a^{-1}b \in N$, then $(a \cdot ea^{-1}, b \cdot eb^{-1}) \in \tau$.

Theorem 1. Let S be a completely left inverse AG^{**} -groupoid and (N, τ) is congruence pair on S. Then the relation

$$\rho_{(N, \tau)} = \{(a, b) \in S \times S : (aa^{-1}, bb^{-1}) \in \tau \text{ and } a^{-1}b \in N\}$$

is a congruence relation.

Proof. Clearly, (N, τ) is reflexive. $\rho_{(N, \tau)}$ is symmetric. In fact: τ is symmetric and by Definition 2 (3), $a^{-1} \in N$ for any $a \in N$. Also, if (a, b), $(b, c) \in \rho$, then $(aa^{-1}, bb^{-1}) \in \tau$, $(bb^{-1}, cc^{-1}) \in \tau$ and $a^{-1}b$, $b^{-1}c \in N$. Then by Lemma 1, $cb^{-1} \in N$. Hence $(aa^{-1}, cc^{-1}) \in \tau$. Since $(c^{-1}\{(aa^{-1} \cdot bb^{-1})c\}) \in E_S$ and N is normal AG^{**}-subgroupoid, then

$$(c^{-1}\{(aa^{-1} \cdot bb^{-1})c\})(a^{-1}c) = \{c^{-1}(a^{-1}a \cdot c)\}(a^{-1}c) \text{ (since } (a^{-1}a, bb^{-1}) \in \tau)$$
$$= \{a^{-1}a \cdot c^{-1}c\}(a^{-1}c)$$
$$= \{a^{-1}a \cdot b^{-1}b\}(a^{-1}c) \text{ (since } (bb^{-1}, cc^{-1}) \in \tau)$$
$$= (bb^{-1})(a^{-1}c) \text{ (since } (a^{-1}a, bb^{-1}) \in \tau)$$
$$= (cb^{-1})(a^{-1}b) \in N.$$

Moreover,

$$(a^{-1}c)^{-1}(a^{-1}c) = c^{-1}(aa^{-1} \cdot c)$$

= $c^{-1}((aa^{-1} \cdot cc^{-1})c)\tau c^{-1}((aa^{-1} \cdot bb^{-1})c)$
(since $bb^{-1}\tau cc^{-1}$).

Hence by Definition 3 (1), $a^{-1}c \in N$ which implies that $(a, c) \in \rho_{(N,\tau)}$. Thus $\rho_{(N,\tau)}$ is equivalence relation.

Let $(a,b) \in \rho_{(N,\tau)}$, then $(ac, bc) \in \rho_{(N,\tau)}$. In fact: if $(aa^{-1}, bb^{-1}) \in \rho$ and $a^{-1}b \in ker\rho$, then by Definition 2 (2), $(ac)^{-1}(bc) \in N$. Further, using Definition 3 (2), we have

$$(ac)(ac)^{-1} = (aa^{-1})(cc^{-1}) = (c^{-1}c)(aa^{-1}) = a(c^{-1}c \cdot a^{-1})\tau b(c^{-1}c \cdot b^{-1}).$$

Hence by definition of the relation $\rho_{(N, \tau)}$, $(ac, bc) \in \rho_{(N, \tau)}$. Similarly, since τ is a congruence, then $(aa^{-1}, bb^{-1}) \in \tau$ implies that

$$(ca)(ca)^{-1} = ca \cdot c^{-1}a^{-1} = a^{-1}a \cdot cc^{-1} = c(aa^{-1} \cdot c^{-1})\tau c(bb^{-1} \cdot c^{-1}).$$

It remains to show that $(ca)^{-1}(cb) \in N$. Therefore

$$(b^{-1}((c^{-1}c \cdot aa^{-1})b))((ca)^{-1}(cb)) = ((c^{-1}c \cdot aa^{-1})(b^{-1}b))(c^{-1}a^{-1} \cdot cb)$$

= $((c^{-1}c \cdot aa^{-1})(b^{-1}b))(c^{-1}c \cdot a^{-1}b)$
= $((c^{-1}c)(aa^{-1} \cdot b^{-1}b)(c^{-1}c))(a^{-1}b)$
= $((c^{-1}c)(aa^{-1} \cdot b^{-1}b))(a^{-1}b)$
(since E_S is left regular)
= $(b^{-1}((aa^{-1} \cdot cc^{-1})b))(a^{-1}b) \in N.$

