

LIGHTLIKE SUBMERSIONS FROM TOTALLY UMBILICAL SEMI-TRANSVERSAL LIGHTLIKE SUBMANIFOLDS

RUPALI KAUSHAL, RAKESH KUMAR, AND RAKESH KUMAR NAGAICH

Received 21 December, 2017

Abstract. We study lightlike submersions from a totally umbilical semi-transversal lightlike submanifold of an indefinite Kaehler manifold onto an indefinite almost Hermitian manifold. We show that if an indefinite almost Hermitian manifold *B* admits a lightlike submersion $\phi : M \to B$ from a totally umbilical semi-transversal lightlike submanifold *M* of an indefinite Kaehler manifold \overline{M} then *B* is necessarily an indefinite Kaehler manifold. We investigate the condition for a totally umbilical semi-transversal lightlike submanifold *M* to becomes a product manifold and its fibers become geodesic. Finally, we obtain some characterization theorems related to the sectional curvature of an indefinite Kaehler manifold.

2010 Mathematics Subject Classification: 53C20; 53C50

Keywords: indefinite Kaehler manifold, semi-transversal lightlike submanifolds, lightlike submersions

1. INTRODUCTION

The study of Riemannian submersions $\phi: M \to B$, from a Riemannian manifold M onto a Riemannian manifold B was initiated by O'Neill [10]. A Riemannian submersion naturally yields a vertical distribution, which is always integrable and a horizontal distribution. On the other hand, for a CR-submanifold M of a Kaehler manifold \overline{M} there are two orthogonal complementary distributions D and D^{\perp} , such that D is \overline{J} -invariant and D^{\perp} is totally real and always integrable (cf. Bejancu [2]), where \overline{J} is almost complex structure of \overline{M} . Kobayashi [9] observed the similarity between the total space of a Riemannian submersion and a CR-submanifold of a Kaehler manifold in terms of distributions. Then Kobayashi [9] introduced a submersion $\phi: M \to B$, from a CR-submanifold M of a Kaehler manifold \overline{M} onto an almost Hermitian manifold B such that the distributions D and D^{\perp} of the CR-submanifold become the horizontal and the vertical distributions respectively, as required by the submersions and π restricted to D becomes a complex isometry.

Later, semi-Riemannian submersions were introduced by O'Neill in [11]. As it is known that when M and B are Riemannian manifolds then the fibers are always

© 2018 Miskolc University Press

Riemannian manifolds. However, when the manifolds are semi-Riemannian manifolds then the fibers may not be Riemannian (hence semi-Riemannian) manifolds, (see [15]). Therefore in [13], Sahin introduced a screen lightlike submersion from a lightlike manifold onto a semi-Riemannian manifold and in [15], Sahin and Gunduzalp introduced a lightlike submersion from a semi-Riemannian manifold onto a lightlike manifold. It is well-known that semi-Riemannian submersions are of interest in mathematical physics, owing to their applications in the Yang-Mills theory, Kaluza-Klein theory, supergravity and superstring theories [3, 4, 8, 16]. Moreover, the geometry of lightlike submanifolds has potential for applications in mathematical physics, particularly in general relativity (for detail, see [5]) therefore in present paper, we study lightlike submersions from a totally umbilical semi-transversal lightlike submanifold onto an almost Hermitian manifold.

2. LIGHTLIKE SUBMANIFOLDS

Let (\bar{M}, \bar{g}) be a real (m + n)-dimensional semi-Riemannian manifold of constant index q such that $m, n \ge 1, 1 \le q \le m + n - 1$ and (M, g) be an m-dimensional submanifold of \bar{M} and g be the induced metric of \bar{g} on M. If \bar{g} is degenerate on the tangent bundle TM of M then M is called a lightlike submanifold of \bar{M} , (see [5]). For a degenerate metric g on M, TM^{\perp} is a degenerate n-dimensional subspace of $T_x\bar{M}$. Thus both T_xM and T_xM^{\perp} are degenerate orthogonal subspaces but no longer complementary. In this case, there exists a subspace $Rad(T_xM) = T_xM \cap T_xM^{\perp}$ which is known as radical (null) subspace. If the mapping $Rad(TM) : x \in M \longrightarrow$ $Rad(T_xM)$, defines a smooth distribution on M of rank r > 0 then the submanifold M of \bar{M} is called an r-lightlike submanifold and Rad(TM) is called the radical distribution on M.

Screen distribution S(TM) is a semi-Riemannian complementary distribution of Rad(TM) in TM, that is, $TM = Rad(TM) \perp S(TM)$ and $S(TM^{\perp})$ is a complementary vector subbundle to Rad(TM) in TM^{\perp} . Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles to TM in $T\overline{M} \mid_{M}$ and to Rad(TM) in $S(TM^{\perp})^{\perp}$ respectively. Then $T\overline{M} \mid_{M} = TM \oplus tr(TM) = (RadTM \oplus ltr(TM)) \perp S(TM) \perp S(TM^{\perp})$.

Theorem 1 ([5]). Let $(M, g, S(TM), S(TM^{\perp}))$ be an *r*-lightlike submanifold of a semi-Riemannian manifold $(\overline{M}, \overline{g})$. Then there exists a complementary vector bundle ltr(TM) of Rad(TM) in $S(TM^{\perp})^{\perp}$ and a basis of $ltr(TM) |_{\mathcal{U}}$ consisting of smooth section $\{N_i\}$ of $S(TM^{\perp})^{\perp} |_{\mathcal{U}}$, where \mathcal{U} is a coordinate neighborhood of M such that

$$\bar{g}(N_i,\xi_i) = \delta_{ii}, \quad \bar{g}(N_i,N_i) = 0, \text{for any} \quad i,j \in \{1,2,..,r\},$$
(2.1)

where $\{\xi_1, ..., \xi_r\}$ is a lightlike basis of Rad(TM).

Let $\overline{\nabla}$ be the Levi-Civita connection on \overline{M} then for any $X, Y \in \Gamma(TM)$ and $U \in \Gamma(tr(TM))$, the Gauss and Weingarten formulas are given by

$$\nabla_X Y = \nabla_X Y + h(X, Y), \quad \nabla_X U = -A_U X + \nabla_X^{\perp} U, \tag{2.2}$$

where $\{\nabla_X Y, A_U X\}$ and $\{h(X, Y), \nabla_X^{\perp} U\}$ belong to $\Gamma(TM)$ and $\Gamma(tr(TM))$, respectively. Here ∇ is a torsion-free linear connection on M, h is a symmetric bilinear form on $\Gamma(TM)$ which is called the second fundamental form, A_U is a linear operator on M and known as a shape operator.

Considering the projection morphisms L and S of tr(TM) on ltr(TM) and $S(TM^{\perp})$, respectively, then (2.2) becomes

$$\overline{\nabla}_X Y = \nabla_X Y + h^l(X,Y) + h^s(X,Y), \quad \overline{\nabla}_X U = -A_U X + D_X^l U + D_X^s U, \quad (2.3)$$

where $h^{l}(X,Y) = L(h(X,Y)), h^{s}(X,Y) = S(h(X,Y)), D_{X}^{l}U = L(\nabla_{X}^{\perp}U), D_{X}^{s}U = S(\nabla_{X}^{\perp}U)$. As h^{l} and h^{s} are ltr(TM)-valued and $S(TM^{\perp})$ -valued respectively, therefore they are called as the lightlike second fundamental form and the screen second fundamental form on M. In particular

$$\bar{\nabla}_X N = -A_N X + \nabla^l_X N + D^s(X, N), \quad \bar{\nabla}_X W = -A_W X + \nabla^s_X W + D^l(X, W),$$
(2.4)

where $X \in \Gamma(TM)$, $N \in \Gamma(ltr(TM))$ and $W \in \Gamma(S(TM^{\perp}))$. Using (2.3) and (2.4), we obtain

$$\bar{g}(h^s(X,Y),W) + \bar{g}(Y,D^l(X,W)) = g(A_WX,Y).$$
 (2.5)

