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Abstract. We study lightlike submersions from a totally umbilical semi-transversal lightlike sub-
manifold of an indefinite Kaehler manifold onto an indefinite almost Hermitian manifold. We
show that if an indefinite almost Hermitian manifold B admits a lightlike submersion ¢ : M — B
from a totally umbilical semi-transversal lightlike submanifold M of an indefinite Kaehler man-
ifold M then B is necessarily an indefinite Kaehler manifold. We investigate the condition for
a totally umbilical semi-transversal lightlike submanifold M to becomes a product manifold and
its fibers become geodesic. Finally, we obtain some characterization theorems related to the
sectional curvature of an indefinite Kaehler manifold.
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1. INTRODUCTION

The study of Riemannian submersions ¢ : M — B, from a Riemannian manifold
M onto a Riemannian manifold B was initiated by O’Neill [10]. A Riemannian
submersion naturally yields a vertical distribution, which is always integrable and a
horizontal distribution. On the other hand, for a CR-submanifold M of a Kaehler
manifold M there are two orthogonal complementary distributions D and DL, such
that D is J-invariant and D is totally real and always integrable (cf. Bejancu [2]),
where J is almost complex structure of M. Kobayashi [9] observed the similar-
ity between the total space of a Riemannian submersion and a C R-submanifold of a
Kaehler manifold in terms of distributions. Then Kobayashi [9] introduced a submer-
sion ¢ : M — B, from a C R-submanifold M of a Kaehler manifold M onto an almost
Hermitian manifold B such that the distributions D and D+ of the C R-submanifold
become the horizontal and the vertical distributions respectively, as required by the
submersions and 7 restricted to D becomes a complex isometry.

Later, semi-Riemannian submersions were introduced by O’Neill in [11]. As it
is known that when M and B are Riemannian manifolds then the fibers are always
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Riemannian manifolds. However, when the manifolds are semi-Riemannian mani-
folds then the fibers may not be Riemannian (hence semi-Riemannian) manifolds,
(see [15]). Therefore in [13], Sahin introduced a screen lightlike submersion from
a lightlike manifold onto a semi-Riemannian manifold and in [15], Sahin and Gun-
duzalp introduced a lightlike submersion from a semi-Riemannian manifold onto a
lightlike manifold. It is well-known that semi-Riemannian submersions are of in-
terest in mathematical physics, owing to their applications in the Yang-Mills theory,
Kaluza-Klein theory, supergravity and superstring theories [3, 4, 8, 16]. Moreover,
the geometry of lightlike submanifolds has potential for applications in mathematical
physics, particularly in general relativity (for detail, see [5]) therefore in present pa-
per, we study lightlike submersions from a totally umbilical semi-transversal lightlike
submanifold of an indefinite Kaehler manifold onto an almost Hermitian manifold.

2. LIGHTLIKE SUBMANIFOLDS

Let (M, g) be areal (m + n)-dimensional semi-Riemannian manifold of constant
index ¢ such thatm,n > 1,1 <g <m+n—1and (M, g) be an m-dimensional sub-
manifold of M and g be the induced metric of g on M. If g is degenerate on the tan-
gent bundle TM of M then M is called a lightlike submanifold of M, (see [5]). For
a degenerate metric g on M, TM - is a degenerate n-dimensional subspace of Ty M .
Thus both Ty M and Ty M1 are degenerate orthogonal subspaces but no longer com-
plementary. In this case, there exists a subspace Rad(TxM) = TxM N T M+
which is known as radical (null) subspace. If the mapping Rad(TM):x e M —
Rad(Tx M), defines a smooth distribution on M of rank > 0 then the submanifold
M of M is called an r-lightlike submanifold and Rad(TM) is called the radical
distribution on M.

Screen distribution S(7M) is a semi-Riemannian complementary distribution of
Rad(TM) in TM, that is, TM = Rad(TM)LS(TM) and S(TM~) is a com-
plementary vector subbundle to Rad(TM) in TM~+. Let tr(TM) and Itr(TM)
be complementary (but not orthogonal) vector bundles to TM in TM |y and to
Rad(TM) in S(TM™1)L respectively. Then TM |yy= TM & tr(TM) =
(RadTM @®1tr(TM))LS(TM)LS(TM™L).

Theorem 1 ([5]). Let (M,g,S(TM),S(TM=Y)) be an r-lightlike submanifold
of a semi-Riemannian manifold (M ,g). Then there exists a complementary vector
bundle ltr(TM) of Rad(TM) in S(TM L)L and a basis of 1tr (TM) |y consisting
of smooth section {N;} of S(TML)L |y, where U is a coordinate neighborhood of
M such that

g(Ni,Sj):&'j, g(Ni,Nj):O,forcmy i,je{l,2,..r}, 2.1

where {&1,...,&} is a lightlike basis of Rad(TM).
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Let V be the Levi-Civita connection on M then for any X,Y € I'(TM) and U €
I'(tr(TM)), the Gauss and Weingarten formulas are given by

VxY =VxY +h(X,Y), VxU=—AyX +VgU, (2.2)

where {VxY, Ay X} and {h(X,Y),V)J(-U} belong to I'(TM) and I'(¢tr(TM)), re-
spectively. Here V is a torsion-free linear connection on M, & is a symmetric bilin-
ear form on I"(TM) which is called the second fundamental form, Ay is a linear
operator on M and known as a shape operator.