Moreover,

$$b^{-1}((c^{-1}c \cdot aa^{-1})b) = ((c^{-1}c \cdot aa^{-1})(c^{-1}c))(b^{-1}b) \text{ (since } E_S \text{ is left regular)}$$
$$= ((a^{-1}c \cdot ac^{-1})(c^{-1}c))(b^{-1}b)$$
$$= ((ac \cdot c^{-1})(a^{-1}c^{-1} \cdot c))(b^{-1}b)$$

$$= (b(cc^{-1} \cdot a^{-1}))(b^{-1}(c^{-1}c \cdot a)).$$

Thus $(b^{-1}((c^{-1}c \cdot aa^{-1})b))\tau(b(cc^{-1} \cdot a^{-1}))(b^{-1}(c^{-1}c \cdot a))$. Hence by Definition 3 (1) it follows that $a^{-1}(c^{-1}c \cdot b) \in N$. Thus $(ca, cb) \in \rho_{(N, \tau)}$.

Corollary 1. Let S be a completely left inverse AG^{**} -groupoid and (N, τ) is congruence pair on S. Then the relation

$$\rho_{(N,\tau)} = \{(a,b) \in S \times S : (aa^{-1}, bb^{-1}) \in \tau \text{ and } ba^{-1} \in N\}$$

is a congruence relation.

Theorem 2. Let S be a completely left inverse AG^{**} -groupoid. If ρ is a congruence on S, then (ker ρ , tr ρ) is a congruence of S. Conversely, if (N, τ) is congruence pair on S, then the relation

$$\rho_{(N, \tau)} = \{(a, b) \in S \times S : (aa^{-1}, bb^{-1}) \in \tau \text{ and } a^{-1}b \in N\}$$

is a congruence relation on S. Furthermore,

$$\ker \rho_{(N,\tau)} = N, \operatorname{tr} \rho_{(N,\tau)} = \tau \text{ and } \rho_{(\ker \rho, \operatorname{tr} \rho)} = \rho.$$

Proof. The proof of the first part can be followed from Lemma 4, 6 and Theorem 1. We show that $\ker \rho_{(N, \tau)} = N$ and $\operatorname{tr} \rho_{(N, \tau)} = \tau$. Let $a \in \ker \rho_{(N, \tau)}$, then for some $e \in E_S$, $(a, e) \in \rho_{(N, \tau)}$. It follows that $(ee^{-1}, aa^{-1}) \in \tau$ and $ea \in N$. Thus by Definition 3 (1), $a \in N$, that is $\ker \rho_{(N, \tau)} \subseteq N$. Conversely, suppose that $a \in N$. Then $a^{-1} \in N$. Let $a^{-1}a = e$, it is clear that $(ee^{-1}, aa^{-1}) \in \tau$ and $e^{-1}a = ea = a^{-1}a \cdot a = a \in N$. Thus $(e, a) \in \rho_{(N, \tau)}$. Hence $a \in (e)_{\rho_{(N, \tau)}} \subseteq \ker \rho_{(N, \tau)}$. Thus $\ker \rho_{(N, \tau)} = N$.

Similarly, we show that $\operatorname{tr}_{\rho(N,\tau)} \subseteq \tau$ and $\tau \subseteq \operatorname{tr}_{\rho(N,\tau)}$. Let $e, f \in E_S$ such that $(e, f) \in \operatorname{tr}_{\rho(N,\tau)}$. Then since E_S is left regular, therefore $e = (ee^{-1})e = ee^{-1} \equiv_{\tau} ff^{-1} = (ff^{-1})f = f$ and hence $\operatorname{tr}_{\rho(N,\tau)} \subseteq \tau$. Conversely, if $e \equiv_{\tau} f$, then $ee^{-1} = e \equiv_{\tau} f = ff^{-1}$ and $e^{-1}f \in E_S \subseteq N$. Thus by definition of $\rho_{(N,\tau)}$, it follows $(e, f) \in \rho_{(N,\tau)} \cap E_S \times E_S = \operatorname{tr}_{\rho}$. Thus $\operatorname{tr}_{\rho(N,\tau)} = \tau$.