Let \overline{R} and R be the curvature tensors of $\overline{\nabla}$ and ∇ , respectively then by straightforward calculations (see [5]), we have

$$\bar{R}(X,Y)Z = R(X,Y)Z + A_{h^{l}(X,Z)}Y - A_{h^{l}(Y,Z)}X + A_{h^{s}(X,Z)}Y
- A_{h^{s}(Y,Z)}X + (\nabla_{X}h^{l})(Y,Z) - (\nabla_{Y}h^{l})(X,Z)
+ D^{l}(X,h^{s}(Y,Z)) - D^{l}(Y,h^{s}(X,Z)) + (\nabla_{X}h^{s})(Y,Z)
- (\nabla_{Y}h^{s})(X,Z) + D^{s}(X,h^{l}(Y,Z)) - D^{s}(Y,h^{l}(X,Z)).$$
(2.6)

3. SEMI-TRANSVERSAL LIGHTLIKE SUBMANIFOLDS

Let $(\overline{M}, \overline{J}, \overline{g})$ be an indefinite almost Hermitian manifold and $\overline{\nabla}$ be the Levi-Civita connection on \overline{M} with respect to the indefinite metric \overline{g} . Then \overline{M} is called an indefinite Kaehler manifold [1] if the almost complex structure \overline{J} is parallel with respect to $\overline{\nabla}$, that is $(\overline{\nabla}_X \overline{J})Y = 0$, for any $X, Y \in \Gamma(T\overline{M})$.

Definition 1 ([12]). Let M be a lightlike submanifold of an indefinite Kaehler manifold \overline{M} then M is called a semi-transversal lightlike submanifold of \overline{M} if the following conditions are satisfied:

(i) Rad(TM) is transversal with respect to \overline{J} .

RUPALI KAUSHAL, RAKESH KUMAR, AND RAKESH KUMAR NAGAICH

(ii) There exists a real non-null distribution $D \subset S(TM)$ such that $S(TM) = D \oplus D^{\perp}$, $\overline{J}(D) = D$, $\overline{J}D^{\perp} \subset S(TM^{\perp})$, where D^{\perp} is orthogonal complementary to D in S(TM).

Then tangent bundle of a semi-transversal lightlike submanifold is decomposed as $TM = D \perp D'$, where $D' = D^{\perp} \perp Rad(TM)$. We say M is a proper semi-transversal lightlike submanifold if $D \neq \{0\}$ and $D^{\perp} \neq \{0\}$. Therefore $dim(Rad(TM)) \geq 2$ and for a proper M, $dim(D) \geq 2s, s > 1$, $dim(D^{\perp}) \geq 1$ and dim(Rad(TM)) = dim(ltr(TM)). Thus $dim(M) \geq 5$ and $dim(\overline{M}) \geq 8$. Next, we give example of semi-transversal lightlike submanifolds.

Example 1. Let *M* be a 5-dimensional submanifold of (R_2^{10}, \bar{g}) given by $x_1 = u_1 cosh\theta$, $x_2 = u_2 cosh\theta$, $x_3 = u_1 sinh\theta$, $x_4 = u_2 sinh\theta$, $x_5 = u_3$, $x_6 = \sqrt{1-u_3^2}$, $x_7 = u_4$, $x_8 = u_8$, $x_9 = u_2$, $x_{10} = u_1$, where \bar{g} is of signature (-, -, +, +, +, +, +, +, +) with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial x_5, \partial x_6, \partial x_7, \partial x_8, \partial x_9, \partial x_{10}\}$. Then *TM* is spanned by $Z_1 = cosh\theta\partial x_1 + sinh\theta\partial x_3 + \partial x_{10}$, $Z_2 = cosh\theta\partial x_2 + sinh\theta\partial x_4 + \partial x_9$, $Z_3 = x_6\partial x_5 - x_5\partial x_6$, $Z_4 = \partial x_7$, $Z_5 = \partial x_8$. Clearly *M* is a 2-lightlike submanifold with $Rad(TM) = span\{Z_1, Z_2\}$ and the lightlike transversal bundle is spanned by

$$N_1 = \frac{1}{2}(-\cosh\theta\partial x_1 - \sinh\theta\partial x_3 + \partial x_{10}), \ N_2 = -\frac{1}{2}(\cosh\theta\partial x_2 + \sinh\theta\partial x_4 - \partial x_9),$$

and $\bar{J}Z_1 = -2N_2$ and $\bar{J}Z_2 = 2N_1$. Hence $\bar{J}(Rad(TM)) = ltr(TM)$. Since $\bar{J}Z_4 = Z_5$ then $D = span\{Z_4, Z_5\}$ which is an invariant distribution on M. By direct calculations, the transversal screen bundle $S(TM^{\perp})$ is spanned by

 $W_1 = sinh\theta \partial x_1 + cosh\theta \partial x_3$, $W_2 = sinh\theta \partial x_2 + cosh\theta \partial x_4$, $W_3 = x_6 \partial x_6 + x_5 \partial x_5$. Thus $\overline{J}W_3 = -Z_3$. Hence $D^{\perp} = span\{Z_3\}$ is an anti-invariant distribution on M and $span\{W_1, W_2\}$ is invariant and $span\{W_3\}$ is anti-invariant subbundles of $S(TM^{\perp})$ respectively. Thus it enables us to choose $S(TM) = span\{Z_3, Z_4, Z_5\}$. Hence M is a proper semi-transversal lightlike submanifold.

Let M be a semi-transversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Let Q, P_1 , P_2 and P be the projection morphisms from TM on D, Rad(TM), D^{\perp} and D' respectively. Then for any $X \in \Gamma(TM)$, we put

$$X = QX + P_1 X + P_2 X. (3.1)$$

Applying \overline{J} to (3.1), we obtain $\overline{J}X = \overline{J}QX + \overline{J}P_1X + \overline{J}P_2X$, can be written as $\overline{J}X = TQX + wP_1X + wP_2X$. Put $wP_1 = w_1$ and $wP_2 = w_2$, then we have

$$\bar{J}X = TX + w_1X + w_2X,$$
 (3.2)

where $TX \in \Gamma(D), w_1X \in \Gamma(ltr(TM))$ and $w_2X \in \Gamma(\overline{J}D^{\perp}) \subset S(TM^{\perp})$. Similarly, for any $V \in \Gamma(S(TM^{\perp}))$, we can write

$$\bar{J}V = EV + FV, \tag{3.3}$$

where $EV \in \Gamma(D^{\perp})$ and $FV \in \Gamma(\mu)$, where μ is a complementary bundle of $\overline{J}D^{\perp}$ in $S(TM^{\perp})$. Differentiating (3.2) and using (2.3), (2.4) and (3.3), for any $X \in \Gamma(TM)$, we have the following lemma.

Lemma 1. Let M be a semi-transversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then we have

$$(\nabla_X T)Y = A_{w_1Y}X + A_{w_2Y}X + Jh^l(X,Y) + Eh^s(X,Y), \qquad (3.4)$$

$$(\nabla_X w_1)Y = -h^l(X, TY) - D^l(X, w_2Y), \qquad (3.5)$$

$$(\nabla_X w_2)Y = Fh^s(X, Y) - h^s(X, TY) - D^s(X, w_1Y), where$$
(3.6)

$$(\nabla_X T)Y = \nabla_X TY - T\nabla_X Y, \quad (\nabla_X w_1)Y = \nabla_X^l w_1 Y - w_1 \nabla_X Y, \quad (3.7)$$

$$(\nabla_X w_2)Y = \nabla_X^s w_2 Y - w_2 \nabla_X Y. \tag{3.8}$$

Definition 2 ([6]). A lightlike submanifold (M, g) of a semi-Riemannian manifold $(\overline{M}, \overline{g})$ is said to be a totally umbilical in \overline{M} if there is a smooth transversal vector field $H \in \Gamma(tr(TM))$ on M, called the transversal curvature vector field of M, such that $h(X, Y) = H\overline{g}(X, Y)$, for $X, Y \in \Gamma(TM)$. Using (2.3), clearly M is a totally umbilical, if and only if, for $X, Y \in \Gamma(TM)$ and $W \in \Gamma(S(TM^{\perp}))$, on each coordinate neighborhood \mathcal{U} there exist smooth vector fields $H^{l} \in \Gamma(ltr(TM))$ and $H^{s} \in \Gamma(S(TM^{\perp}))$ such that

$$h^{l}(X,Y) = H^{l}g(X,Y), \quad h^{s}(X,Y) = H^{s}g(X,Y), \quad D^{l}(X,W) = 0.$$
 (3.9)

Lemma 2. Let M be a totally umbilical semi-transversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} then the distribution D' defines a totally geodesic foliation in M.