Considering the projection morphisms L and S of tr(TM) on ltr(TM) and
S(TM), respectively, then (2.2) becomes

VxY = VxY + 1/ (X, Y)+h5(X,Y), VxU=—AyX +DLU+D3U, (2.3)

where i/ (X,Y) = L(h(X.Y)).h*(X,Y) = S(h(X,Y)),D%U = L(V§U), D{U =
S (V)J(-U ). As h! and hS are Itr(TM)-valued and S(TM~)-valued respectively,
therefore they are called as the lightlike second fundamental form and the screen
second fundamental form on M. In particular

VxN =—ANX + VLN + DS(X,N), VxW =—AwX + VW + D' (X, W),
(2.4)
where X € I'(TM),N e I'(Itr(TM)) and W € I'(S(TM~)). Using (2.3) and (2.4),
we obtain
g(h*(X.Y).W)+g(Y.D'(X.W)) = g(Aw X.Y). 2.5)

Let R and R be the curvature tensors of V and V, respectively then by straightforward
calculations (see [5]), we have

R(X.Y)Z =R(X.Y)Z+ Apix. 7)Y — Apiy.0 X + Apsx,2)Y
— Ap.z)X + (Vxh' ) (Y, Z) = (Vyh')(X, Z)
+ DI(X,h*(Y,Z))— D' (Y.h* (X, Z)) + (Vxh*) (Y, Z)
—(Vyh*)(X,Z)+ D(X.h (Y, Z))— D*(Y,h' (X, Z)).  (2.6)

3. SEMI-TRANSVERSAL LIGHTLIKE SUBMANIFOLDS

Let (M, J,g) be an indefinite almost Hermitian manifold and V be the Levi-Civita
connection on M with respect to the indefinite metric g. Then M is called an indef-
inite Kaehler manifold [1] if the almost complex structure J is parallel with respect
to V, thatis (VxJ)Y =0, forany X,Y € I'(TM).

Definition 1 ([12]). Let M be a lightlike submanifold of an indefinite Kaehler
manifold M then M is called a semi-transversal lightlike submanifold of M if the
following conditions are satisfied:

(i) Rad(TM) is transversal with respect to J .
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(ii) There exists a real non-null distribution D C S(T'M) such that S(TM) =
D@ DL, J(D)= D, JD+ c S(TM™), where D is orthogonal comple-
mentary to D in S(TM).

Then tangent bundle of a semi-transversal lightlike submanifold is decomposed as
TM = D1D’, where D' = D1 Rad(TM). We say M is a proper semi-transversal
lightlike submanifold if D # {0} and D+ # {0}. Therefore dim(Rad(TM)) > 2
and for a proper M, dim(D) > 2s,s > 1, dim(D+) > 1 and dim(Rad(TM)) =
dim(ltr(TM)). Thus dim(M) > 5 and dim(M) > 8. Next, we give example of
semi-transversal lightlike submanifolds.

Example 1. Let M be a 5-dimensional submanifold of (Réo, g) given by x1 =
uicosh, xo = uzcoshf, x3 = u1sinhb, x4 = uzsinh6, xs = usz, x¢ = /1 —u%,
X7 = U4, Xg = Ug, X9 = Up, X190 = U1, where g is of signature
(-, —+,+,+,+,+,+,+,4+) with respect to the canonical Dbasis
{0x1,0x2,0x3,0x4,0x5,0x6,0x7,0x8,0x9,0x10}. Then TM is spanned by Z; =
cosh00x1 +sinh60oxz -+ 0x19, Z2 = cosh00x, +sinh00xs + 0x9, Z3 = x60x5—
X50x6, Z4 = 0x7, Z5 = dxg. Clearly M is a 2-lightlike submanifold with Rad (T M)
= span{Zi,Z»} and the lightlike transversal bundle is spanned by

1 1
N = 5(—cosh98x1 —sinhfdx3+dx19), No = —E(cosh93xz+sinh98X4—8x9),

and JZy = —2N; and JZ, = 2N;. Hence J(Rad(TM)) = [tr(TM). Since
JZ4=Z5 then D = span{Z4, Zs} which is an invariant distribution on M. By
direct calculations, the transversal screen bundle S(7M 1)) is spanned by

Wi =sinh00xy +coshBdxz, Wr=sinhOdxy+coshfoxs, W3 = xe0x¢~+ x50x5.

Thus JW3 = —Z3. Hence D1 = span{Z3} is an anti-invariant distribution on
M and span{W;, W} is invariant and span{W3} is anti-invariant subbundles of
S(TM+) respectively. Thus it enables us to choose S(TM) = span{Zz,Z4.Zs}.
Hence M is a proper semi-transversal lightlike submanifold.