Finally, suppose that $(a,b) \in \rho$. Then $(a^{-1}a, a^{-1}b) \in \rho$ so that $a^{-1}b \in \ker\rho$. If a^{-1} is the inverse of a and since S/ρ is completely left inverse, then $(a^{-1})_{\rho} \in V((a)_{\rho}) = V((b)_{\rho})$. Also, $(b^{-1})_{\rho} \in V((b)_{\rho}) = V((a)_{\rho})$. It is clear that $(a)_{\rho}(a^{-1})_{\rho} = (a)_{\rho}(b^{-1})_{\rho} = (b)_{\rho}(b^{-1})_{\rho}$ which further implies that

 $(aa^{-1}, bb^{-1}) \in \text{tr}\rho$. Thus $(a, b) \in \rho_{(\text{ker}\rho,\text{tr}\rho)}$ and $\rho \subseteq \rho_{(\text{ker}\rho,\text{tr}\rho)}$. Conversely, let $(a, b) \in \rho_{(\text{ker}\rho,\text{tr}\rho)}$. Then $(aa^{-1}, bb^{-1}) \in \text{tr}\rho$ and $a^{-1}b \in \text{ker}\rho$. By Lemma 5, $ab^{-1} \in \text{ker}\rho$ and $(ab^{-1})_{\rho} \in E_{S/\rho}$. Then there exists $e \in E_S$ such that $(ab^{-1})_{\rho} = (e)_{\rho}$, where $(e)_{\rho} \in E | \rho$. Since $E_{S/\rho}$ is left regular, thus by Lemma 5, we have

$$(ab^{-1})_{\rho} = (ab^{-1})_{\rho}((ab^{-1})^{-1})_{\rho}.$$

Then

$$a \equiv_{\rho} aa^{-1} \cdot a = bb^{-1} \cdot a \quad (\text{since } (aa^{-1}, bb^{-1}) \in \text{tr}\rho)$$

$$\equiv_{\rho} ab^{-1} \cdot b$$

$$\equiv_{\rho} ((ab^{-1})(ab^{-1})^{-1})b$$

$$\equiv_{\rho} (aa^{-1} \cdot b^{-1}b)b$$

$$\equiv_{\rho} b^{-1}b \cdot b \qquad (since (aa^{-1}, bb^{-1}) \in tr\rho)$$

$$\equiv_{\rho} b.$$

Hence $\rho_{(\ker\rho, tr\rho)} = \rho$. This completes the proof.

4. Decompositions of locally associative AG^{**} -groupoids

An AG-groupoid has many characteristics similar to that of a commutative semigroup. Let us consider $x^2y^2 = y^2x^2$, which holds for all x, y in a commutative semigroup. On the other hand one can easily see that it holds in an AG^{**}-groupoid. This simply gives that how an AG^{**}-groupoid has closed connections with commutative algebra. In this section, we generalize the results of Hewitt and Zuckerman for commutative semigroups [5].

An AG-groupoid S is called a locally associative AG-groupoid if $a \cdot aa = aa \cdot a$ for all $a \in S$ [8].

Note that a locally associative AG-groupoid does not necessarily have associative powers. For example, in a locally associative AG-groupoid $S = \{a, b, c\}$, defined by the following table [8]:

Definition 4. A locally associative AG^{**} -groupoid is an AG^{**} -groupoid S satisfying an identity $a \cdot aa = aa \cdot a$ for all $a \in S$.

Example 1. Let us consider an AG^{**}-groupoid $S = \{a, b, c, d, e\}$ in the following multiplication table.

It is easy to verify that S is a locally associative AG**-groupoid.