Proof. Let $X, Y \in \Gamma(D')$ then using (3.4) and (3.7), we obtain $T\nabla_X Y = -A_{w_1Y}X - A_{w_2Y}X - \bar{J}h^l(X,Y) - Eh^s(X,Y)$. On taking inner product both sides with $Z \in \Gamma(D)$, we further obtain

$$g(T\nabla_X Y, Z) = \bar{g}(\nabla_X w_1 Y, Z) + \bar{g}(\nabla_X w_2 Y, Z) = -\bar{g}(JY, \nabla_X Z)$$
$$= \bar{g}(Y, \bar{\nabla}_X \bar{J}Z) = g(Y, \nabla_X Z'), \qquad (3.10)$$

where $Z' = \overline{J}Z \in \Gamma(D)$. Since *M* is a totally umbilical lightlike submanifold then for any $X \in \Gamma(D')$ and $Z \in \Gamma(D)$, with (3.5) and (3.7), we have $w_1 \nabla_X Z =$ $h^l(X,TZ) = H^lg(X,TZ) = 0$ and using (3.6) and (3.8), we have $w_2 \nabla_X Z =$ $-Fh^s(X,Z) + h^s(X,TZ) = -FH^sg(X,Z) + H^sg(X,TZ) = 0$, these facts imply that $\nabla_X Z \in \Gamma(D)$, for any $X \in \Gamma(D')$ and $Z \in \Gamma(D)$. Therefore (3.10) implies that $g(T \nabla_X Y, Z) = 0$, then the non degeneracy of the distribution *D* implies that $T \nabla_X Y = 0$. Hence the result follows.

Theorem 2 ([12]). Let M be a semi-transversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} . Then the distribution D' is integrable, if and only if $A_{wZ}V = A_{wV}Z$, for any $Z, V \in \Gamma(D')$.

RUPALI KAUSHAL, RAKESH KUMAR, AND RAKESH KUMAR NAGAICH

Theorem 3. Let M be a totally umbilical semi-transversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} then the distribution D' is integrable.

Proof. Let $X, Y \in \Gamma(D')$ then using (3.4) and (3.7) with the Lemma 2, we get $A_{wY}X = -\bar{J}h^l(X,Y) - Eh^s(X,Y)$ this implies that $A_{wY}X \in \Gamma(D')$ and moreover the symmetric property of the second fundamental form *h* gives that $A_{wY}X = A_{wX}Y$. Hence by virtue of the Theorem 2, the result follows.

4. SEMI-TRANSVERSAL LIGHTLIKE SUBMERSIONS

Let $\phi : M \to B$ be a mapping from a Riemannian manifold M onto a Riemannian manifold B then it is said to be a Riemannian submersion if it satisfies the following axioms:

- A1. ϕ has maximal rank. This implies that for each $b \in B$, $\phi^{-1}(b)$ is a submanifold of M, known as *fiber*, of dimension dimM - dimB. A vector field tangent to the fibers is called vertical vector field and orthogonal to fibers is called horizontal vector field.
- A2. ϕ_* preserves the lengths of horizontal vectors.

The Riemannian submersions were introduced by O'Neill in [10] and since then plenty of work on this subject matter has been done (for detail, see [7, 14] and many references therein). In the study of submersions, the vertical distribution \mathcal{V} of Mis defined by $\mathcal{V}_p = ker \ d\phi_p, p \in M$, which is always integrable and the orthogonal complementary distribution to \mathcal{V} is defined by $\mathcal{H}_p = (ker \ d\phi_p)^{\perp}$, denoted by \mathcal{H} and called a horizontal distribution. Therefore the tangent bundle TM of M has the following decomposition $TM = \mathcal{V} \oplus \mathcal{H}$.

Since the vertical distribution of the Riemannian submersion $\phi: M \to B$ and the totally real distribution D^{\perp} of the *CR*-submanifold *M* of a Kaehler manifold are always integrable. Therefore Kobayashi [9] introduced the submersion $\phi: M \to B$ from a *CR*-submanifold *M* of a Kaehler manifold onto an almost Hermitian manifold *B* such that the distributions *D* and D^{\perp} of the *CR*-submanifold become the horizontal and the vertical distributions respectively, required by the submersion and ϕ restricted to *D* becomes a complex isometry.

We have seen that for a Riemannian submersion, the tangent bundle of the source manifold splits into horizontal and vertical part. On the other hand, the tangent bundle of a lightlike submanifold splits into screen and radical part and these natural splitting of the tangent bundle plays an important role in the study of lightlike submanifolds. Therefore Sahin [13] introduced screen lightlike submersion between a lightlike manifold and a semi-Riemannian manifold. Further in [15], Sahin and Gunduzalp introduced the idea of a lightlike submersion from a semi-Riemannian manifold onto a lightlike manifold.

From Theorem 3, we know that for a totally umbilical semi-transversal lightlike submanifold of an indefinite Kaehler manifold the distribution D' is integrable. Then

a totally umbilical semi-transversal lightlike submanifold meets our requirements to define a submersion on it analogous to a submersion of a CR-submanifold. Significant applications of semi-Riemannian submersions in physics and the growing importance of lightlike submanifolds and hypersurfaces in mathematical physics, especially in relativity (see [5]), motivated us to work on this subject matter.

Definition 3. Let (M, g_M, D) be a totally umbilical semi-transversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} and (B, g_B) be an indefinite almost Hermitian manifold. Then we say that a smooth mapping $\phi : (M, g_M, D) \to (B, g_B)$ is a lightlike submersion if

- (a) at every $p \in M$, $\mathcal{V}_p = ker(d\phi)_p = D'$.
- (b) at each point p ∈ M, the differential dφ_p restricts to an isometry of the horizontal space H_p = D_p onto T_{φ(p)}B, that is, g_D(X, Y) = g_B(dφ(X), dφ(Y)), for every vector fields X, Y ∈ Γ(D).

Obviously from the definition, the restriction of the differential $d\phi_p$ to the distribution $\mathcal{H}_p = D_p$ maps that space isomorphically onto $T_{\phi(p)}B$. Then for any tangent vector $\widetilde{X} \in T_{\phi(p)}B$, we say that the tangent vector $X \in D_p$ is a horizontal lift of \widetilde{X} as for submersions. If \widetilde{X} is a vector field on an open subset U of B then the horizontal lift of \widetilde{X} is the vector field $X \in \Gamma(D)$ on $\phi^{-1}(U)$ such that $d\phi(X) = \widetilde{X}o\phi$ and the vector field X is called a *basic vector field*. Now, we give example of lightlike submersions.

