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Abstract. In this paper, we investigate the additive .˛;ˇ/-functional equation

f .x/C˛f .˛y/Cf .´/D ˇ�1f .ˇ.xCyC´// (0.1)

for all complex numbers ˛ with j˛j D 1 and for a fixed nonzero complex number ˇ.
Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the

additive .˛;ˇ/-functional equation (0.1) in complex Banach spaces.
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1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of Ulam
[19] concerning the stability of group homomorphisms.

The functional equation f .xCy/D f .x/Cf .y/ is called the Cauchy equation.
In particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [10] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [18] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [9] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach. See [2, 6, 8, 12, 15, 16, 20] for more information on functional equations.

We recall a fundamental result in fixed point theory.

Theorem 1 ([3, 7]). Let .X;d/ be a complete generalized metric space and let
J WX!X be a strictly contractive mapping with Lipschitz constant ˛ < 1. Then for
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each given element x 2X , either

d.J nx;J nC1x/D1

for all nonnegative integers n or there exists a positive integer n0 such that
.1/ d.J nx;J nC1x/ <1; 8n� n0;
.2/ the sequence fJ nxg converges to a fixed point y� of J ;
.3/ y� is the unique fixed point of J in the set Y D fy 2X j d.J n0x;y/ <1g;
.4/ d.y;y�/� 1

1�˛
d.y;Jy/ for all y 2 Y .

In 1996, G. Isac and Th.M. Rassias [11] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theorems
with applications. By using fixed point methods, the stability problems of several
functional equations have been extensively investigated by a number of authors (see
[4, 5, 17]).

In Section 2, we solve the additive .˛;ˇ/-functional equation (0.1) in vector spaces
and prove the Hyers-Ulam stability of the additive .˛;ˇ/-functional equation (0.1) in
Banach spaces by using the fixed point method.

In Section 3, we prove the Hyers-Ulam stability of the additive .˛;ˇ/-functional
equation (0.1) in Banach spaces by using the direct method.

Throughout this paper, assume that X is a complex normed space and that Y is a
complex Banach space. Let ˇ be a fixed nonzero complex number.

2. ADDITIVE .˛;ˇ/-FUNCTIONAL EQUATION (0.1) IN COMPLEX BANACH
SPACES I

We solve the additive .˛;ˇ/-functional equation (0.1) in complex vector spaces.

Lemma 1. Let X and Y be complex vector spaces. If a mapping f W X ! Y

satisfies
f .x/C˛f .˛y/Cf .´/D ˇ�1f .ˇ.xCyC´// (2.1)

for all x;y;´ 2X and all ˛ 2 T WD f� 2C j j�j D 1g, then f WX ! Y is C-linear.

Proof. Assume that f WX ! Y satisfies (2.1).
Letting x D y D ´D 0 in (2.1), we get .2C˛/f .0/D ˇ�1f .0/ for all ˛ 2 T . So

f .0/D 0.
Letting ˛ D 1, y D �x and ´ D 0 in (2.1), we get f .x/C f .�x/ D 0 and so

f .�x/D�f .x/ for all x 2X .
Letting ˛ D 1 and ´D�x�y in (2.1), we get

f .x/Cf .y/�f .xCy/D f .x/Cf .y/Cf .�x�y/D 0

and so
f .xCy/D f .x/Cf .y/

for all x;y 2X .
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Letting ´D 0 and y D�x in (2.1), we get f .x/C˛f .�˛x/D 0 and so f .˛x/D
f̨ .x/ for all x 2 X and all ˛ 2 T . By the same reasoning as in the proof of [14,

Theorem 2.1], the mapping f WX ! Y is C-linear. �

Using the fixed point method, we prove the Hyers-Ulam stability of the additive
.˛;ˇ/-functional equation (2.1) in complex Banach spaces.

Theorem 2. Let ' W X3! Œ0;1/ be a function such that there exists an L < 1
with

'
�x
2
;
y

2
;
´

2

�
�
L

2
' .x;y;´/ (2.2)

for all x;y;´ 2X . Let f WX ! Y be a mapping satisfying f .0/D 0 andf .x/C˛f .˛y/Cf .´/�ˇ�1f .ˇ.xCyC´//� '.x;y;´/ (2.3)

for all x;y;´ 2 X and all ˛ 2 T . Then there exists a unique C-linear mapping
A WX ! Y such that

kf .x/�A.x/k �
L

2.1�L/
.' .�x;�x;2x/C2' .�x;x;0// (2.4)

for all x 2X .