Proposition 2. The following statements hold:

- (1) Every locally associative AG**-groupoid has associative powers, that is $aa^n = a^n a$ for all $a \in S$ and positive integer n [8].
- (2) In an AG^{**}-groupoid S, $a^m a^n = a^{m+n}$ for all $a \in S$ and positive integers m, n [8].
- (3) In a locally associative AG^{**} -groupoid S, $(a^m)^n = a^{mn}$ for all $a \in S$ and positive integers m, n [10].
- (4) If S is a locally associative AG^{**}-groupoid and $a, b \in S$, then $(ab)^n = a^n b^n$ for any $n \ge 1$ and $(ab)^n = b^n a^n$ for any $n \ge 2$ [9].
- (5) Let S be a locally associative AG^{**}-groupoid. Then $a^n = a^{n-1}a = aa^{n-1}$ for all $a \in S$ and n > 1 [10].
- (6) If S is a locally associative AG^{**}-groupoid and $a, b \in S$, then $a^n b^m = b^m a^n$ for m, n > 1 [8].

Note that $a^{n-1}a = ((((aa)a)a)...a)a$ and $aa^{n-1} = a((((aa)a)a)...a)$.

4.1. Separative decomposition

If S is a locally associative AG^{**}-groupoid, then $ab^n \cdot c = a \cdot b^n c$ is not generally true for all $a, b, c \in S$, that is $(Sx^n)S \neq S(x^nS)$ for some $x \in S$.

Let us define the relations λ and μ in a locally associative AG^{**}-groupoid S as follows:

for all $a, b \in S$, $a\lambda b \iff$ there exists $n \in \mathbb{N}$, such that $a^n \in S(b^n S)$ and $b^n \in S(b^n S)$ $S(a^n S)$.

for all $a, b \in S$, $a \mu b \iff$ there exists $n \in \mathbb{N}$, such that $a^n \in (Sb^n)S$ and $b^n \in \mathbb{N}$ $(Sa^n)S$.

.

Theorem 3. λ is equivalent to μ on a locally associative AG^{**}-groupoid S. .

Proof. Let
$$a^n \in S(b^n S)$$
. Then by using Proposition 2(3), we get
 $a^{2n} = (a^n)^2 \in (S \cdot b^n S)^2 = (S \cdot b^n S)(S \cdot b^n S) = (SS)(b^n S \cdot b^n S)$
 $= (SS)(b^n b^n \cdot SS)$
 $= (b^n b^n)(SS \cdot SS) = (SS \cdot SS)(b^n b^n) = (b^n b^n \cdot SS)(SS)$
 $= (SS \cdot b^n b^n)(SS)$
 $\subseteq (Sb^{2n})S.$

Similarly, we can show that $b^n \in S(a^n S)$ implies $b^{2n} \in (Sa^{2n})S$. Conversely, assume that $a^n \in (Sb^n)S$. Then by using Proposition 2(3), we get

$$a^{2n} = (a^n)^2 \in (Sb^n \cdot S)^2 = (Sb^n \cdot S)(Sb^n \cdot S) = (Sb^n \cdot Sb^n)(SS)$$
$$= (SS \cdot b^n b^n)(SS)$$
$$= (SS)(b^n b^n \cdot SS) \subseteq S(b^{2n}S).$$

Similarly, we can show that $b^n \in (Sa^n)S$ implies $b^{2n} \in S(a^{2n}S)$. Thus λ is equivalent to μ . \square

Theorem 4. The relation λ on a locally associative AG^{**}-groupoid S is a congruence relation.

Proof. Clearly λ is reflexive and symmetric. For transitivity, let us suppose that $a\lambda b$ and $b\lambda c$, such that $a^n \in S(b^n S)$ and $b^n \in S \cdot c^n S$ for all $a, b, c \in S$ with assumption that n > 1. By using Proposition 2(3), we get

$$a^{n} \in S(b^{n}S) = b^{n}(SS) \subseteq (S \cdot c^{n}S)S = (c^{n} \cdot SS)S \subseteq (c^{n}S)S = (SS)c^{n}$$
$$= SS \cdot c^{n-1}c = cc^{n-1} \cdot SS = c^{n}(SS) = S(c^{n}S).$$

Similarly, we can show that $c^n \in S(a^n S)$. Hence λ is an equivalence relation. To show that λ is compatible, assume that $a\lambda b$ such that for n > 1, $a^n \in S(b^n S)$ and $b^n \in S(a^n S)$ for all $a, b \in S$. Let $c \in S$, then

$$(ac)^n = a^n c^n \in (S \cdot b^n S)c^n = (b^n \cdot SS)c^n = (b^{n-1}b \cdot SS)c^n = (SS \cdot bb^{n-1})c^n$$
$$= (SS \cdot b^n)c^n = c^n b^n \cdot SS = b^n c^n \cdot SS = S(b^n c^n \cdot S) = S \cdot (bc)^n S.$$

Similarly, we can show that $(ca)^n \in S((cb)^n S)$. Hence λ is a congruence relation on *S*.