Example 2. Let M be a 5-dimensional semi-transversal lightlike submanifold of R_2^{10} as in Example (1) and $B = R_1^2$ be an indefinite almost Hermitian manifold. Let the metrics be defined as $g_M = -(dx_1)^2 - (dx_2)^2 + (dx_3)^2 + (dx_4)^2 + (dx_5)^2$ and $g_B = -(dy_1)^2 + (dy_2)^2$, where $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}$ and y_1, y_2 be the canonical co-ordinates of R_2^{10} and R^2 , respectively. We define a map ϕ : $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}) \in R_2^{10} \mapsto (x_7, x_8) \in R_1^2$. Then the kernel of $d\phi$ is

$$ker(d\phi) = D' = span\{Z_1 = cosh\theta \partial x_1 + sinh\theta \partial x_3 + \partial x_{10}, Z_2 = cosh\theta \partial x_2 + sinh\theta \partial x_4 + \partial x_9, Z_3 = x_6 \partial x_5 - x_5 \partial x_6\},\$$

where $d\phi(Z_1) = 0$, $d\phi(Z_2) = 0$ and $d\phi(Z_3) = 0$. By direct computation, we obtain $D = span\{Z_4 = \partial x_7, Z_5 = \partial x_8\}$, where $d\phi(Z_4) = \partial y_1, d\phi(Z_5) = \partial y_2$. Then it follows that $g_M(Z_4, Z_4) = g_B(d\phi(Z_4), d\phi(Z_4)) = 1$ and $g_M(Z_5, Z_5) = g_B(d\phi(Z_5), d\phi(Z_5)) = -1$. Hence ϕ is a semi-transversal lightlike submersion.

Theorem 4. Let $\phi : M \to B$ be a lightlike submersion from a totally umbilical semi-transversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} onto an indefinite almost Hermitian manifold B. If X and Y are basic vectors ϕ -related to $\widetilde{X}, \widetilde{Y}$ respectively, then

(i) $g_M(X,Y) = g_B(\widetilde{X},\widetilde{Y})o\phi$.

- (ii) $[X, Y]^{\mathcal{H}}$ is the basic vector field and ϕ -related to $[\widetilde{X}, \widetilde{Y}]$. (iii) $(\nabla_X^M Y)^{\mathcal{H}}$ is the basic vector field and ϕ -related to $(\nabla_{\widetilde{X}}^B \widetilde{Y})$. (iv) For any vertical vector field V, [X, V] is vertical.

Proof. Let X and Y be basic vector fields of M then (i) follows immediately from part (b) of the Definition 3. Since P and Q be the projections from TM on the distributions D' and D of a semi-transversal lightlike submanifold of indefinite Kaehler manifold respectively, then [X, Y] = P[X, Y] + Q[X, Y]. Therefore the horizontal part O[X,Y] of [X,Y] is a basic vector field and corresponds to [X,Y], that is, $d\phi(Q[X,Y]) = [d\phi(X), d\phi(Y)]$. Next, from the Koszul's formula, we have

$$2g_{M}(\nabla_{X}Y,Z) = X(g_{M}(Y,Z)) + Y(g_{M}(Z,X)) - Z(g_{M}(X,Y)) - g_{M}(X,[Y,Z]) + g_{M}(Y,[Z,X]) + g_{M}(Z,[X,Y])$$
(4.1)

for any $X, Y, Z \in \Gamma(D)$. Consider X, Y and Z are the horizontal lifts of the vector fields $\widetilde{X}, \widetilde{Y}$ and \widetilde{Z} respectively, then $X(g_M(Y,Z)) = \widetilde{X}(g_B(\widetilde{Y},\widetilde{Z}))o\phi$ and $g_M(Z, [X, Y]) = g_B(\widetilde{Z}, [\widetilde{X}, \widetilde{Y}])o\phi$ then from (4.1), we have

$$2g_{M}(\nabla_{X}^{M}Y,Z) = \widetilde{X}(g_{B}(\widetilde{Y},\widetilde{Z}))o\phi + \widetilde{Y}(g_{B}(\widetilde{Z},\widetilde{X}))o\phi - \widetilde{Z}(g_{B}(\widetilde{X},\widetilde{Y}))o\phi - g_{B}(\widetilde{X},[\widetilde{Y},\widetilde{Z}])o\phi + g_{B}(\widetilde{Y},[\widetilde{Z},\widetilde{X}])o\phi + g_{B}(\widetilde{Z},[\widetilde{X},\widetilde{Y}])o\phi = 2g_{B}(\nabla_{\widetilde{X}}^{B}\widetilde{Y},\widetilde{Z}).$$

$$(4.2)$$

Thus from (4.2), (iii) follows, since ϕ is surjective and \widetilde{Z} is arbitrarily chosen. Finally, let $V \in \Gamma(D')$ then [X, V] is ϕ -related to [X, 0], hence (iv) follows and this completes the proof of the theorem.

Let ∇^B be the covariant differentiation on B then we define the corresponding operator $\widetilde{\nabla}^B$ for basic vector fields of B by assuming $\widetilde{\nabla}^B_X Y = (\nabla^M_X Y)^{\mathcal{H}}$, for any basic vector fields X and Y. Thus from (iii) the Theorem 4, $\widetilde{\nabla}^B_X Y$ is a basic vector field and $d\phi(\nabla^M_X Y)^{\mathcal{H}} = d\phi(\widetilde{\nabla}^B_X Y) = \nabla^B_{\widetilde{X}} \widetilde{Y}$. Thus we define the tensor fields C_1 and C, using (2.1) as and C_2 , using (3.1) as

$$\nabla_X^M Y = \widetilde{\nabla}_X^B Y + C_1(X, Y) + C_2(X, Y), \tag{4.3}$$

for any $X, Y \in \Gamma(D)$, where $C_1(X, Y)$ and $C_2(X, Y)$ denote the vertical parts of $\nabla_X^M Y$. It is easy to check that C_1 and C_2 are bilinear maps from $D \times D \to Rad(TM)$ and $D \times D \rightarrow D^{\perp}$ respectively.

Theorem 5. Let $\phi : M \to B$ be a lightlike submersion of a totally umbilical semitransversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} onto an indefinite almost Hermitian manifold B then for any basic vector fields X and Y, we have

(i) the tensor fields C_1 and C_2 are skew-symmetric, that is, $C_1(X,Y) =$ $-C_1(Y, X)$ and $C_2(X, Y) = -C_2(Y, X)$;

(ii)
$$P_1[X,Y] = 2C_1(X,Y)$$
 and $P_2[X,Y] = 2C_2(X,Y)$,

Proof. (i) Let $Z \in \Gamma(D^{\perp})$ be any vertical vector field then for any basic vector field $X \in \Gamma(D)$, we have

$$0 = Z(g(X,X)) = 2\bar{g}(\bar{\nabla}_Z X, X) = 2g(\nabla_X^M Z - [X,Z], X) = -2\bar{g}(Z, \bar{\nabla}_X X)$$

= $-2g(Z, \bar{\nabla}_X^B X + C_1(X,X) + C_2(X,X)) = -2g(Z, C_2(X,X)),$

then the non degeneracy of the distribution D^{\perp} implies that $C_2(X, X) = 0$, that is C_2 is skew-symmetric. Similarly, let $\bar{J}N \in \Gamma(Rad(TM))$ be a vertical vector field where $N \in \Gamma(ltr(TM))$, we have

$$0 = \bar{J}N(g(X,X)) = -2\bar{g}(\bar{\nabla}_N X, X) = -2g(\nabla^M_X N - [X,N], X)$$

= 2g(N, $\tilde{\nabla}^B_X X + C_1(X,X) + C_2(X,X)) = 2g(N, C_1(X,X)),$

then using (2.1), we obtain $C_1(X, X) = 0$, that is C_1 is skew-symmetric. (ii) For basic vector fields $X, Y \in \Gamma(D)$, we have $[X, Y] = \nabla_X^M Y - \nabla_Y^M X$, using (3.1), (4.3) and skew-symmetric property of C_1 and C_2 , result follows.

