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CHARACTERIZATION OF SOME MATRIX CLASSES
INVOLVING SOME SETS WITH SPEED
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Abstract. The paper introduces the notions of boundedness and convergence with speed for dif-
ference sequences, and characterizes certain matrix classes associating the sets of such classes of
sequences involving the operator � and two speeds �D .�k/ and �D .�k/ .0 < �k %1;0 <
�k%1/. The results obtained in this paper should easily extendible to difference sequences of
higher orders, and even, in combination with multipliers.
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1. INTRODUCTION

While studying the convergent process, it is important to know the speed of con-
vergence of this process. For example, in the theory of approximation, and using
numerical methods for solving differential and integral equations, several methods
have been worked out for estimating the speed of convergence.

Let, as usual, m, c, c0 be respectively the spaces of all bounded sequences, of all
convergent sequences, of all sequences converging to 0. Throughout this paper in-
dices and summation indices run from 0 to1 unless otherwise specified.

Let X;Y be two sequence spaces and A D .ank/ be an infinite matrix with real
and complex entries. If for each x D .�k/ 2X the series

.Ax/n D
X
k

ank�k

converges and the sequence Ax D f.Ax/ng belongs to Y , we say that the matrix A
transforms X into Y . By .X;Y /, we denote the set of all matrices which transform
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X into Y .

A matrix A is said to be regular if A 2 .c;c/ and limn.Ax/n D limk �k , for each
x D .�k/ 2 c; or in short, we write A 2 .c;cIP /, where P denotes the preservation
of limit.

Following Kangro ([5], [6], [7]) (also see [2]), a convergent sequence x D .�k/
with

lim
k
�k D � and vk D �k.�k � �/ (1.1)

is called bounded with speed � (shortly, �-bounded) if vk = O(1) and convergent with
speed � (shortly, �-convergent) if the limit limk vk exists and is finite.

The set of all �-bounded sequences is denoted bym�, and the set of all �-convergent
sequences by c�. It is not difficult to see that c� �m� � c. In addition to it, for an
unbounded sequence � this inclusion is strict. For �k= O(1), we get c� Dm� D c.

The necessary and sufficient conditions for A 2 .m�;m�/, A 2 .c�; c�/, and A 2
.c�;m�/, were first introduced by Kangro ([5], [6], [7]). The estimation and the
comparison of speeds of convergence of series and sequences, based on Kangro’s
concepts of convergence, boundedness, and summability with speed, have also been
studied by Šeletski and Tali ([9], [10]), Stadtmüller and Tali ([11]), and Tammeraid
([12], [13], [14],[15]). For more results on matrix transforms of m�and c�, one can
refer to ([5], [7], [8]). An improvement of the �-convergence has been studied in
([1]).

In this paper, we shall use the notation�x for the sequence of forward differences:

�xk D xk �xkC1;k 2N:

A sequence x D .�k/ is called �-convergent if the limit limk��k exists and is finite.

A �-convergent sequence x D .�k) with

lim
k
��k D & and vk D �k.��k �&/ (1.2)

is called�-bounded with speed � (shorty, �-�- bounded) if vk= O(1) and�-convergent
with speed � (shortly, �-�-convergent) if the limit limk vk exists and is finite.

By m� and c�, we denote the sets of all �-bounded sequences and of all �-
convergent sequences respectively.

The set of all �-�-bounded sequences is denoted by m�� and the set of all �-�-
convergent sequences by c��. It is not difficult to see that c�� �m

�
� � c�. In addition

to it, for an unbounded sequence � this inclusion is strict. For �k= O(1), we get
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c�� Dm
�
� D c�.

It is easy to see that every convergent sequence is �-convergent, but the converse
may not be true. For this, let us consider the following example

Let x D .�k/ D(�). Then ��k = �k � �kC1= �1. Thus .�k/ is divergent but �-
convergent.

2. CHARACTERIZATION OF THE MATRIX CLASSES

We begin this section with few known results that will be required to proof the
main results of this paper. Let eD(1, 1, . . . ), ek D (0, . . . , 0, 1, 0, . . . ), where 1 is in
the .kC1/th- position, and ��1=. 1

�k
/.

Theorem 1 ([3], [4], Silverman-Toeplitz). AD .ank/ is regular, i.e., A2 .c;cIP /,
if and only if

sup
n�0

X
k

jankj<1I (2.1)

lim
n
ank D ıkI (2.2)

and
lim
n

X
k

ank D ı (2.3)

with ık� 0 and ı � 1.

Theorem 2 ([3], [4]). Let AD .ank/ be a matrix method. Then A 2 .c;c/ if and
only if (2.1) holds and the finite limits ık and ı exist.

Theorem 3 ([3], [4]). A method AD .ank/ 2 .c0; c/ if and only if conditions (2.1)
and (2.2) hold.

Theorem 4 ([3], [4]). Let A D .ank/ be a matrix method. Then A 2 .m;m/ =
.c;m/ = .c0;m/ if and only if condition (2.1) holds.

Theorem 5 ([3], [4]). A method AD .ank/ 2 .m;c/ if and only if conditions (2.1)
and (2.2) are satisfied and limn

P
k jank � ıkj D 0:

In this case
lim
n
.Ax/n D

X
k

ık�k;

for every x D .�k/ 2m.

Theorem 6. A method AD .ank/ 2 .m�;m
�
�/ if and only if

lim
n
�ank D ı

=

k
; (2.4)

Ae 2m
�
�; (2.5)
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k

j�ankj

�k
DO.1/; (2.6)

�n
X
k

j�ank � ı
=

k
j

�k
DO.1/: (2.7)

If �n DO.1/ and �n ¤ O.1/, then in (2.7), it is necessary to replace O.1/ by o.1/.