Let M be a semi-transversal lightlike submanifold of an indefinite Kaehler man-
ifold M. Let Q, Py, P> and P be the projection morphisms from 7M on D,
Rad(TM), D+ and D’ respectively. Then for any X € I'(TM), we put

X =0X + P X + P, X. 3.1)

Applying J to (3.1), we obtain JX = JOX + J P X + J P> X, can be written as
JX=TOX +wP1 X +wPrX. Put wP; = w; and wP> = w,, then we have

JX =TX +wi X +wsX, (3.2)

where TX € I'(D), w1 X € I'(Itr(TM)) and w, X € I'(JD+) c S(TML). Simil-
arly, for any V e I'(S(TM+)), we can write

JV =EV+FV, (3.3)
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where EV € I'(D+) and FV € I'(i), where u is a complementary bundle of J D+
in S(TML). Differentiating (3.2) and using (2.3), (2.4) and (3.3), for any X €
I'(TM), we have the following lemma.

Lemma 1. Let M be a semi-transversal lightlike submanifold of an indefinite
Kaehler manifold M. Then we have

(VxT)Y = Ay, y X + A,y X + JRL(X.Y) + ERS(X.Y), (3.4)
(Vxw1)Y = —h! (X, TY)— D' (X, wyY), (3.5)

(Vxwy)Y = Fh*(X,Y)—h*(X,TY)— D*(X,w1Y),where (3.6)
(VxT)Y =VxTY —TVxY, (Vxw))Y =Viw ¥ —wVxY, (3.7
(Vxwa2)Y = V§w,¥Y —wyVy Y. (3.8)

Definition 2 ([6]). A lightlike submanifold (M, g) of a semi-Riemannian manifold
(M ,g) is said to be a totally umbilical in M if there is a smooth transversal vector
field H € I'(tr(TM)) on M, called the transversal curvature vector field of M,
such that h(X,Y) = Hg(X,Y), for X,Y € I'(TM). Using (2.3), clearly M is a
totally umbilical, if and only if, for X,Y € I'(TM) and W € I'(S(TM+)), on each
coordinate neighborhood U there exist smooth vector fields H! € I'(Itr(TM)) and
HS € I'(S(TM 1)) such that

W(x,Y)=H'g(X,Y), h(X.Y)=H’g(X.Y), D'X.W)=0. (3.9

Lemma 2. Let M be a totally umbilical semi-transversal lightlike submanifold of
an indefinite Kaehler manifold M then the distribution D' defines a totally geodesic
foliation in M.

Proof. Let X,Y € Ij(D’) then using (3.4) and (3.7), we obtain TVyY =
—Aw vy X — A,y X — Jhl(X, Y)— EhS(X,Y). On taking inner product both sides
with Z € I"'(D), we further obtain

g(TVxY,Z)=g(VxwY,Z)+g(VxwsY,Z) = —g(JY,Vx Z)
=2(Y.VxJZ) =g(Y.VxZ"), (3.10)

where Z’ = JZ € I'(D). Since M is a totally umbilical lightlike submanifold
then for any X € I'(D’) and Z € I'(D), with (3.5) and (3.7), we have w1 VxZ =
hW(X,TZ) = H'g(X,TZ) = 0 and using (3.6) and (3.8), we have w,VyxZ =
—Fh¥(X,2)+h’(X,TZ) =—-FH*g(X,Z)+ H°g(X,TZ) = 0, these facts im-
ply that Vx Z € I'(D), forany X € I'(D’) and Z € I' (D). Therefore (3.10) implies
that g(TVxY,Z) = 0, then the non degeneracy of the distribution D implies that
TVxY = 0. Hence the result follows. ]

Theorem 2 ([12]). Let M be a semi-transversal lightlike submanifold of an in-
definite Kaehler manifold M. Then the distribution D' is integrable, if and only if
ApzV = Ayv Z, forany Z,V € ['(D’).



958 RUPALI KAUSHAL, RAKESH KUMAR, AND RAKESH KUMAR NAGAICH

Theorem 3. Let M be a totally umbilical semi-transversal lightlike submanifold
of an indefinite Kaehler manifold M then the distribution D' is integrable.

Proof. Let X,Y € I'(D’) then using (3.4) and (3.7) with the Lemma 2, we get
Awy X = —Jh (X, Y)— Eh*(X,Y) this implies that A,y X € I'(D’) and moreover
the symmetric property of the second fundamental form £ gives that A,y X = Ay xY .
Hence by virtue of the Theorem 2, the result follows. g

4. SEMI-TRANSVERSAL LIGHTLIKE SUBMERSIONS

Let ¢ : M — B be a mapping from a Riemannian manifold M onto a Riemannian
manifold B then it is said to be a Riemannian submersion if it satisfies the following
axioms:

Al. ¢ has maximal rank. This implies that for each b € B, ¢~ (b) is a subman-
ifold of M, known as fiber, of dimension dimM —dimB. A vector field
tangent to the fibers is called vertical vector field and orthogonal to fibers is
called horizontal vector field.

A2. ¢, preserves the lengths of horizontal vectors.

The Riemannian submersions were introduced by O’Neill in [10] and since then
plenty of work on this subject matter has been done (for detail, see [7, 4] and many
references therein). In the study of submersions, the vertical distribution V of M
is defined by V), = ker d¢,, p € M, which is always integrable and the orthogonal
complementary distribution to V is defined by #, = (ker d¢p)J-, denoted by #
and called a horizontal distribution. Therefore the tangent bundle 7M of M has the
following decomposition TM =V @ K.