Next for a basic vector field X and a vertical vector field Z, using (3.1), we define the tensor field T as

$$\nabla_X^M Z = (\nabla_X^M Z)^{\mathcal{H}} + (\nabla_X^M Z)^{\mathcal{V}} = T_X Z + (\nabla_X^M Z)^{\mathcal{V}}, \tag{4.4}$$

where T is a bilinear map from $D \times D' \to D$. Since $[X, Z] = \nabla_X^M Z - \nabla_Z^M X$ and [X, Z] is vertical therefore

$$Q(\nabla_X^M Z) = Q(\nabla_Z^M X) = T_X Z, \quad (\nabla_X^M Z)^{\mathcal{V}} = (\nabla_Z^M X)^{\mathcal{V}}. \tag{4.5}$$

Let *X* and *Y* be basic vector fields and *Z* be a vertical vector field such that $Z \in \Gamma(D^{\perp})$ then using (4.3), the tensor fields *T* and *C*₂ are related by

$$g(T_X Z, Y) = \bar{g}(\bar{\nabla}_X Z, Y) = -g(Z, \nabla_X Y) = -g(Z, C_2(X, Y)), \quad (4.6)$$

and if $Z \in \Gamma(Rad(TM))$ then

$$g(T_X Z, Y) = -\bar{g}(Z, h^l(X, Y)).$$
(4.7)

Theorem 6. Let $\phi : M \to B$ be a lightlike submersion of a totally umbilical semitransversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} onto an indefinite almost Hermitian manifold B then B is also an indefinite Kaehler manifold. Moreover if \overline{H} and H^B denote the holomorphic sectional curvatures of \overline{M} and B, respectively then for any unit basic vector $X \in \Gamma(\mathcal{H})$ of M, we have

$$\bar{R}^{M}(X,\bar{J}X,X,\bar{J}X) = R^{B}(\widetilde{X},\bar{J}\widetilde{X},\widetilde{X},\bar{J}\widetilde{X}) + 4\|H^{s}\|^{2}.$$

Proof. Let $X, Y \in \Gamma(D)$ be basic vector fields then using (2.3) and (4.3), we have

$$\nabla_X Y = \nabla^B_X Y + C_1(X, Y) + C_2(X, Y) + h^l(X, Y) + h^s(X, Y).$$
(4.8)

On applying \overline{J} on both sides of (4.8), we obtain

$$\bar{J}\bar{\nabla}_X Y = \bar{J}\widetilde{\nabla}_X^B Y + \bar{J}C_1(X,Y) + \bar{J}C_2(X,Y) + \bar{J}h^l(X,Y) + Eh^s(X,Y) + Fh^s(X,Y),$$
(4.9)

on replacing Y by $\bar{J}Y$ in (4.8), we have

$$\bar{\nabla}_X \bar{J}Y = \tilde{\nabla}^B_X \bar{J}Y + C_1(X, \bar{J}Y) + C_2(X, \bar{J}Y) + h^l(X, \bar{J}Y) + h^s(X, \bar{J}Y).$$
(4.10)

Since \overline{M} is a Kaehler manifold therefore $\overline{\nabla}_X \overline{J}Y = \overline{J}\overline{\nabla}_X Y$, then equating (4.9) and (4.10), we obtain

$$\widetilde{\nabla}_X^B \bar{J}Y = \bar{J}\widetilde{\nabla}_X^B Y \in \Gamma(\mathcal{H}), \tag{4.11}$$

$$C_1(X, \bar{J}Y) = \bar{J}h^l(X, Y) \in \Gamma(Rad(TM)), \tag{4.12}$$

$$C_2(X, \bar{J}Y) = Eh^s(X, Y) \in \Gamma(D^{\perp}), \tag{4.13}$$

$$h^{s}(X, \bar{J}Y) = \bar{J}C_{2}(X, Y) + Fh^{s}(X, Y) \in \Gamma(S(TM^{\perp})),$$
(4.14)

$$h^{l}(X, \overline{J}Y) = \overline{J}C_{1}(X, Y) \in \Gamma(ltr(TM)).$$

$$(4.15)$$

From (4.11), we see that almost complex structure \overline{J} of *B* is parallel and hence *B* is also an indefinite Kaehler manifold.

From (3.3), it is clear that $U \in \Gamma(\bar{J}D^{\perp}) \subset S(TM^{\perp})$, if and only if, FU = 0then $\bar{J}U = EU$ and $U \in \Gamma(\mu = (\bar{J}D^{\perp})^{\perp}) \subset S(TM^{\perp})$, if and only if, EU = 0then $\bar{J}U = FU$. Therefore from (4.13), (4.14) and skew-symmetric property of C_2 , we obtain $C_2(X, \bar{J}Y) = C_2(Y, \bar{J}X)$, $C_2(\bar{J}X, Y) = C_2(\bar{J}Y, X)$, $C_2(\bar{J}X, \bar{J}Y) =$ $C_2(X, Y)$ and $h^s(X, \bar{J}Y) + h^s(Y, \bar{J}X) = 2Fh^s(X, Y)$. On the other hand, since M is a totally umbilical semi-transversal lightlike submanifold then we have $h^s(X, \bar{J}Y) +$ $h^s(Y, \bar{J}X) = g(X, \bar{J}Y)H^s + g(Y, \bar{J}X)H^s = 0$. Therefore $Fh^s(X, Y) = 0$ and this implies that $h^s(X, Y) \in \Gamma(\bar{J}D^{\perp})$, for any $X, Y \in \Gamma(D)$. By virtue of totally umbilical property of M, we also have $h^s(\bar{J}X, \bar{J}Y) = h^s(X, Y)$. Similarly using (4.12) and (4.15), we obtain $C_1(X, \bar{J}Y) = C_1(Y, \bar{J}X)$, $C_1(\bar{J}X, Y) = C_1(\bar{J}Y, X)$, $C_1(\bar{J}X, \bar{J}Y)$ $= C_1(X, Y)$ and $h^l(\bar{J}X, \bar{J}Y) = h^l(X, Y)$, $h^l(\bar{J}X, Y) + h^l(X, \bar{J}Y) = 0$. Now, for any $X, Y, Z \in \Gamma(D)$, using (4.3) and (4.4), we have

$$\nabla_X \nabla_Y Z = \widetilde{\nabla}_X^B \widetilde{\nabla}_Y^B Z + T_X C_1(Y, Z) + T_X C_2(Y, Z) + vertical, \qquad (4.16)$$

$$\nabla_Y \nabla_X Z = \widetilde{\nabla}_Y^B \widetilde{\nabla}_X^B Z + T_Y C_1(X, Z) + T_Y C_2(X, Z) + vertical, \qquad (4.17)$$

$$\nabla_{[X,Y]}Z = \nabla^{B}_{Q[X,Y]}Z + 2T_{Z}C_{1}(X,Y) + 2T_{Z}C_{2}(X,Y) + vertical.$$
(4.18)
Further using (4.16)-(4.18), we obtain

$$R^{M}(X,Y)Z = (R^{B}(\widetilde{X},\widetilde{Y})\widetilde{Z})^{*} + T_{X}C_{1}(Y,Z) + T_{X}C_{2}(Y,Z) - T_{Y}C_{1}(X,Z) - T_{Y}C_{2}(X,Z) - 2T_{Z}C_{1}(X,Y) - 2T_{Z}C_{2}(X,Y) + vertical,$$
(4.19)

where $(R^B(\widetilde{X},\widetilde{Y})\widetilde{Z})^*$ denotes the basic vector field of M corresponding to $R^B(\widetilde{X},\widetilde{Y})\widetilde{Z}$. Using (4.19) in (2.6), we obtain

$$\begin{split} \bar{R}^{M}(X,Y)Z &= (R^{B}(\widetilde{X},\widetilde{Y})\widetilde{Z})^{*} + T_{X}C_{1}(Y,Z) + T_{X}C_{2}(Y,Z) - T_{Y}C_{1}(X,Z) \\ &- T_{Y}C_{2}(X,Z) - 2T_{Z}C_{1}(X,Y) - 2T_{Z}C_{2}(X,Y) + A_{h^{l}(X,Z)}Y \\ &- A_{h^{l}(Y,Z)}X + A_{h^{s}(X,Z)}Y - A_{h^{s}(Y,Z)}X + (\nabla_{X}h^{l})(Y,Z) \\ &- (\nabla_{Y}h^{l})(X,Z) + D^{l}(X,h^{s}(Y,Z)) - D^{l}(Y,h^{s}(X,Z)) \\ &+ (\nabla_{X}h^{s})(Y,Z) - (\nabla_{Y}h^{s})(X,Z) + D^{s}(X,h^{l}(Y,Z)) \\ &- D^{s}(Y,h^{l}(X,Z)) + vertical. \end{split}$$

