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Abstract. In this paper we discuss the approach for optimal switching control problem with un-
known switching points. The case with unknown switching point is more general and generalizes
the results existing in the literature. By using suitable transformation, the main problem is re-
duced into a problem with known interval and further the unknown boundary of the integral in
the minimization functional is reduced to the known one. This fact is illustrated by an example.
The reduced problem is solved numerically by using the Gradient Projection Method Algorithm.
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1. INTRODUCTION

There are many articles dedicated to the Linear-Quadratic Optimal Control Prob-
lems (LQOCPs) for switching systems. These problems are particular kind of hybrid
systems. Examples of switching systems can be found in the area of engineering,
chemical processes, automotive systems and military services. The published res-
ults in the literature can be mainly classified into two categories; one is theoretical
[3,4,6,7,9,10,16–19,22] and practical [2,8,11,13–15,20,21]. The very earliest result
which is proved a maximum principe for hybrid system for autonomous switching
system is in [20]. More theoretical results of the maximum principle are obtained
by Picolli in [18] and Sussman in [19] which are correspondingly is called hybrid
maximum principle and maximum principle for the hybrid system in the case of the
minimization functional is non-smooth. In [6, 22] switching systems are investig-
ated by using dynamical programming approach to derive Hamilton-Jacobi-Belmann
equations. But there are some practical results for the switching optimal control prob-
lem which has significant applications to real-world problems. In [5] conceptual al-
gorithms were given for general hybrid optimal control problems. In [13], for a class
of discrete-time hybrid system an algorithm is given by using constrained differential
programming approach by author. An application to power train control can be found
in [1]. Some heuristically oriented methods have been reported in [12], which used al-
gorithms pruning the search trees in discrete-time LQR (Linear-Quadratic Regulator)
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control of switched linear system. An efficient algorithm, called the Time-Optimal
Switching (TOS) algorithm, is proposed for the time-optimal switching control of
nonlinear systems with a single control output is considered by Kaya and Noakes in
[8]. In [8], firstly, a switching control is found using the STC (Switching Time Com-
putation) method to get from an initial point to a target point with a given number
of switchings. Then by means of constrained optimization techniques, the cost be-
ing considered as a summation of the arc times, a minimum-time switching control
solution is obtained.

The rest of this paper is organized as follows: The problem formulation and certain
definitions are given in Section 2, the transformation for the given problem and re-
lated theorems are described in Section 3, ”Gradient Projection Method Algorithm”
for this problem is given in Section 4, numerical results on the example are given in
Section 5. Finally, in Section 6 the conclusion of the paper is presented.

2. PROBLEM FORMULATION

In Kurina and Zhou [10], the authors studied the following minimizing optimal
control problem:

Problem I: Minimizing the functional

J.u; t1/D
1

2
hC1x1.t1/�C2x2.t1/;F .C1x1.t1/�C2x2.t1//i

C

2X
jD1

Z tj

tj�1

.hxj .t/;Wj .t/xj .t/iChuj .t/;Rj .t/uj .t/i/dt (2.1)

where, uD .u1;u2/; with respect to the trajectories of the system

Pxj .t/D Aj .t/xj .t/CBj .t/uj .t/; tj�1 � t � tj ; j D 1;2 (2.2)

with the following boundaries: x1.0/D x0; x2.T /D xT :
Here, 0 D t0 < t1 < t2 D T , the values t0; t2 are fixed, t1 is not fixed, xj .t/ 2

Xj ;uj .t/ 2 Uj ;Aj .t/;Wj 2 L.Xj /;Bj .t/ 2 L.Uj ;Xj /;Rj .t/ 2 L.Uj / for all t 2
Œtj�1; tj �;j D 1;2IC1 2 L.X1;Y /;C2 2 L.X2;Y /;F 2 L.Y /;Xj ;Uj ;Y are real fi-
nite dimensional Euclidean spaces, the operators F;Wj .t/ � 0;Rj .t/ > 0 for all
t 2 Œtj�1; tj �Ix

0 2X1;x
T 2X2 are given and symmetric, the operators F;C1;C2 are

independent of t , but the other operators depend continually on t in the corresponding
segment Œtj�1; tj �;j D 1;2;< :; : >means an inner product in the appropriate spaces.

Remark 1. In [10], it is assumed that the intermediate point t1 is fixed. For this,
the minimization functional has the form:

J.u/D
1

2
hC1x1.t1/�C2x2.t1/;F .C1x1.t1/�C2x2.t1//i
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C

2X
jD1

Z tj

tj�1

.hxj .t/;Wj .t/xj .t/iChuj .t/;Rj .t/uj .t/i/dt (2.3)

i,e., in [9,10], the minimization functional is not depend from the switching point t1,
because t1 is fixed. For this reason in the papers the minimizing functional is written
in the form J.u/: But in the presented paper, we consider a more general case. It is
considered that the point t1 is unknown, the minimizing functional has the form as in
(2.1), i.e., J.u; t1/. Let us make the following substitution u.t/D .u1.t/;u2.t// and
x.t/D .x1.t/;x2.t//:

Definition 1. The triple w D .t1;u.t/;x.t// is called admissible, if it satisfies all
constraints of Problem I (about the constraints see [10]).