Proof. Let ˛ D 1.
Replacing x by �x and letting y D�x and ´D 2x in (2.3), we get

k2f .�x/Cf .2x/k � '.�x;�x;2x/ (2.5)

for all x 2X .
Replacing x by �x and letting y D x and ´D 0 in (2.3), we get

kf .�x/Cf .x/k � '.�x;x;0/ (2.6)

for all x 2X .
It follows from (2.5) and (2.6) that

kf .2x/�2f .x/k � '.�x;�x;2x/C2'.�x;x;0/ (2.7)

for all x 2X .
Consider the set

S WD fh WX ! Y; h.0/D 0g

and introduce the generalized metric on S :

d.g;h/

D inff� 2 RC W kg.x/�h.x/k � �.' .�x;�x;2x/C2' .�x;x;0//; 8x 2Xg;

where, as usual, inf� DC1. It is easy to show that .S;d/ is complete (see [13]).
Now we consider the linear mapping J W S ! S such that

Jg.x/ WD 2g
�x
2

�
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for all x 2X .
Let g;h 2 S be given such that d.g;h/D ". Then

kg.x/�h.x/k � ".' .�x;�x;2x/C2' .�x;x;0//

for all x 2X . Hence

kJg.x/�Jh.x/k D
2g�x

2

�
�2h

�x
2

�
� 2"

�
'
�
�
x

2
;�
x

2
;x
�
C2'

�
�
x

2
;
x

2
;0
��

� 2"
L

2
.' .�x;�x;2x/C2' .�x;x;0//

� L".' .�x;�x;2x/C2' .�x;x;0//

for all x 2X . So d.g;h/D " implies that d.Jg;Jh/� L". This means that

d.Jg;Jh/� Ld.g;h/

for all g;h 2 S .
It follows from (2.7) thatf .x/�2f �x

2

�� ' ��x
2
;�
x

2
;x
�
C2'

�
�
x

2
;
x

2
;0
�

�
L

2
.' .�x;�x;2x/C2' .�x;x;0//

for all x 2X . So d.f;Jf /� L
2

.
By Theorem 1, there exists a mapping A WX ! Y satisfying the following:
(1) A is a fixed point of J , i.e.,

A.x/D 2A
�x
2

�
(2.8)

for all x 2X . The mapping A is a unique fixed point of J in the set

M D fg 2 S W d.f;g/ <1g:

This implies that A is a unique mapping satisfying (2.8) such that there exists a � 2
.0;1/ satisfying

kf .x/�A.x/k � �.' .�x;�x;2x/C2' .�x;x;0//

for all x 2X ;
(2) d.J lf;A/! 0 as l!1. This implies the equality

lim
l!1

2nf
� x
2n

�
D A.x/

for all x 2X ;
(3) d.f;A/� 1

1�L
d.f;Jf /, which implies

kf .x/�A.x/k �
L

2.1�L/
.' .�x;�x;2x/C2' .�x;x;0//
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for all x 2X .
It follows from (2.2) and (2.3) thatA.x/C˛A.˛y/CA.´/�ˇ�1A.ˇ.xCyC´//
D lim
n!1

2n
f � x2n�C˛f �˛y2n �Cf � ´2n��ˇ�1f

�
ˇ

�
xCyC´

2n

��
� lim
n!1

2n'
� x
2n
;
y

2n
;
´

2n

�
D 0

for all x;y;´ 2X and all ˛ 2 T . So

A.x/C˛A.˛y/CA.´/�ˇ�1A.ˇ.xCyC´//D 0

for all x;y;´ 2 X and all ˛ 2 T . By Lemma 1, the mapping A W X ! Y is C-
linear. �

Corollary 1. Let r > 1 and � be nonnegative real numbers, and let f WX! Y be
a mapping satisfyingf .x/C˛f .˛y/Cf .´/�ˇ�1f .ˇ.xCyC´//� �.kxkrCkykrCk´kr/ (2.9)

for all x;y;´ 2 X and all ˛ 2 T . Then there exists a unique C-linear mapping
A WX ! Y such that

kf .x/�A.x/k �
2rC6

2r �2
�kxkr

for all x 2X .

Proof. The proof follows from Theorem 2 by taking '.x;y;´/D �.kxkrCkykrC
k´kr/ for all x;y;´ 2 X . Then we can choose LD 21�r and we get the desired res-
ult. �

Theorem 3. Let ' W X3! Œ0;1/ be a function such that there exists an L < 1
with

' .x;y;´/� 2L'
�x
2
;
y

2
;
´

2

�
for all x;y;´ 2X . Let f WX! Y be a mapping satisfying f .0/D 0 and (2.3). Then
there exists a unique C-linear mapping A WX ! Y such that

kf .x/�A.x/k �
1

2.1�L/
.' .�x;�x;2x/C2' .�x;x;0//

for all x 2X .

Proof. It follows from (2.7) thatf .x/� 12f .2x/
� 12.' .�x;�x;2x/C2' .�x;x;0//

for all x 2X .
Let .S;d/ be the generalized metric space defined in the proof of Theorem 2.
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Now we consider the linear mapping J W S ! S such that

Jg.x/ WD
1

2
g .2x/

for all x 2X .
The rest of the proof is similar to the proof of Theorem 2. �

Corollary 2. Let r < 1 and � be positive real numbers, and let f W X ! Y be a
mapping satisfying (2.9). Then there exists a unique C-linear mapping A W X ! Y

such that

kf .x/�A.x/k �
6C2r

2�2r
�kxkr

for all x 2X .