Now, for basic vector field $W \in \Gamma(D)$ with (2.4), (2.5), (4.4)-(4.7), we obtain

$$\bar{R}^{M}(X,Y,Z,W) = R^{B}(\tilde{X},\tilde{Y},\tilde{Z},\tilde{W}) - \bar{g}(C_{1}(Y,Z),h^{l}(X,W)) -g(C_{2}(Y,Z),C_{2}(X,W)) + \bar{g}(C_{1}(X,Z),h^{l}(Y,W)) +g(C_{2}(X,Z),C_{2}(Y,W)) + 2\bar{g}(C_{1}(X,Y),h^{l}(Z,W)) +2g(C_{2}(X,Y),C_{2}(Z,W)) + g(A_{h^{l}(X,Z)}Y,W) -g(A_{h^{l}(Y,Z)}X,W) + \bar{g}(h^{s}(X,Z),h^{s}(Y,W)) -\bar{g}(h^{s}(Y,Z),h^{s}(X,W)).$$
(4.20)

Now, using (2.4) and (4.3), we have $g(A_{h^l(X,Z)}Y,W) = \bar{g}(h^l(X,Z),\bar{\nabla}_YW) = \bar{g}(h^l(X,Z),C_1(Y,W))$ and similarly $g(A_{h^l(Y,Z)}X,W) = \bar{g}(h^l(Y,Z),C_1(X,W))$. Using these expressions with (4.15) in (4.20), we obtain

$$\begin{split} \bar{R}^{M}(X,Y,Z,W) &= R^{B}(\widetilde{X},\widetilde{Y},\widetilde{Z},\widetilde{W}) + \bar{g}(\bar{J}h^{l}(Y,\bar{J}Z),h^{l}(X,W)) \\ &- g(C_{2}(Y,Z),C_{2}(X,W)) - \bar{g}(\bar{J}h^{l}(X,\bar{J}Z),h^{l}(Y,W)) \\ &+ g(C_{2}(X,Z),C_{2}(Y,W)) - 2\bar{g}(\bar{J}h^{l}(X,\bar{J}Y),h^{l}(Z,W)) \\ &+ 2g(C_{2}(X,Y),C_{2}(Z,W)) - \bar{g}(\bar{J}h^{l}(Y,\bar{J}W),h^{l}(X,Z)) \\ &+ \bar{g}(\bar{J}h^{l}(X,\bar{J}W),h^{l}(Y,Z)) + \bar{g}(h^{s}(X,Z),h^{s}(Y,W)) \\ &- \bar{g}(h^{s}(Y,Z),h^{s}(X,W)). \end{split}$$
(4.21)

To compare holomorphic sectional curvature of \overline{M} with that of B, set $Y = \overline{J}X$, Z = X and $W = \overline{J}X$ in (4.21) and then using the hypothesis that M is a totally umbilical semi-transversal lightlike submanifold, we obtain $\overline{R}^{\overline{M}}(X, \overline{J}X, X, \overline{J}X) = R^B(\widetilde{X}, \overline{J}\widetilde{X}, \widetilde{X}, \overline{J}\widetilde{X}) + \|C_2(X, X)\|^2 + 3\|C_2(X, \overline{J}X)\|^2 + \|h^s(X, X)\|^2$. Since $Fh^s(X, Y) = 0$ therefore (4.14) implies $\|h^s(X, X)\|^2 = \|C_2(X, \overline{J}X)\|^2$ and by virtue of the totally umbilical property of M, (4.14) implies that $C_2(X, X) = -\overline{J}h^s(X, \overline{J}X) = -\overline{J}(H^Sg(X, \overline{J}X)) = 0$. Thus the holomorphic sectional curvature of \overline{M} is given

$$\bar{R}^{M}(X,\bar{J}X,X,\bar{J}X) = R^{B}(\widetilde{X},\bar{J}\widetilde{X},\widetilde{X},\bar{J}\widetilde{X}) + 4\|C_{2}(X,\bar{J}X)\|^{2}$$
$$= R^{B}(\widetilde{X},\bar{J}\widetilde{X},\widetilde{X},\bar{J}\widetilde{X}) + 4\|h^{s}(X,X)\|^{2}$$
$$= R^{B}(\widetilde{X},\bar{J}\widetilde{X},\widetilde{X},\bar{J}\widetilde{X}) + 4\|H^{s}\|^{2}.$$

This completes the proof.

Theorem 7. Let ϕ : $M \rightarrow B$ be a lightlike submersion of a totally umbilical semitransversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} onto an indefinite almost Hermitian manifold B. If the distribution D is integrable, then M is a lightlike product manifold.

Proof. Let the distribution D be an integrable therefore $P_1[X, Y] = 0$ and $P_2[X, Y] = 0$, for any $X, Y \in \Gamma(D)$, where P_1 and P_2 are the projection morphisms from TM to Rad(TM) and D^{\perp} , respectively. Therefore using the Theorem 5, we have $C_1(X,Y) = 0$ and $C_2(X,Y) = 0$. Hence using (4.3), we obtain that $\nabla_X^M Y \in \Gamma(D)$, for any $X, Y \in \Gamma(D)$, consequently the distribution D defines a totally geodesic foliation in M. Moreover, from the Lemma 2, the distribution D' also defines a totally geodesic foliation in M. Thus using the De Rham's theorem, M is a product manifold $M_1 \times M_2$, where M_1 and M_2 are the leaves of the distributions of D and D'. \Box

Theorem 8. Let $\phi : M \to B$ be a lightlike submersion of a totally umbilical semitransversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} onto an indefinite almost Hermitian manifold B such that $\overline{J}(D^{\perp}) = S(TM^{\perp})$. Then the fibers are totally geodesic submanifolds of M.

Proof. Let $U, V \in \Gamma(D')$ and then define

$$\nabla_U^M V = \hat{\nabla}_U V + L(U, V), \qquad (4.22)$$

where $\hat{\nabla}_U V = (\nabla_U^M V)^V$ and $L(U, V) = (\nabla_U^M V)^{\mathcal{H}}$. Since the distribution D' is integrable always, then L(U, V) = L(V, U). Now, using the Kaehlerian property of \overline{M} , we have $\overline{\nabla}_U \overline{J} V = \overline{J} \overline{\nabla}_U V$, since $\overline{J}(D^{\perp}) = S(TM^{\perp})$, then

$$-A_{\bar{I}V}U + \nabla^t_U \bar{J}V = \bar{J}\hat{\nabla}_U V + \bar{J}L(U,V) + \bar{J}h(U,V).$$

On comparing the horizontal and vertical components both sides, we get

$$\mathcal{H}(A_{\bar{J}V}U) = -\bar{J}L(U,V), \quad \mathcal{V}(A_{\bar{J}V}U) = -\bar{J}h(U,V). \tag{4.23}$$