Definition 5. A congruence σ is said to be separative congruence in *S*, if $ab \equiv_{\sigma} a^2$ and $ab \equiv_{\sigma} b^2$ implies that $a \equiv_{\sigma} b$.

Theorem 5. The relation λ on a locally associative AG^{**}-groupoid S is separative. *Proof.* Let $a, b \in S$ such that $ab \equiv_{\lambda} a^2$ and $ab \equiv_{\lambda} b^2$. Then for a positive integer n,

$$(ab)^n \in S \cdot (a^2)^n S, \ (a^2)^n \in S \cdot (ab)^n S$$

and

$$(ab)^n \in S \cdot (b^2)^n S, \ (b^2)^n \in S \cdot (ab)^n S.$$

Now

$$\begin{aligned} a^{2n} &= (a^2)^n \in S \cdot (ab)^n S \in S \cdot (S \cdot (b^2)^n S) S = (S \cdot (b^2)^n S) (SS) \\ &= ((b^2)^n \cdot SS) (SS) \\ &= (SS \cdot SS) (b^n b^n) = (b^n b^n) (SS \cdot SS) = (SS) (b^n b^n \cdot SS) \subseteq S (b^{2n} S). \end{aligned}$$

Similarly we can show that $b^{2n} \in S(a^{2n}S)$. Hence λ is separative.

Proposition 3. If S is a locally associative AG^{**} -groupoid, then $ab \equiv_{\lambda} ba$ for all $a, b \in S$, that is λ is commutative.

Proof. Let $a, b \in S$ such that $a \equiv_{\lambda} b$ and n be a positive integer. Then by using Proposition 2(4), we get

$$(ab)^{n} = a^{n}b^{n} \in (S \cdot b^{n}S)(S \cdot a^{n}S) = (SS)(b^{n}S \cdot a^{n}S)$$
$$= (SS)(b^{n}a^{n} \cdot SS) \subseteq S(ba)^{n} \cdot S.$$

Similarly, we can show that $(ba)^n \in S(ab)^n \cdot S$. Hence $ab\lambda ba$.

Corollary 2. Let S be a locally associative AG^{**} -groupoid. Then S/λ is a separative commutative image of S.

Let us define a relation γ on a locally associative AG**-groupoid S as follows: for all $x, y \in S$, $x\gamma y \iff$ there exists $n \in \mathbb{N}$, such that $(xa)^n \in (ya)^n S$ and $(ya)^n \in (xa)^n S$, for some $a \in S$.

Theorem 6. The relation γ is a congruence relation on a locally associative AG^{**}-groupoid S.

Proof. Clearly γ is reflexive and symmetric. For transitivity let us suppose that $x\gamma y$ and $y\gamma z$, then there exist positive integers m, n such that $(xa)^n \in (ya)^n S$, $(ya)^n \in (xa)^n S$ and $(ya)^m \in (za)^m S$ and $(za)^m \in (ya)^m S$, for some $a \in S$. More specifically, there exists $t_1 \in S$ such that $(xa)^n = (ya)^n t_1$. Assume that m, n > 1. Now by using Proposition 2(3) and Proposition 2(4), we get

$$(xa)^{mn} = ((xa)^{n})^{m} = ((ya)^{n}t_{1})^{m} = ((ya)^{m})^{n}t_{1}^{m} \subseteq ((za)^{m}S)^{n}S$$

= $(za)^{mn}S^{n} \cdot S$
= $(SS^{n})(za)^{mn} = (SS^{n}) \cdot (za)^{mn-1}(za) = (za)(za)^{mn-1} \cdot (S^{n}S)$
 $\subseteq (za)^{mn}S.$

Similarly we can show that $(za)^{mn} \in (xa)^{mn}S$. Hence γ is an equivalence relation on S.