Since the vertical distribution of the Riemannian submersion ¢ : M — B and the
totally real distribution D of the CR-submanifold M of a Kaehler manifold are
always integrable. Therefore Kobayashi [9] introduced the submersion ¢ : M — B
from a CR-submanifold M of a Kaehler manifold onto an almost Hermitian man-
ifold B such that the distributions D and D+ of the CR-submanifold become the
horizontal and the vertical distributions respectively, required by the submersion and
¢ restricted to D becomes a complex isometry.

We have seen that for a Riemannian submersion, the tangent bundle of the source
manifold splits into horizontal and vertical part. On the other hand, the tangent bundle
of a lightlike submanifold splits into screen and radical part and these natural splitting
of the tangent bundle plays an important role in the study of lightlike submanifolds.
Therefore Sahin [13] introduced screen lightlike submersion between a lightlike man-
ifold and a semi-Riemannian manifold. Further in [15], Sahin and Gunduzalp intro-
duced the idea of a lightlike submersion from a semi-Riemannian manifold onto a
lightlike manifold.

From Theorem 3, we know that for a totally umbilical semi-transversal lightlike
submanifold of an indefinite Kaehler manifold the distribution D is integrable. Then
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a totally umbilical semi-transversal lightlike submanifold meets our requirements to
define a submersion on it analogous to a submersion of a C R-submanifold. Signific-
ant applications of semi-Riemannian submersions in physics and the growing import-
ance of lightlike submanifolds and hypersurfaces in mathematical physics, especially
in relativity (see [5]), motivated us to work on this subject matter.

Definition 3. Let (M, gas, D) be a totally umbilical semi-transversal lightlike sub-
manifold of an indefinite Kaehler manifold M and (B, gg) be an indefinite almost
Hermitian manifold. Then we say that a smooth mapping ¢ : (M, gy, D) — (B,gB)
is a lightlike submersion if

(a) atevery p € M,'V, =ker(d¢), = D’.

(b) at each point p € M, the differential d¢), restricts to an isometry of the hori-
zontal space J, = D onto Ty () B, thatis, gp (X,Y) = gp(d¢(X).d¢p(Y)),
for every vector fields X,Y € I'(D).

Obviously from the definition, the restriction of the differential d¢), to the distri-
bution #, Hp = = D)p maps that space isomorphically onto Ty () B. Then for any tangent
vector X € Ty(p)B, we > say that the tangent vector X € D), is a horizontal lift of X
as for submersions. If X is a vector field on an open subset U of B then the hori-
zontal lift of X is the vector field X € I"'(D) on ¢~ (U) such that d¢(X) = Xo¢
and the vector field X is called a basic vector field. Now, we give example of lightlike
submersions.

Example 2. Let M be a 5-dimensional semi-transversal lightlike submanifold of
Réo as in Example (1) and B = R% be an indefinite almost Hermitian manifold.
Let the metrics be defined as gas = —(dx1)? — (dx2)? + (dx3)? + (dx4)? + (dx5)>
and gg = —(dy1)* + (dy2)?, where x1,x2,X3,X4,Xs, X6, X7, X8, X9, X10 and y1,y2
be the canonical co-ordinates of R;O and R?, respectively. We define a map ¢ :
(xl,xz,x3,x4,x5,x6,x7,x8,x9,x10) € R%O =d (x7,x8) € R%. Then the kernel of d¢
is

ker(d¢) = D' = span{Z; = cosh0dx1 + sinh0dx3 + dx1o,

Zy =coshB0xy + sinhf0xg4 + dxg, Z3 = X60Xx5 — X50X6},

where d¢p(Z1) = 0,d¢p(Z,) = 0and d¢p(Z3) = 0. By direct computation, we obtain
D =span{Z4 = 0x7,Z5 = dxg}, where dp(Z4) = 0y1,d¢p(Z5) = dy,. Then it fol-
lows that gy (Z4.Z4) = g(ddp(Z4).dp(Z4)) = 1 and gm(Zs5.Zs) =
gp(dd(Zs5),dp(Zs)) = —1. Hence ¢ is a semi-transversal lightlike submersion.

Theorem 4. Let ¢ : M — B be a lightlike submersion from a totally umbilical
semi-transversal lightlike submanifold of an indefinite Kaehler manifold M onto an
indefinite almost Hermitian manifold B. If X and Y are basic vectors ¢-related to
X, Y respectively, then

() gm(X.Y) = gp(X,Y)os.
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(i) [X,Y]% is the basic vector field and ¢-related to [Y?]N
(iii) (V}Z}’I Y)¥ is the basic vector field and ¢-related to (V%Y).
(iv) For any vertical vector field V, [X, V] is vertical.