From (4.22), it is clear that the fibers are totally geodesic submanifolds of M, if and only if, L(U, V) = 0 or using (4.23)₁, if and only if, $A_{\bar{J}V}U \in \Gamma(D')$, for any $U, V \in \Gamma(D')$. Now, particularly choose $V \in D^{\perp}$ then using the hypothesis of this theorem $\bar{J}V \in \Gamma(S(TM^{\perp}))$. Let $Y \in \Gamma(D)$ then using (2.5) with the fact that M is a totally umbilical lightlike submanifold, we obtain $g(A_{\bar{J}V}U, Y) = \bar{g}(h^s(U, Y), \bar{J}V) = g(U, Y)\bar{g}(H^s, \bar{J}V) =$ 0. Similarly, let $V \in \Gamma(Rad(TM))$ then $g(A_{\bar{J}V}U, Y) = \bar{g}(\bar{J}V, \bar{\nabla}_U Y) = -\bar{g}(V, h^l(U, \bar{J}Y)) =$ $-g(U, \bar{J}Y)\bar{g}(V, H^l) = 0$. Thus $A_{\bar{J}V}U \in \Gamma(D')$ and the assertion follows. \Box

Theorem 9. Let $\phi: M \to B$ be a lightlike submersion of a totally umbilical semitransversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} onto an indefinite almost Hermitian manifold B. Then the sectional curvature of \overline{M} and of the fiber are related by

$$\bar{K}(U \wedge V) = \bar{K}(U \wedge V) + g(A_{h^{l}}(U,U)V,V) - g(A_{h^{l}}(V,U)U,V)
+ g([A_{\bar{J}V}, A_{\bar{J}U}]U,V),$$

for any orthonormal vector fields $U, V \in \Gamma(D^{\perp})$.

.

Proof. Let ∇ and $\hat{\nabla}$ be the connections of semi-transversal lightlike submanifold M and its fiber, respectively. Let R and \hat{R} be the curvature tensors of ∇ and $\hat{\nabla}$, respectively then for any $U, V \in \Gamma(D^{\perp})$, using (4.22) we have

$$R(U,V)U = \nabla_U(\hat{\nabla}_V U + L(V,U)) - \nabla_V(\hat{\nabla}_U U + L(U,U))$$
$$-(\hat{\nabla}_{[U,V]}U + L([U,V],U)),$$

this further implies that

$$\begin{aligned} R(U, V, U, V) &= g(\nabla_U \hat{\nabla}_V U, V) + g(\nabla_U L(V, U), V) - g(\nabla_V \hat{\nabla}_U U, V) \\ &- g(\nabla_V L(U, U), V) - g(\hat{\nabla}_{[U, V]} U, V). \end{aligned}$$

Again using (4.22), it leads to

 $R(U, V, U, V) = \hat{R}(U, V, U, V) + g(\nabla_U L(V, U), V) - g(\nabla_V L(U, U), V).$ (4.24)

Now, using the fact that M is totally umbilical lightlike submanifold, we get

$$g(\nabla_U L(V, W), F) = g(\overline{\nabla}_U L(V, W) - g(h^l(U, L(V, W)), F)$$
$$= -g(L(V, W), \nabla_U F) = -g(L(V, W), L(U, F)),$$

for any $U, V, W, F \in \Gamma(D^{\perp})$ therefore (4.24) becomes

$$R(U, V, U, V) = \hat{R}(U, V, U, V) - g(L(U, V), L(U, V)) + g(L(U, U), L(V, V)).$$
(4.25)

Using (2.5), (2.6) and M is totally umbilical lightlike submanifold, we have

$$\bar{R}(U, V, U, V) = R(U, V, U, V) + g(A_{h^{l}(U,U)}V, V) - g(A_{h^{l}(V,U)}U, V) + \bar{g}(h^{s}(V, V), h^{s}(U, U)) - \bar{g}(h^{s}(U, V), h^{s}(V, U)).$$

Further using (4.23), (4.25) and the fact L(U, V) = L(V, U), we obtain

$$\begin{split} \bar{R}(U,V,U,V) &= \hat{R}(U,V,U,V) - g(\mathcal{H}(A_{\bar{J}U}V),\mathcal{H}(A_{\bar{J}U}V)) \\ &+ g(\mathcal{H}(A_{\bar{J}U}U),\mathcal{H}(A_{\bar{J}V}V)) + g(A_{h^{l}(U,U)}V,V) \\ &- g(A_{h^{l}(V,U)}U,V) + g(\mathcal{V}(A_{\bar{J}V}V),\mathcal{V}(A_{\bar{J}U}U)) \\ &- g(\mathcal{V}(A_{\bar{J}V}U),\mathcal{V}(A_{\bar{J}V}U)). \end{split}$$

Since $U, V \in \Gamma(D^{\perp})$ and let $X \in \Gamma(D)$ then using (2.3), we get $g(A_{\bar{J}U}V, X) = 0$, which further implies that $A_{\bar{J}U}V \in \Gamma(D^{\perp})$ and $A_{\bar{J}U}V = A_{\bar{J}V}U$, then

$$R(U, V, U, V) = R(U, V, U, V) - g(A_{\bar{J}U}V, A_{\bar{J}U}V) + g(A_{\bar{J}U}U, A_{\bar{J}V}V) + g(A_{h^{l}(U,U)}V, V) - g(A_{h^{l}(V,U)}U, V).$$
(4.26)

Now, let $W \in \Gamma(S(TM^{\perp}))$ then for $U, V \in \Gamma(D^{\perp})$, using (2.5), we have $g(A_W U, V) = g(U, A_W V)$. Using this fact with $A_{\overline{I}U} V \in \Gamma(D^{\perp})$, we get

$$g(A_{\bar{J}U}V, A_{\bar{J}U}V) - g(A_{\bar{J}U}U, A_{\bar{J}V}V) = g(A_{\bar{J}V}U, A_{\bar{J}U}V) - g(A_{\bar{J}U}U, A_{\bar{J}V}V)$$

= $g(A_{\bar{J}U}A_{\bar{J}V}U, V) - g(A_{\bar{J}V}A_{\bar{J}U}U, V)$
= $-g([A_{\bar{J}V}, A_{\bar{J}U}]U, V).$ (4.27)

On using (4.27) in (4.26), the assertion follows.

Now we define O'Neill's tensors [10] for a lightlike submersion. Let ∇ be a connection of M then tensors \mathcal{T} and \mathcal{A} of type (1,2) are given by

$$\mathcal{T}_X Y = \mathcal{H} \nabla_{\mathcal{V}X} \mathcal{V}Y + \mathcal{V} \nabla_{\mathcal{V}X} \mathcal{H}Y, \quad \mathcal{A}_X Y = \mathcal{H} \nabla_{\mathcal{H}X} \mathcal{V}Y + \mathcal{V} \nabla_{\mathcal{H}X} \mathcal{H}Y. \quad (4.28)$$

Using (4.28), we have the following lemma.

Lemma 3. Let $\phi : M \to B$ be a lightlike submersion of a totally umbilical semitransversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} onto an indefinite almost Hermitian manifold B. Then we have the following:

- (i) $\nabla_U V = \mathcal{T}_U V + \mathcal{V} \nabla_U V$.
- (ii) $\nabla_V X = \mathcal{H} \nabla_V X + \mathcal{T}_V X.$
- (iii) $\nabla_X V = \mathcal{A}_X V + \mathcal{V} \nabla_X V.$
- (iv) $\nabla_X Y = \mathcal{H} \nabla_X Y + \mathcal{A}_X Y$,

for any $X, Y \in \mathcal{H}$ and $U, V \in \mathcal{V}$.

Theorem 10. Let $\phi : M \to B$ be a lightlike submersion of a totally umbilical semi-transversal lightlike submanifold of an indefinite Kaehler manifold \overline{M} onto an indefinite almost Hermitian manifold B such that $\overline{J}(D^{\perp}) = S(TM^{\perp})$. Then $\overline{K}(X \land V) = ||H^s||^2 - ||T_X V||^2$, for any unit vector fields $X \in \Gamma(D)$ and $V \in \Gamma(D^{\perp})$.