Definition 2. The triple w0D .t1;u.t/;x.t// is called optimal control, if J.w0/�
J.w/ for all admissible process w.

3. TRANSFORMATION

Let us take following transformation. Assume a new parameter xnC1 such us
satisfies following differential equation with initial condition in the interval Œt0; t2�
and dxnC1.t/

dt
D 0 with initial condition xnC1.0/D t1: It means that xnC1 is constant

in Œt0; t2�: Next, a new independent time variable � is introduced as:

t D

�
t0C .xnC1� t0/�; 0� � < 1

xnC1C .t2�xnC1/.� �1/; 1� � � 2
(3.1)

then we can write

dt D

�
.xnC1� t0/d�; 0� � < 1

.t2�xnC1/d�; 1� � � 2:
(3.2)

Clearly, (3.1) is a linear mapping with t W �! Œt0; t1�when � 2 Œ0;1/ and t W �! Œt1; t2�

when � 2 Œ1;2�: In fact, � D 0 corresponds to t D t0; � D 1 corresponds to t D t1; and
� D 2 to t D t2: By using relation (3.1) it is easy to introduce the inverse mapping
� D t�t0

xnC1�t0
; for 0� � � 1 and � D t�xnC1

t2�xnC1
; for 1� � � 2: By introducing xnC1,

� and certain substitutions yi .�/D xi .t.�//; vi .�/D ui .t.�//; i D 1;2 and using
relation (3.2) the main problem is transcribed into the following equivalent form.

Problem II:

subsystem.1/ W

8̂̂<̂
:̂

dy1.�/
d�

D .xnC1� t0/.A1.�/y1.�/CB1.�/v1.�//
dxnC1

d�
D 0

xnC1.0/ D t1
(3.3)
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in the interval � 2 Œ0;1/ and

subsystem.2/ W

8̂̂<̂
:̂

dy2.�/
d�

D .t2�xnC1/.A2.�/y2.�/CB2.�/v2.�//
dxnC1

d�
D 0

xnC1.0/ D t1
(3.4)

in the interval � 2 Œ1;2� and the minimizing functional takes the form

QJ .v;xnC1/D
1

2
hC1y1.1/�C2y2.1/;F.C1y1.1//�C2y2.1//i

C

Z 1

0

.xnC1� t0/.hy1.�/;W1.�/y1.�/iChv1.�/;R1.�/v1.�/i/d�

C

Z 2

1

.t2�xnC1/.hy2.�/;W2.t/y2.�/iChv2.�/;R2.�/v2.�/i/d�:

(3.5)

After this transformation we reduce Problem I to Problem II. In Problem II, the
state trajectory is y.�/ D .y1.�/;y2.�// and the control tuple is v.�/ D

.v1.�/;v2.�/;xnC1/; 0� � � 2:

Since xnC1 is an unknown constant (parameter) in the interval Œ0;2� (see (3.3) and
(3.4)), after the transformation, the dimension of Problem II will be the same as the
dimension of Problem I.

Theorem 1. There is a one-to-one corresponding between the admissible process
.t1;x.t/;u.t// for Problem I and the admissible process .y.�/;v.�// for Problem II.

Proof. By using transformation from the admissible process .t1;x.t/;u.t//, we
obtained admissible process .y.�/;v.�//: Let us prove inverse opinion; if .y.�/;v.�/
is an admissible process (where v.�/D .v1.�/;v2.�/) in problem (3.3)-(3.4), then by
using relation (3.1) we can say, if we take � D 0 then t D t0; � D 1 then t D xnC1
(in fact xnC1.0/ D t1/; and for � D 2 then t D t2: It means we obtained intervals
Œt0; t1� and Œt1; t2�: From relation (3.1), we have � D t�t0

xnC1�t0
; 0 � � � 1 and � D

t�xnC1

t2�xnC1
; 1 � � � 2: Then, introducing the notions x1.t/ D y1.�.t// and x2.t/ D

y2.�.t// we obtain Px1 D Py1.�.t//. 1
xnC1�t0

/ and Px2 D Py2.�.t//. 1
t2�xnC1

/ by using
the chain rule. If we consider this in (3.3) and (3.4), we can come to the point that
.t1;x.t/;u.t// is the admissible process for the equations (2.1) and (2.2). �

Theorem 2. This corresponding mapping between the admissible processes
.t1;x.t/;u.t// and .y.t/;v.t// for the equations (2.2), (3.3) and (3.4) preserves the
value of the cost functionals (2.1) and (3.5).