Proof. Let X and Y be basic vector fields of M then (i) follows immediately
from part (b) of the Definition 3. Since P and Q be the projections from 7'M on
the distributions D’ and D of a semi-transversal lightlike submanifold of indefinite
Kaehler manifold respectively, then [X,Y] = P[X, Y]+ Q[X,Y]. Therefore the ho-
rizontal part Q[X, Y] of [X, Y] is a basic vector field and corresponds to [X, Y], that
is, dp(Q[X,Y]) = [dp(X),d¢(Y)]. Next, from the Koszul’s formula, we have

2em(VxY,Z2) = X(gm (Y, Z)) + Y (gm(Z,X)) — Z(gm (X, Y))
—gm (X, [Y.Z)+egm(Y.[Z. X))+ gm(Z,[X,Y]) 4.1)
for any 3( ’,Z’ Zel ,\(,D)' Consider X, Y and Z are the horizontal lifts of the vector

fields X,Y and Z respectively, then X(gm(Y,Z)) = y(gg(?,?))ogﬁ and
em(Z,[X,Y]) =gB(Z,[X,Y])o¢ then from (4.1), we have

26m (VY. 2) = X(gp(Y.Z))o¢p + Y (g5(Z,X))op — Z(gp(X,Y))o¢
—gp(X,[Y.Z))op +g5(Y,[Z,X))op + gp(Z,[X,Y])oo
=2g(VEY,Z). (42)

Thus from (4.2), (iii) follows, since ¢ is surjective and 7 is arbitrarily chosen. Fi-
nally, let V' € I'(D’) then [X, V] is ¢-related to [X,0], hence (iv) follows and this
completes the proof of the theorem. U

Let Vi be the covariant differentiation on B then we define the corresponding
operator VB for basic vector fields of B by assuming V}’?Y = (V)Iy Y)¥, for any

basic vector fields X and Y. Thus from (iii) the Theorem 4, ’@“}lg Y is a basic vector
field and dp(VMY)¥* = dp(VEY) = gY. Thus we define the tensor fields C;
and C,, using (3.1) as

VMy =VBy 1+ C1(X.Y)+ Ca(X,Y), (4.3)

for any X,Y € I'(D), where C1(X,Y) and C»(X,Y) denote the vertical parts of
V)]}’I Y. Itis easy to check that Cy and C; are bilinear maps from D x D — Rad(TM)
and D x D — D respectively.

Theorem 5. Let ¢ : M — B be a lightlike submersion of a totally umbilical semi-
transversal lightlike submanifold of an indefinite Kaehler manifold M onto an in-
definite almost Hermitian manifold B then for any basic vector fields X and Y, we
have

(i) the tensor fields C1 and C, are skew-symmetric, that is, C1(X,Y) =
—C1(Y,X)and C2(X,Y) = —C,(Y,X);
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(i) P1[X.Y]=2C1(X.Y)and P,[X.Y] =2Cx(X.Y),

Proof. (i) Let Z € I'(D1) be any vertical vector field then for any basic vector
field X € I'(D), we have

0=Z(g(X, X)) =23(VzX,X)=2e(VM Z —[X,Z],X) = —23(Z,Vx X)
= —2¢(Z.VEX +C1 (X, X)+ C2(X, X)) = —28(Z,C2(X, X)),

then the non degeneracy of the distribution D+ implies that Co(X, X) = 0, that is
C, is skew-symmetric. Similarly, let JN € I'(Rad(TM)) be a vertical vector field
where N € I'(Itr(TM)), we have

0=JN(g(X,X)) =—28(VyX,X) = —2g(VM N —[X,N], X)
=2g¢(N.VEX + C1(X. X) + C2(X. X)) = 2¢(N.C1 (X, X)),

then using (2.1), we obtain C; (X, X) = 0, that is C; is skew-symmetric.
(ii) For basic vector fields X,Y € I'(D), we have [X,Y] = V)]}’IY — V}MX, using
(3.1), (4.3) and skew-symmetric property of C; and C5, result follows. g

Next for a basic vector field X and a vertical vector field Z, using (3.1), we define
the tensor field 7" as

VM7 =V’ + VM)V =157 + (VM 2)7, (4.4)

where T is a bilinear map from D x D’ — D. Since [X,Z] = VM Z — VM X and
[X, Z] is vertical therefore

OVMZy=0(V¥x)=1x2z, (VMZ)V =¥ Xx)". (4.5)

Let X and Y be basic vector fields and Z be a vertical vector field such that Z €
' (D) then using (4.3), the tensor fields 7 and C, are related by

g(TxZ,Y)=g(VxZ.Y)=—g(Z,VxY)=—g(Z,C2(X.Y)), (4.6
and if Z € I'(Rad(TM)) then
¢(TxZ.Y) = —g(Z,h*(X.Y)). 4.7

Theorem 6. Let ¢ : M — B be a lightlike submersion of a totally umbilical semi-
transversal lightlike submanifold of an indefinite Kaehler manifold M onto an in-
definite almost Hermitian manifold B then B is also an indefinite Kaehler manifold.
Moreover if H and H® denote the holomorphic sectional curvatures of M and B,
respectively then for any unit basic vector X € I'(#) of M, we have

RM(X,JX,X,JX)=RB(X,JX,X,JX)+4|H|>.
Proof. Let X,Y € I'(D) be basic vector fields then using (2.3) and (4.3), we have
VxY =VEY + C1(X,Y) + Ca(X,Y) + ' (X, Y) + h* (X, Y). (4.8)
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On applying J on both sides of (4.8), we obtain
JVxY = JVEY + JC1(X.Y)+ JCa(X,Y) + Jh (X.Y)
+ER°(X.,Y)+ Fh¥(X.,Y), (4.9)
on replacing Y by JY in (4.8), we have
VxJY =VEJY + C1(X, TY)+ Co(X, JY)+ ' (X, JY)+h*(X,JY). (4.10)

Since M is a Kaehler manifold therefore Vx JY = JVxY, then equating (4.9) and
(4.10), we obtain

VBjy =JVEy e r (), 4.11)
Ci(X,JY)=Jh(X,Y) e ['(Rad(TM)), 4.12)
Co(X,JY)=Eh*(X,Y) e I'(DY), (4.13)

(X, JY)=JCo(X,Y)+ Fh5(X,Y) e I'(S(TM™)), (4.14)
W(X,JY)=JCi(X,Y) e [(tr(TM)). (4.15)

From (4.11), we see that almost complex structure J of B is parallel and hence B is
also an indefinite Kaehler manifold.