To show compatibility, let $x\gamma y$, then there exists a positive integer *n* such that $(xa)^n \in (ya)^n S$ and $(ya)^n \in (xa)^n S$. Hence there exists $t_3 \in S$ such that $(xa)^n = (ya)^n t_3$. Now using Proposition 2(3), Proposition 2(4) and Proposition 2(6) with assumption that n > 1, we get

$$(xz \cdot a)^{2n} = ((xz \cdot a)^n)^2 = ((xz)^n a^n)^2 = (x^n z^n \cdot a^n)^2 = (z^n x^n \cdot a^n)^2$$

$$= (a^n x^n \cdot z^n)^2 = (x^n a^n \cdot z^n)^2 = ((xa)^n z^n)^2 = ((ya)^n t_3 \cdot z^n)^2$$

$$= ((z^n t_3)(ya)^n)^2 = (z^{2n} t_3^2)(ya)^{2n} = (z^n z^n \cdot t_3 t_3)(ya)^{2n}$$

$$= (t_3 t_3 \cdot z^n z^n)(ya)^{2n}$$

$$= (t_3^2 z^{2n})(ya)^{2n} = ((t_3 z^n)(ya)^n)^2 = ((ya)^n z^n \cdot t_3)^2$$

$$= ((y^n a^n) z^n \cdot t_3)^2$$

$$= ((y^n a^n) z^n \cdot t_3)^2 = ((z^n y^n) a^n \cdot t_3)^2 = ((y^n z^n) a^n \cdot t_3)^2$$

$$= ((yz \cdot a)^n t_3)^2$$

$$= (yz \cdot a)^{2n} t_3^2 \in (yz \cdot a)^{2n} S.$$

Similarly, we can show that $(yz \cdot a)^{2n} \in (xz \cdot a)^{2n}S$. Therefore $xz\gamma yz$. Similarly we can show that γ is left compatible. Hence γ is a congruence relation on S.

4.2. Anti-separative decomposition

In this section, we show that S/τ is a maximal anti-separative commutative image of a locally associative AG^{**}-groupoid S, where τ is defined as follows:

$$a\tau b$$
 if and only if $ab^n = b^{n+1}$ and $ba^n = a^{n+1}$ for all $a, b \in S$ and a positive integer n .

Lemma 7. Let S be a locally associative AG^{**} -groupoid. If $ab^m = b^{m+1}$ and $ba^n = a^{n+1}$ for $a, b \in S$ and positive integers m, n, then $a \tau b$.

Proof. Without loss of generality let us suppose that n > m. Thus by using Proposition 2(2), we get

$$b^{n-m}b^{m+1} = b^{n-m} \cdot ab^m = a \cdot b^{n-m}b^m = ab^n.$$

Hence $a\tau b$.

Theorem 7. The relation τ on a locally associative AG^{**}-groupoid S is a congruence relation.

Proof. Clearly τ is reflexive and symmetric. For transitivity, let $a\tau b$ and $b\tau c$, so there exist positive integers m, n such that $ab^n = b^{n+1}$, $ba^n = a^{n+1}$ and $bc^m = c^{m+1}$, $cb^m = b^{m+1}$. Let k = (n+1)(m+1) - 1, that is k = n(m+1) + m. Now by using Proposition 2(3) and Proposition 2(6), we get

$$\begin{aligned} ac^{k} &= ac^{n(m+1)+m} = a \cdot c^{n(m+1)}c^{m} = a \cdot (c^{m+1})^{n}c^{m} = a \cdot (bc^{m})^{n}c^{m} \\ &= a \cdot (b^{n}c^{mn})c^{m} \\ &= b^{n}c^{mn} \cdot ac^{m} = b^{n}a \cdot c^{mn}c^{m} = c^{m}c^{mn} \cdot ab^{n} = c^{m}c^{mn} \cdot b^{n+1} \\ &= c^{m(n+1)}b^{n+1} \\ &= c^{m(n+1)-1}c \cdot b^{n}b = bb^{n} \cdot cc^{m(n+1)-1} = b^{n+1}c^{m(n+1)} = (bc^{m})^{n+1} \\ &= (c^{m+1})^{n+1} \\ &= c^{(m+1)(n+1)} = c^{k+1}. \end{aligned}$$

Similarly, we can show that $ca^k = a^{k+1}$. Thus τ is an equivalence relation. To show that τ is compatible, assume that $a\tau b$ such that for some integer n,

$$ab^{n} = b^{n+1}$$
 and $ba^{n} = a^{n+1}$.