Proof. Let $X \in \Gamma(D)$ and $V \in \Gamma(D^{\perp})$ then using the Theorem 5 and Lemma 3 with (4.3), we obtain

$$g(R(V,X)X,V) = g(\nabla_V \mathcal{H}(\nabla_X X), V) - g(\nabla_X \mathcal{H}(\nabla_V X), V) - g(\nabla_X \mathcal{T}_V X, V) + g(\mathcal{T}_{[X,V]} X, V).$$

It should be noted that $g(\nabla_V \mathcal{H}(\nabla_X X), V) = -g(\mathcal{H}(\nabla_X X), \nabla_V V)$, and similarly $g(\nabla_X \mathcal{H}(\nabla_V X), V) = -g(\mathcal{H}(\nabla_V X), \nabla_X V)$. Therefore we have

$$g(R(V,X)X,V) = -g(\mathcal{H}(\nabla_X X), \nabla_V V) + g(\mathcal{H}(\nabla_V X), \nabla_X V) -g(\nabla_X \mathcal{T}_V X, V) + g(\mathcal{T}_{[X,V]} X, V).$$
(4.29)

Since $\overline{J}(D^{\perp}) = S(TM^{\perp})$ then using the Theorem 8, we have L(U, V) = 0, for $U, V \in \Gamma(D^{\perp})$. Hence using the definition of \mathcal{T} with (2.3) and (4.22), we get

$$g(\mathcal{T}_V X, U) = -g(\mathcal{T}_V U, X) = -g(L(V, U), X) = 0.$$

$$(4.30)$$

Now, using (4.22), we have

$$g(\mathcal{H}(\nabla_X X), \nabla_V V) = g(\mathcal{H}(\nabla_X X), L(V, V)) = 0.$$
(4.31)

Since M is a totally umbilical then using (4.30), we obtain

$$g(\nabla_X \mathcal{T}_V X, V) = -g(\mathcal{T}_V X, \bar{\nabla}_X V) = -g(\mathcal{T}_V X, \mathcal{V}(\nabla_X V))$$
$$= g(L(V, \mathcal{V}(\nabla_X V)), X) = 0.$$
(4.32)

Since for a vertical vector field V, [X, V] is always vertical therefore again using (4.30), we have

$$g(\mathcal{T}_{[X,V]}X,V) = -g(L([X,V],V),X) = 0.$$
(4.33)

Using (4.6) and (4.31)-(4.33) in (4.29), we obtain

$$g(R(V,X)X,V) = g(T_XV,T_XV).$$
 (4.34)

Since M is a totally umbilical then using (2.6) and (4.34), we get

$$\bar{R}(X, V, X, V) = -g(T_X V, T_X V) + g(h^l(X, X), \nabla_V V) + g(h^s(X, X), h^s(V, V)).$$
(4.35)

Now, using Kaehlerian property of \overline{M} , we have $\overline{\nabla}_V \overline{J}\xi = \overline{J}\overline{\nabla}_V \xi$, for $V \in \Gamma(D^{\perp})$ and $\xi \in \Gamma(Rad(TM))$. Using the Lemma 3 with (2.4) and then comparing the horizontal components of resulting equation, we obtain

$$A_{\bar{J}\xi}V = -\bar{J}\tilde{\mathcal{T}}_V\xi. \tag{4.36}$$

Since *M* is semi-transversal lightlike submanifold then for $\xi \in \Gamma(Rad(TM))$, $\overline{J}\xi \in \Gamma(ltr(TM))$ and using (4.28) for any $U, V \in \mathcal{V}$, $\mathcal{T}_U V = \mathcal{H} \nabla_{\mathcal{V}U} \mathcal{V} V \in \mathcal{H}$. Therefore (4.36) implies that $A_{\overline{J}\xi}V \in \mathcal{H}$ or $A_N V \in \mathcal{H}$. Then for $V \in \Gamma(D^{\perp})$ and $N \in \Gamma(ltr(TM))$, we have $g(\nabla_V V, N) = -g(V, \overline{\nabla}_V N) = g(V, A_N V) = 0$. This implies that $\nabla_V V$ has no component in Rad(TM). Using this fact in (4.35) with (3.9), the assertion follows.

REFERENCES

- M. Barros and A. Romero, "Indefinite Kähler manifolds." *Math. Ann.*, vol. 261, no. 1, pp. 55–62, 1982, doi: 10.1007/BF01456410.
- [2] A. Bejancu, "CR submanifolds of a Kaehler manifold. I." Proc. Amer. Math. Soc., vol. 69, pp. 135–142, 1978, doi: 10.2307/2043207.
- [3] J.-P. Bourguignon and H. B. Lawson, "Stability and isolation phenomena for Yang-Mills fields." Commun. Math. Phys., vol. 79, no. 2, pp. 189–230, 1981, doi: 10.1007/BF01942061.
- [4] J.-P. Bourguignon and H. B. Lawson, "A mathematician's visit to Kaluza-Klein theory." *Rend. Semin. Mat. Torino Fasc. Spec*, vol. Special Issue, pp. 143–163, 1989.

- [5] K. L. Duggal and A. Bejancu, *Lightlike submanifolds of semi-Riemannian manifolds and applications*. The Netherlands: Kluwer Academic Publishers, 2013, vol. 364, doi: 10.1007/978-94-017-2089-2.
- [6] K. L. Duggal and D. H. Jin, "Totally umbilical lightlike submanifolds." *Kodai Math. J.*, vol. 26, no. 1, pp. 49–68, 2003, doi: 10.2996/kmj/1050496648.
- [7] M. L. Falcitelli, S. Ianus, and A. M. Pastore, *Riemannian submersions and related topics*. Singapore: World Scientific, 2004.
- [8] M. L. Falcitelli, S. Ianus, A. M. Pastore, and M. Visinescu, "Some applications of Riemannian submersions in physics." *Rev. Roum. Phys.*, vol. 48, pp. 627–639, 2003.
- [9] S. Kobayashi, "Submersions of CR submanifolds." *Tohoku Math. J.*, vol. 39, no. 1, pp. 95–100, 1987, doi: 10.2748/tmj/1178228372.
- [10] B. O'Neill, "The fundamental equations of a submersion." *Michigan Math. J.*, vol. 13, no. 4, pp. 459–469, 1966, doi: 10.1307/mmj/1028999604.
- [11] B. O'Neill, Semi-Riemannian geometry with applications to relativity. New York: Academic press, 1983, vol. 103, doi: 10.1137/1028086.
- [12] B. Sahin, "Transversal lightlike submanifolds of indefinite Kaehler manifolds." An. Univ. Vest Timis. Ser. Mat.-Inform, vol. 44, no. 1, pp. 119–145, 2006.
- [13] B. Sahin, "On a submersion between Reinhart lightlike manifolds and semi-Riemannian manifolds." *Mediterr. J. Math.*, vol. 5, no. 3, pp. 273–284, 2008, doi: 10.1007/s00009-008-0149-y.
- [14] B. Sahin, "Riemannian submersions from almost Hermitian manifolds." *Taiwanese J. Math.*, vol. 17, no. 2, pp. 629–659, 2013, doi: 10.11650/tjm.17.2013.2191.
- [15] B. Sahin and Y. Gündüzalp, "Submersion from semi-Riemannian manifolds onto lightlike manifolds." *Hacet. J. Math. Stat.*, vol. 39, no. 1, pp. 41–53, 2010.
- [16] M. Vişinescu, "Space-time compactification induced by nonlinear sigma models, gauge fields and submersions." *Czech. Journ. of Phys. B*, vol. 37, no. 4, pp. 525–528, 1987, doi: 10.1007/BF01599959.

Authors' addresses

Rupali Kaushal

Punjabi University, Department of Mathematics, Patiala, Punjab, India. *E-mail address:* rupalimaths@pbi.ac.in

Rakesh Kumar

Punjabi University, Department of Basic & Applied Sciences, Patiala, Punjab, India. *E-mail address:* dr_rk37c@yahoo.co.in

Rakesh Kumar Nagaich

Punjabi University, Department of Mathematics, Patiala, Punjab, India. *E-mail address:* nagaich58rakesh@gmail.com