From (3.3), it is clear that U € I'(J DY) ¢ S(TM*1), if and only if, FU =0
then JU = EU and U € I'(u = (J D1)+) c S(TML), if and only if, EU =0
then JU = FU. Therefore from (4.13), (4.14) and skew-symmetric property of
Cy, we obtain Co(X,JY) = Ca(Y,JX), C2(JX,Y) =Cr(JY,X),C2(JX,JY) =
Co(X,Y)and h*(X,JY)+hS(Y,J X)=2Fh%(X,Y). On the other hand, since M is
a totally umbilical semi-transversal lightlike submanifold then we have 4%(X,JY) +
WY, JX)=g(X,JY)H® +g(Y,JX)H® = 0. Therefore Fh*(X,Y) = 0 and this
implies that #%(X,Y) € I'(J D1), for any X,Y € I'(D). By virtue of totally umbil-
ical property of M, we also have h*(J X, JY) = h*(X,Y). Similarly using (4.12) and
(4.15), we obtain C1 (X, JY) = C1(Y,JX),C;(JX.Y)=Ci1(JY,X),C1(JX.,JY)
=Ci(X,Y)and K (JX,JY)=h(X,Y), "(JX,Y)+h'(X,JY) = 0. Now, for
any X,Y,Z € I'(D), using (4.3) and (4.4), we have

VxVyZ =VEVEZ 1 TxC1(Y, 2) + Tx C2(Y, Z) + vertical, (4.16)

VyVxZ =VEVEZ + Ty Ci(X.Z) + Ty C2(X. Z) + vertical, 4.17)

Vixr1Z =V Z +2T2C1(X.Y) +2TzCo(X.Y) +vertical.  (4.18)
Further using (4.16)-(4.18), we obtain

RM(X,Y)Z = (RE(X,Y)Z)* + TxC1(Y,Z) + Tx C2(Y, Z) - Ty C1 (X, Z)
—TyCy(X,Z)—2T7C1(X,Y)—2T7zCo(X,Y)
+vertical, (4.19)
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where (~Ri (?,7)7)* denotes the basic vector field of M corresponding to
RB(X.Y)Z. Using (4.19) in (2.6), we obtain

RM(X.Y)Z = (RE(X.T)Z)* + TxC1(Y.Z) + Ty C2(Y. Z) ~ Ty C1(X. Z)
—TyCa(X,Z) —2T7C(X.Y) = 2Tz Co(X.Y) + Apix.2)Y
— Az X + Ansx,z)Y — Apsvr,z) X + (Vxh') (Y. Z)
— (Vyh')(X.Z)+ D' (X.h* (Y. Z2)) - D' (Y.h* (X, Z))
+(Vxh*)(Y, Z) = (Vy h*)(X, Z) + D* (X, h (Y, Z))
—D*(Y,h (X, Z)) + vertical.
Now, for basic vector field W € I'(D) with (2.4), (2.5), (4.4)-(4.7), we obtain
RM(x,Y,Z,W)=RB(X.,Y,Z,W)—&(Ci(Y,Z),h (X, W))
—2(C2(Y, 2),Co(X, W) + Z(C1(X, Z),h' (Y, W))
+2(C2(X, 2), (Y, W) +25(C1 (X, Y), i (Z, W)
+2g(Ca(X,Y), Ca(Z, W) + g(Api (x,2) Y. W)
— 8 Ay, zyX. W) +g(h* (X, 2),h* (Y, W))
—gh* (Y, Z),h* (X, W)). (4.20)

Now, using (2.4) and (4.3), we have g(Ap(x,z)Y. W) = g (X,2),VyWw) =
g(h'(X.Z).C1(Y.W)) and similarly g(Ayiy,z)X. W) = g(h' (Y. Z),C1(X. W)).