Let $c \in S$. By using Proposition 2(4), we get

$$(ac)(bc)^n = ac \cdot b^n c^n = ab^n \cdot cc^n = b^{n+1}c^{n+1} = (bc)^{n+1}.$$

Similarly, we can show that $(bc)(ac)^n = (ac)^{n+1}$. Hence τ is a congruence relation on S.

Definition 6. A congruence σ is said to be anti-separative congruence in *S*, if $ab \equiv_{\sigma} a^2$ and $ba \equiv_{\sigma} b^2$ implies that $a \equiv_{\sigma} b$.

 \square

Theorem 8. *The relation* τ *is anti-separative.*

Proof. Let $a, b \in S$ such that $ab \equiv_{\tau} a^2$ and $ba \equiv_{\tau} b^2$. Then by definition of τ there exist positive integers *m* and *n* such that

$$(ab)(a^2)^m = (a^2)^{m+1}, \ a^2(ab)^m = (ab)^{m+1}$$

and

$$(ba)(b^2)^n = (b^2)^{n+1}, \ b^2(ba)^n = (ba)^{n+1},$$

Now by using Proposition 2(2) and Proposition 2(3), we get

$$ba^{2m+1} = b \cdot a^{2m}a = a^{2m} \cdot ba = a^m a^m \cdot ba = ab \cdot a^m a^m = ab \cdot a^{2m}$$
$$= (ab)(a^2)^m = (a^2)^{m+1} = a^{2m+2},$$

and

$$ab^{2n+1} = a \cdot b^{2n}b = b^{2n} \cdot ab = b^n b^n \cdot a = ba \cdot b^n b^n = ba \cdot b^{2n}$$
$$= (ba)(b^2)^n = (b^2)^{n+1} = b^{2n+2}.$$

Thus by using Lemma 7, $a \equiv_{\tau} b$. Hence τ is anti-separative.

Proposition 4. If S is a locally AG^{**} -groupoid, then $ab \equiv_{\tau} ba$ for all $a, b \in S$, that is τ is commutative.

Proof. Let $a, b \in S$ and n be a positive integer. Then by using Proposition 2(6), Proposition 2(2) and Proposition 2(4) with assumption that n > 1, we get

 $(ab)(ba)^{n} = ab \cdot b^{n}a^{n} = ab \cdot a^{n}b^{n} = aa^{n} \cdot bb^{n} = b^{n}b \cdot a^{n}a = b^{n+1}a^{n+1} = (ba)^{n+1}.$ Similarly we can show that $(ba)(ab)^{n} = (ab)^{n+1}$. Hence $ab \equiv_{\tau} ba$.

Theorem 9. Let S be a locally associative AG^{**} -groupoid. Then S/τ is a maximal anti-separative commutative image of S.

Proof. By Theorem 8, τ is anti-separative, and hence S/τ is anti-separative. We now show that τ is contained in every anti-separative congruence relation ξ on S. Let $a \equiv_{\tau} b$ so that there exists a positive integer n such that

$$ab^n = b^{n+1}$$
 and $ba^n = a^{n+1}$

We need to show that $a \equiv_{\xi} b$, where ξ is an anti-separative congruence on S. Let k be a positive integer such that

$$ab^k \equiv_{\xi} b^{k+1}$$
 and $ba^k \equiv_{\xi} a^{k+1}$

Suppose that k > 2. Now by using Proposition 2(2), we get

$$(ab^{k-1})^2 = ab^{k-1} \cdot ab^{k-1} = aa \cdot b^{k-1}b^{k-1} = a^2b^{2k-2},$$

$$a^2b^{2k-2} = aa \cdot b^{k-2}b^k = ab^{k-2} \cdot ab^k \xi ab^{k-2} \cdot b^{k+1}$$

$$= ab^{k-2} \cdot b^k b = ab^k \cdot b^{k-2}b = ab^k \cdot b^{k-1},$$

and from above, we have

$$a^{2}b^{2k-2} \equiv_{\xi} ab^{k} \cdot b^{k-1} = b^{k-1}b^{k} \cdot a = b^{k}b^{k-1} \cdot a = ab^{k-1} \cdot b^{k}.$$