Proof. In fact, assume that process .t01 ;x
0.t/;u0.t// is an optimal control for

Problem I. Let us take process .y0.�/;v0.�//; which is obtained from the optimal
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process .t01 ;x
0.t/;u0.t// of the above mentioned transformation. Assume that .y0.�/;v0.�//;

is not an optimal process and there exists another optimal process . Qy.�/; Qv.�// with
QJ . Qy.�/; Qv.�//� J.y0.�/;v0.�//: Take the corresponding admissible process, which

is obtained by the inverse transformation from the process
. QxnC1; Qy.�/; Qv.�// and denote it by .t1;u.t/;x.t//: Then, it is clear that the cost
J.t1;u.t/; x.t//D QJ . Qy.�/; Qv.�//� QJ .y

0.�/;v0.�/D QJ .t01 ;x
0.t/;u0.t//:But it con-

tradicts to the optimality of the process .t01 ;x
0.t/;u0.t// in Definition 2. The inverse

opinion can be proved in the same way. �

Using the theorems, it is straightforward to affirm the following Corollary.

Corollary 1. If the process .t01 ;x
0.t/;u0.t// gives minimum for Problem I, then

the process .y0.�/;v0.�//; which is obtained after transformation, gives minimum
value for Problem II, and vice versa.

4. GRADIENT PROJECTION METHOD ALGORITHM

We have three optimized arguments: First one is the scalar argument t1 2 Œt0; tf �,
the second one is a first control function v1.t/ for t 2 Œt0; tmid � and the last one is a
second control function v2.t/, for t 2 Œtmid ; tf �. That is xD .t1;v1.t/;v2.t//with the
cost function J.t1;v1.t/;v2.t// and with the only constraint put on t1 W t0 � t1 � tf :

In the present form, the above admissible process arguments represent an infinite-
dimensional optimization problem. By applying the ”parametrization technique”, we
can reduce the initial infinite-dimensional optimization problem to a finite-
dimensional optimization problem. The usefulness of this procedure is that for solu-
tion to a finite-dimensional optimization problem there exists a sufficiently powerful
arsenal of methods and algorithms.

To convert the problem into a finite-dimensional optimization problem we apply
the following parametrization technique: Let’s partition the sections Œt0; tmid � and
Œtmid ; tf � into finite number of sub-segments:

Œt0; tmid �D

N[
iD1

Œai ;bi /andŒtmid ; tf �D
M[
jD1

Œcj ;dj /:

Instead of the functions v1.t/ and v2.t/ we consider their piecewise constant approx-
imations:
v1.t/D u

i
1 D constant, if t 2 Œai ;bi /, i D 1;2; :::;N ;

v2.t/D u
j
2 D constant, if t 2 Œcj ;dj /, j D 1;2; :::;M ;

Thus, instead of the admissible process arguments we obtain a finite-dimensional
optimization problem:
t1, ui1, ui2 with the cost function: J.t1Iu11;u

2
1; :::;u

N
1 Iu

1
2;u

2
2; :::;u

M
2 /.
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To solve the above finite-dimensional optimization problem we propose to use
first-order optimization techniques, i.e. gradient-based methods, e.g. gradient pro-
jection procedure. Here are the steps of this procedure:

1) As an initial guess we choose some values for the optimized arguments of the
cost function:
x0 D .t01 ;u

10

1 ;u
20

1 ; :::;u
N 0

1 Iu
10

2 ;u
20

2 ; :::;u
M0

2 / so that the constraint is satisfied.
2) Then the considered procedure is an ordinary gradient method

xkC1 D xk �˛k :rf .xk/; (4.1)

where rf .xk/ is the gradient of the cost functional at the point xk ; ˛k is the step in
the direction of the anti-gradient.

3) If after completing the next iteration of (4.1) we trespass the allowable bound-
aries for the argument xkC11 , which in our case is tkC11 , we put it back into Œt0; tf �
according to the following formula:

tkC11 D

(
0; tkC11 < 0

2; tkC11 > 2

4) We repeat steps 2-3 for new k WD kC1 until some exit criterion is satisfied. Pos-
sible exit criterions:
� krf .xk/k � �1 � jxkC1�xkj< �3 � jf .xkC1/�f .xk/j< �2

5. EXAMPLE

In this paper, inspired by [9], we consider the switching point t1 as non fixed.
Then, we will try to reduce the unknown switching case to the known switching case,
after which all the procedure in [10] can be used. Consider the following problem of
minimizing the functional,