Using these expressions with (4.15) in (4.20), we obtain
RM(x,Y,.Z,W)=RBX.Y.Z,W)+g(Jh (Y.JZ),h' (X, W))
—8(Co(Y. 2), (X, W) = g(JR (X, T Z), k' (Y, W)
+9(C2(X,Z).Co(Y. W) =25 (Jh (X, TY),h (Z,W))
+28(C2(X,Y),Ca(Z, W) —g(JH (Y, T W), i} (X, Z))
+g(JRE (X, TW). W' (Y. Z)) + g(h* (X, Z).h* (Y, W))
— g (Y. Z),h* (X, W)). 4.21)

To compare holomorphic sectional curvature of M with that of B, set Y = J X,
Z =X and W = JX in (4.21) and then using the hypothesis that M is a totally
umbilical semi-transversal lightlike submanifold, we obtain RM(X,JX,X,JX) =
RBE(X,JX.X,JX) + |Co(X, X)||? + 3||C2(X. T X)||?> + ||h*(X,X)|?>. Since
Fh*(X,Y) = 0 therefore (4.14) implies ||1%(X, X)||* = ||C2(X, J X)||? and by virtue
of the totally umbilical property of M, (4.14) implies that C» (X, X) = —Jh%(X,J X)
=—J(HSg(X,J X)) = 0. Thus the holomorphic sectional curvature of M is given
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as
RM(X,JX,X,JX)=RB(X,JX.X,JX)+4|Ca(X, T X)|?
=REX.JX.X,TX)+4|n° (X, X)|?
=REX,JX.X,JX)+4|H*|>.
This completes the proof. ([l

Theorem 7. Let ¢ : M — B be a lightlike submersion of a totally umbilical semi-
transversal lightlike submanifold of an indefinite Kaehler manifold M onto an indef-
inite almost Hermitian manifold B. If the distribution D is integrable, then M is a
lightlike product manifold.

Proof. Let the distribution D be an integrable therefore P1[X,Y]=0and P,[X,Y]
=0, for any X,Y € I'(D), where Py and P, are the projection morphisms from
TM to Rad(TM) and D=, respectively. Therefore using the Theorem 5, we have
C1(X,Y)=0and C(X,Y) = 0. Hence using (4.3), we obtain that V)]}’IY e I'(D),
for any X,Y € I'(D), consequently the distribution D defines a totally geodesic fo-
liation in M . Moreover, from the Lemma 2, the distribution D’ also defines a totally
geodesic foliation in M. Thus using the De Rham’s theorem, M is a product mani-
fold M1 x M5, where M and M, are the leaves of the distributions of D and D’. O

Theorem 8. Let ¢ : M — B be a lightlike submersion of a totally umbilical semi-
transversal lightlike submanifold of an indefinite Kaehler manifold M onto an indef-
inite almost Hermitian manifold B such that J (DL) = S(TM>). Then the fibers are
totally geodesic submanifolds of M.

Proof. Let U,V € I'(D’) and then define
VMY =VyV + LU, V), (4.22)
where VyV = (VM V)Y and L(U,V) = (VM V)¥. Since the distribution D’ is
integrable always, then L(U,V) = L(V,U). Now, using the Kaehlerian property of
M, we have Vy JV = JVy V, since J(D1) = S(TM ), then
~AjyU+ VLIV =JVyV +JLUV)+ Th(U,V).
On comparing the horizontal and vertical components both sides, we get
H(Aj,U)=—JLWU.V), V(Aj,U)=—-JhUV). (4.23)
From (4.22), it is clear that the fibers are totally geodesic submanifolds of M, if and
only if, L(U, V) = 0 or using (4.23)1, if and only if, A7, U € r'(D’), forany U,V €
I'(D’). Now, particularly choose V' € D then using the hypothesis of this theorem
JV e I'(S(TM%1)). Let Y € I'(D) then using (2.5) with the fact that M is a totally .
umbilical lightlike submanifold, we obtain g(A4 7, U,Y) = g(h*(U.Y),JV)=g(U.Y)g(H*,JV) =
0. Similarly, let V € I'(Rad(TM)) then g(A 7, U.Y) = g(JV,VyY)=—g(V,h' (U,JY)) =
—g(U,JY)g(V,H") = 0. Thus A, U e I'(D') and the assertion follows. O
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Theorem 9. Let ¢ : M — B be a lightlike submersion of a totally umbilical semi-
transversal lightlike submanifold of an indefinite Kaehler manifold M onto an indef-
inite almost Hermitian manifold B. Then the sectional curvature of M and of the

fiber are related by
KWUAV)=KUAV)+g( Ay V. V)= g(Ap .oy U. V)
+g([Ay. AjylU. V),
for any orthonormal vector fields U,V € I'(D71).

Proof. Let V and V be the connections of semi-transversal lightlike submanifold
M and its fiber, respectively. Let R and R be the curvature tensors of V and V,
respectively then for any U, V € I'(D1), using (4.22) we have

R(U,V)U = Vy(VyU + L(V,U))—Vy(VyU + L(U,U))
- (VuyU + L(U.V].0)).
this further implies that
R(U,V,U,V)=g(VuVyU,V)+g(Vy L(V,U),V)—g(VyVyU,V)
—g(VyL(U.U). V) ~g(Vw,mU.V).
Again using (4.22), it leads to
RWU.V,U,V)=RWU,V,UV)+g(NuyL(V,U),V)—g(VyL(U,U),V). (4.24)
Now, using the fact that M is totally umbilical lightlike submanifold, we get
g(VuL(V,W),F) = g(Vy L(V,W)—g(h'(U,L(V,W)), F)
=—g(L(V.W),VyF)=—g(L(V.W),L(U,F)),
forany U,V,W,F €I’ (DJ-) therefore (4.24) becomes

R(U,V,U, V)= R(U,V,U,V)—g(L(U,V),L(U,V))+ g(L(U,U), L(V,V)).
(4.25)