Thus $(ab^{k-1})^2 \equiv_{\xi} ab^k \cdot b^{k-1}$. Since $ab^k \equiv_{\xi} b^{k+1}$ implies that $ab^k \cdot b^{k-1} \equiv_{\xi} b^{k+1} \cdot b^{k-1}$. Hence $(ab^{k-1})^2 \equiv_{\xi} (b^k)^2$. It further implies that

$$(ab^{k-1})^2 \equiv_{\xi} a^2 b^{2k-2} = b^{2k-2} a^2 \equiv_{\xi} (b^k)^2.$$

Thus $ab^{k-1} \equiv_{\xi} b^k$. Similarly we can show that $ba^{k-1} \equiv_{\xi} a^k$.

By induction down from k, it follows that for k = 1, $ab \equiv_{\xi} b^2$ and $ba \equiv_{\xi} a^2$. Hence by using anti-separativity and Proposition 4, it follows that S/τ is a maximal anti-separative commutative image of S.

REFERENCES

- M. Božinović, P. V. Protic, and N. Stevanović, "Kernel normal system of inverse AG^{**}groupoids." Quasigroups Relat. Syst., vol. 17, no. 1, pp. 1–8, 2009.
- [2] W. A. Dudek and R. S. Gigoń, "Congruences on completely inverse AG**-groupoids." *Quasigroups Relat. Syst.*, vol. 20, no. 2, pp. 203–209, 2012.
- [3] W. A. Dudek and R. S. Gigoń, "Completely inverse AG**-groupoids." Semigroup Forum, vol. 87, no. 1, pp. 201–229, 2013, doi: 10.1007/s00233-013-9465-z.
- [4] R. S. Gigoń, "The classification of congruence-free completely inverse AG**-groupoids." Southeast Asian Bull. Math., vol. 38, no. 1, pp. 39–44, 2014.
- [5] E. Hewitt and H. S. Zuckerman, "The irreducible representations of a semigroup related to the symmetric group." *Ill. J. Math.*, vol. 1, pp. 188–213, 1957.
- [6] Q. Mushtaq and Q. Iqbal, "Decomposition of a locally associative LA-semigroup." Semigroup Forum, vol. 41, no. 2, pp. 155–164, 1990, doi: 10.1007/BF02573386.
- [7] Q. Mushtaq and M. Khan, "Decomposition of a locally associative AG**-groupoid." Adv. Algebra Anal., vol. 1, no. 2, pp. 115–122, 2006.
- [8] Q. Mushtaq and M. Khan, "Semilattice decomposition of locally associative AG**-groupoids." *Algebra Colloq.*, vol. 16, no. 1, pp. 17–22, 2009, doi: 10.1142/S1005386709000030.
- [9] Q. Mushtaq and S. Yusuf, "On LA-semigroups." Aligarh Bull. Math., vol. 8, pp. 65-70, 1978.
- [10] Q. Mushtaq and S. Yusuf, "On locally associative LA-semigroups." J. Nat. Sci. Math., vol. 19, pp. 57–62, 1979.
- [11] P. V. Protić, "Some remarks on Abel-Grassmann's groups." *Quasigroups Relat. Syst.*, vol. 20, no. 2, pp. 267–274, 2012.

Authors' addresses

Waqar Khan

School of Mathematics & Statistics, Southwest University, Beibei, Chongqing 400715, P. R. China, Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan *E-mail address:* waqarmaths@gmail.com

Faisal Yousafzai

Military College of Engineering, National University of Sciences & Technology (NUST), Islamabad, Pakistan.

E-mail address: yousafzaimath@gmail.com

WAQAR KHAN, FAISAL YOUSAFZAI, AND KOSTAQ HILA

Kostaq Hila

Department of Mathematics & Computer Science, University of Gjirokastra, Gjirokastra 6001, Albania, or: Department of Mathematical Engineering, Polytechnic University of Tirana, Tirana, Albania *E-mail address:* kostaq_hila@yahoo.com