J.x;u1;u2; t1/D
1

2
Œ.x11.t1/Cx21.t1//

2
C

Z t1

0

.x211.t/C2x11.t/x12.t/

C3x212.t/Cu
2
1.t//dt C

Z 2

t1

.x221.t/C8x
2
22.t/

Cu22.t//dt � (5.1)

with respect the trajectories of the systems

subsystem.1/ W

8<: Px11.t/�x11.t/ D 0

x12.t/Cu1.t/ D 0 for t 2 Œ0; t1/
x11.0/ D �1;

(5.2)

subsystem.2/ W

8<: Px21.t/ D 0

x22.t/�u2.t/ D 0 for t 2 Œt1;2�
x21.2/ D 1:

(5.3)
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We will use transformation (3.1) which is reduced problem (5.2), (5.3) to the
new problem without unknown switching point. For this aim, take new variable
PxnC1.t/D 0; xnC1.0/D t1: From this differential equation, it is clear xnC1 D t1 is
unknown constant in Œ0;2�: Take also the state trajectories yi;j .�/D xi;j .t.�//; and
controls vi .�/ D ui .t.�// where i;j D 1;2: Let us also use interval transformation
in (3.1) with t0D 0 and t2D 2. Then we can come the point that, if � D 0 then t D 0;
if � D 1 then t D xnC1 D t1; and, if � D 2 then t D 2: If we use all these transform-
ations, then the minimizing functional and the state equations will take the following
form:

J.v/D
1

2
Œ.y11.1/Cy21.1//

2
C t1

Z 1

0

.y211.�/C2y11.�/y21.�/C3y
2
12

Cv21.�//d�C .2� t1/

Z 2

1

.y221.�/C8y
2
22.�/Cv

2
2.�//d�� (5.4)

where, v D .v1;v2/; and state equations takes the form

subsystem.1/ W

8<: Py11.t/� t1y11.t/ D 0

y12.t/Cv1.t/ D 0 for � 2 Œ0;1/
y11.0/ D �1;

(5.5)

subsystem.2/ W

8<: Py21.t/ D 0

y22.t/�v2.t/ D 0 for � 2 Œ1;2�
y21.2/ D 1:

(5.6)

If we solve (5.5) with respect to the states y11.t/ and y12.t/ and handle (5.6) with
respect to the states y21.t/ and y22.t/, then putting these in (5.4), the functional cost
gets the form:

J.t1;v1;v2/D
1

2
Œ.1� exp.t1//2C t1

Z 1

0

.exp.2t1�/C2exp.t1�/v1.�/

C4v21.�//d�C .2� t1/

Z 2

1

.1C9v22.�//d��: (5.7)

To solve (5.7) by finite-optimization techniques first we transform the functional into
finite-dimensional problem as follows:

J.t1;w1;w2/D
1

2
Œ.1� exp.t1//2C t1

NX
iD1

Z 1

0

.exp.2t1�/C2exp.t1�/wi1.�/

C4.wi1/
2.�//d�C .2� t1/

MX
jD1

Z 2

1

.1C9.w
j
2 /
2.�//d�� (5.8)

where, v1.t/ D wi1 D constant, if t 2 Œ0;1/; v2.t/ D w
j
2 D constant, if t 2 Œ1;2�.

Then, by using ”Gradient Projection Method” we can obtain the following optimal
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FIGURE 2. Optimal Cost

control input and state variable histories numerically (Figures 1 and 2). By applying
Gradient Algorithm for the initial nominal t1 D 1:0, after 160 iterations we find that
the optimal switching time t�1 D 0:0653 and the optimal cost J � D 0:9958. The
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computation takes about 0.7387 seconds of CPU time using C Sharp as programming
language on an Intel(R)Core(TM)i7-3720QM 2.60 GHz PC with 8GB of RAM.

6. CONCLUSION

In this paper we obtained the approach for optimal switching control problem with
unknown switching points which described in [9,10]. At that case, switching point t1
admitted as unknown and unfixed point in the known interval for state equations and
unknown boundary of the integral. Moreover, the cost functional components was
transcribed by the linear transformation and the system was solved by using Gradient
Projection Method numerically.

It is also possible to say for the future works that if there areK numbers of switch-
ings, then it is no difficulty in applying the previous method to the problems with sev-
eral subsystems. If there exist non fixed switchings, t0; t1; t2; :::; tK and T D 0 with
0D t0 < t1 < t2 <;:::;< tK <T D 0; then we can transcribe the problem into an equi-
valent problem by introducing K new state variables xnC1;xnC2; :::;xnCK which
correspond to the switching instants t1; t2; :::; tK and satisfy the following equations:
dxnCi

d�
D 0; xnCi .0/D ti ; � 2 Œ1;2�; i D 1;2; :::;K:

The new independent time variable � has a linear relationships with t where � D 0
corresponds to t D t0, � D 1 corresponds to t D t1; :::; � D KC 1 corresponds to
t D tT :
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