Using (2.5), (2.6) and M is totally umbilical lightlike submanifold, we have
R(U,V,U,V)=RU,V,UV)+ gApwuyV.V)—g(Apw,u)U.V)
+g(W*(V.V).h*(U.U))—g* (U V),h*(V.U)).
Further using (4.23), (4.25) and the fact L(U,V) = L(V,U), we obtain
R(U,V,UV)=RUV,UV)—g(H(Ajy V), H(AjyV))

+8(H(AjyU), H(Afy V) + g ApwumyVsV)
—g(ApwnU.V)+g(V(Aj, V), V(Aj,U))
—g(V(A;,U), V(Aj5,U)).
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Since U,V € I'(D1) and let X € I'(D) then using (2.3), we get gA5yV,X)=0,
which further implies that A 7.,V € r'(D1) and AjyV = Ajy, U, then
RU,V,UV)=RUV,UV)—g(Ajy V. AjyV)+&AjyU. Ay V)
+8Apw.uyVsV) —gApuyU, V). (4.206)
Now, let W € I'(S(TM 1)) then for U,V € I'(D~1), using (2.5), we have g (Aw U, V)
= g(U, Aw V). Using this fact with A 7,V € (D), we get
AV A5y V) —gAjuU Az, V) =g(Aj U A5y V) —g(A55 U Afy V)
=gl AU V)—gAjyA;yUYV)
=—g([Ajy. AjylU. V). (4.27)
On using (4.27) in (4.26), the assertion follows. O

Now we define O’Neill’s tensors [10] for a lightlike submersion. Let V be a con-
nection of M then tensors 7~ and 4 of type (1,2) are given by
TxY = HVypx VY + VVypx HY, AxY = HVgpxVY +VVgpx HY. (4.28)

Using (4.28), we have the following lemma.

Lemma 3. Let ¢ : M — B be a lightlike submersion of a totally umbilical semi-
transversal lightlike submanifold of an indefinite Kaehler manifold M onto an indef-
inite almost Hermitian manifold B. Then we have the following:

G) VgV =TyV +VVyV.

(i) Vy X = HVy X + Ty X.
(iil)) VxV =AxV + VVx V.
(v) VxY = #HVxY + AxY,
forany X,Y € H and U,V €V.

Theorem 10. Let ¢ : M — B be a lightlike submersion of a totally umbilical
semi-transversal lightlike submanifold of an indefinite Kaehler manifold M onto an

indefinite almost Hermitian manifold B such that J(DL) = S(TM ™). Then K(X A
V)= |HS\?>—||Tx V||?, for any unit vector fields X € I'(D) and V € I'(D1).

Proof. Let X € I'(D) and V € I'(D~) then using the Theorem 5 and Lemma 3
with (4.3), we obtain

gRV. X)X, V)=g(VyH(VxX).V)—g(Vx H(Vy X).V)
—g(VxTyv X, V) +g(Tix, 1 X, V).

It should be noted that g(Vy K (Vx X),V) = —g(H (Vx X),VyV), and similarly
g(Vx H(Vy X),V)=—g(#H(Vy X),Vx V). Therefore we have

gRV, X)X,V) =—g(H(Vx X),Vy V) +g(H(Vy X),Vx V)
—g(VxTv X, V) +g(Tix 1 X, V). (4.29)
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Since J(D1) = S(TM~) then using the Theorem 8, we have L(U,V) = 0, for
U,V e I'(D%). Hence using the definition of 7 with (2.3) and (4.22), we get

gy X,U)=—g(TyU,X)=—g(L(V,U),X)=0. (4.30)
Now, using (4.22), we have
g(H(VxX),VyV)=g(H(VxX),L(V,V)) =0. (4.31)

Since M is a totally umbilical then using (4.30), we obtain
g(Vx Ty X.V) = —g(Tv X.Vx V) = —g(Ty X. V(Vx V)
=g(L(V.V(VxV)).X)=0. (4.32)

Since for a vertical vector field V, [X, V] is always vertical therefore again using
(4.30), we have

gUx X, V) =—g(L(X,V].V),X)=0. (4.33)
Using (4.6) and (4.31)-(4.33) in (4.29), we obtain
g(RWV, X)X, V)=g(TxV,Tx V). (4.34)

Since M is a totally umbilical then using (2.6) and (4.34), we get
RX,V,X,V)=—g(TxV.Tx V) + g(h' (X, X),Vy V)
+g(h* (X, X),h*(V,V)). (4.35)

Now, using Kaehlerian property of M, we have Vi, J & = JVy &, for V e I'(D1) and
¢ e I'(Rad(TM)). Using the Lemma 3 with (2.4) and then comparing the horizontal
components of resulting equation, we obtain

AV =—JTvE. (4.36)

Since M is semi-transversal lightlike submanifold then for & € I'(Rad(TM)), J¢ €
I'(ltr(TM)) and using (4.28) for any U,V €V, Ty V = HVyyVV € JH. There-
fore (4.36) implies that AJEV e H or ANV € #. Then for V e I'(D1) and N €
I'(tr(TM)), we have g(Vy V,N) = —g(V,VyN) = g(V, Ay V) = 0. This implies
that Vi,V has no component in Rad(TM). Using this fact in (4.35) with (3.9), the
assertion follows. O
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