Proof. The proof follows from Theorem 3 by taking '.x;y;´/D �.kxkrCkykrC
k´kr/ for all x;y;´ 2 X . Then we can choose L D 2r�1 and we get desired res-
ult. �

3. ADDITIVE .˛;ˇ/-FUNCTIONAL EQUATION (0.1) IN COMPLEX BANACH
SPACES II

In this section, using the direct method, we prove the Hyers-Ulam stability of the
additive .˛;ˇ/-functional equation (2.1) in complex Banach spaces.

Theorem 4. Let ' WX3! Œ0;1/ be a function and let f WX ! Y be a mapping
satisfying f .0/D 0 and

	.x;y;´/ WD

1X
jD1

2j'
� x
2j
;
y

2j
;
´

2j

�
<1;

f .x/C˛f .˛y/Cf .´/�ˇ�1f .ˇ.xCyC´//� '.x;y;´/ (3.1)

for all x;y;´ 2 X and all ˛ 2 T . Then there exists a unique C-linear mapping
A WX ! Y such that

kf .x/�A.x/k �
1

2
.	.�x;�x;2x/C2	.�x;x;0// (3.2)

for all x 2X .

Proof. Let ˛ D 1.
It follows from (2.7) thatf .x/�2f �x

2

�� ' ��x
2
;�
x

2
;x
�
C2'

�
�
x

2
;
x

2
;0
�

for all x 2X . Hence2lf � x2l
�
�2mf

� x
2m

�� m�1X
jDl

2jf � x
2j

�
�2jC1f

� x

2jC1

�
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�

m�1X
jDl

�
2j'

�
�

x

2jC1
;�

x

2jC1
;
x

2j

�
C2jC1'

�
�

x

2jC1
;
x

2jC1
;0
��

(3.3)

for all nonnegative integers m and l with m> l and all x 2 X . It follows from (3.3)
that the sequence f2kf . x

2k /g is Cauchy for all x 2X . Since Y is a Banach space, the
sequence f2kf . x

2k /g converges. So one can define the mapping A WX ! Y by

A.x/ WD lim
k!1

2kf

�
x

2k

�
for all x 2 X . Moreover, letting l D 0 and passing the limit m!1 in (3.3), we get
(3.2).

Now, let T WX ! Y be another additive mapping satisfying (3.2). Then we have

kA.x/�T .x/k D
2qA� x

2q

�
�2qT

� x
2q

�
�

2qA� x
2q

�
�2qf

� x
2q

�C2qT � x
2q

�
�2qf

� x
2q

�
� 2q	

�
�
x

2q
;�

x

2q
;
2x

2q

�
C2qC1	

�
�
x

2q
;
x

2q
;0
�
;

which tends to zero as q!1 for all x 2 X . So we can conclude that A.x/D T .x/
for all x 2X . This proves the uniqueness of A.

The rest of the proof is similar to the proof of Theorem 2. �

Corollary 3. Let r > 1 and � be nonnegative real numbers, and let f WX! Y be
a mapping satisfying (2.9). Then there exists a unique C-linear mapping A WX ! Y

such that

kf .x/�A.x/k �
2rC6

2r �2
�kxkr

for all x 2X .

Proof. The proof follows from Theorem 4 by taking '.x;y;´/D �.kxkrCkykrC
k´kr/ for all x;y;´ 2X . �

Theorem 5. Let ' WX3! Œ0;1/ be a function and let f WX ! Y be a mapping
satisfying f .0/D 0, (3.1) and

	.x;y;´/ WD

1X
jD0

1

2j
'.2jx;2jy;2j´/ <1

for all x;y;´ 2 X . Then there exists a unique C-linear mapping A W X ! Y such
that

kf .x/�A.x/k �
1

2
.	.�x;�x;2x/C2	.�x;x;0// (3.4)

for all x 2X .
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Proof. It follows from (2.7) thatf .x/� 12f .2x/
� .' .�x;�x;2x/C2' .�x;x;0//

for all x 2X . Hence 12l f .2lx/� 1

2m
f .2mx/

� m�1X
jDl

 12j f �2jx�� 1

2jC1
f
�
2jC1x

�
�

m�1X
jDl

�
1

2jC1
'.�2jx;�2jx;2jC1x/C

1

2j
'.�2jx;2jx;0/

�
(3.5)

for all nonnegative integers m and l with m > l and all x 2 X . It follows from
(3.5) that the sequence f 1

2nf .2
nx/g is a Cauchy sequence for all x 2 X . Since Y

is complete, the sequence f 1
2nf .2

nx/g converges. So one can define the mapping
A WX ! Y by

A.x/ WD lim
n!1

1

2n
f .2nx/

for all x 2 X . Moreover, letting l D 0 and passing the limit m!1 in (3.5), we get
(3.4).

The rest of the proof is similar to the proofs of Theorems 2 and 4. �

Corollary 4. Let r < 1 and � be positive real numbers, and let f W X ! Y be a
mapping satisfying (2.9). Then there exists a unique C-linear mapping A W X ! Y

such that

kf .x/�A.x/k �
6C2r

2�2r
�kxkr

for all x 2X .

Proof. The proof follows from Theorem 5 by taking '.x;y;´/D �.kxkrCkykrC
k´kr/ for all x;y;´ 2X . �
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