Proof. Necessity: Suppose that AD .ank/ 2 .m�;m
�
�/. It is obvious that ek; e 2

m�: Hence conditions (2.4) and (2.5) are fulfilled.

Let x D .�k/ 2m�, then from (1.1) we have

�k D
vk
�k
C � where limk �k D �, vk DO.1/

it follows that
.Ax/n D

X
k

ank

�k
vkC �

X
k

ank

and
�.Ax/n D .Ax/n� .Ax/nC1

D

X
k

ank

�k
vkC �

X
k

ank �
X
k

a.nC1/k

�k
vk � �

X
k

a.nC1/k

D

X
k

.ank �a.nC1/k/

�k
vkC �

X
k

.ank �a.nC1/k/

D

X
k

�ank

�k
vkC �

X
k

�ank :

(2.8)

As .
P
k ank/ 2m

�
�, by (2.5), then from (2.8) we can assert that the method

A� D .
�ank

�k
/ transforms the bounded sequence .vk/ into c:

Now we assume that �n ¤O(1). Then for every sequence .vk/ 2m, the sequence
. vk
�k
/ 2 c0. But for . vk

�k
/, there exists a convergent sequence x D .�k/ such that

limk �k D � and vk
�k
D(�k � �). Thus, for every sequence .vk/ 2m, there exists a

sequence .�k/ 2 m� such that vk= �k.�k � �/. Hence A� 2 .m;c/. This implies by
Theorem 5, the condition (2.6) holds,

lim
n

X
k

j�ank � ı
=

k
j

��
D 0 (2.9)

and �= D limn�.Ax/n D
P
k
ı
=

k

��
vkC � limn

P
k�ank :
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If �n ¤O(1), then writing

�n.�.Ax/n��
=/D

D �n
X
k

�ank�ı
=

k

�k
vkC ��n.

X
k

�ank � lim
n

X
k

�ank/:
(2.10)

By (2.5) we can conclude that the method

A�;�� D .�n
�ank�ı

=

k

�k
/ 2 .m;m/:

This implies by Theorem 4, condition (2.7) is fulfilled.

If �n DO(1), then in (2.7) it is necessary to replace O(1) by o(1); which is similar
to (2.9).

If �n DO(1), then the proof is similar to the case �n ¤O(1), but in this case
vk D o.1/, and instead of the Theorem 5, it is necessary to use the Theorem 3.

Sufficiency: Conversely assume that the conditions (2.4)-(2.7) are valid. Also,
for every x D .�k/ 2 m�, the relation (2.8) holds and by (2.5), .

P
k ank/ 2 m

�
�. If

�n ¤ O(1) and �n DO(1), then using Theorem 5, we can conclude that the method
A� 2 .m;c/ by (2.4), (2.6) and (2.9) (in this case, we have (2.9) instead of (2.7)).
Thus A 2 .m�; c�/.

If �n ¤O(1) and �n ¤ O(1), then validity of (2.9) follows from the validity of
(2.7). In this case also A� 2 .m;c/ by (2.4), (2.6) and (2.9), that is A 2 .m�; c�/:
Therefore, we can assert that the limit �=exists and is finite and therefore relation
(2.10) is fulfilled for every x D .�k/ 2m�. Hence by (2.7) and using Theorem 4, we
have A�;�� 2 .m;m/ and by (2.5), we have A2 .m�;m��/. For �n DO(1), the proof
is obvious. �

Theorem 7. A method A D .ank/ 2 .c�; c
�
�/ if and only if conditions (2.6) and

(2.7) are fulfilled and

Aek 2 c
�
�; (2.11)

Ae 2 c
�
�; (2.12)

A��1 2 c
�
�: (2.13)
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If A 2 .c�; c��/; then

lim
n
�n.�.Ax/n��

=/D
X
k

a
�;��
k

.vk �v/C lim
n
�n.

X
k

�ank � ı
=/�

C lim
n
�n.

X
k

�ank

�k
�a�/v;

(2.14)

where
�= D lim

n
�.Ax/n; v D lim

k
vk

and

ı= D lim
n

X
k

�ank; ı
=

k
D lim

n
�ank;

a� D lim
n

X
k

�ank

�k
; a

�;��
k

D lim
n
�n
�ank � ı

=

k

�k

Proof. Necessity: Suppose that A 2 .c�; c��/. It is not difficult to see that ek , e,
��1 2 c� and so the conditions (2.11)-(2.13) hold. For every xD .�k/2 c�,the equal-
ity (2.8) is satisfied and by (2.12) the limit ı= exists, so the method A� transforms the
convergent sequence .vk/ into c. Similar to the proof of necessary part of Theorem
6, it can be easily shown that, for every sequence .vk/ 2 c, there exists a sequence
x D .�k/ 2 c

� such that vk = �k(�k � �). Hence A� 2 .c;c/. This means that the
finite limits ı=

k
and a� exist and condition (2.6) is fulfilled by virtue of Theorem 2.

Using relation (2.8), for every x 2 c�, we can write

�= D lim
n
�.Ax/n D a

�vC
X
k

ı
=

k

�k
.vk �v/C �ı

=; (2.15)

where � D limk �k and v D limk vk :

Now using relations (2.8) and (2.15), we get

�n.�.Ax/n��
=/D �n

X
k

�ank � ı
=

k

�k
.vk �v/C�n.

X
k

�ank � ı
=/�

C�n.
X
k

�ank

�k
�a�/v:

(2.16)

As n!1; the finite limits for the last two summands in the right hand side of (2.16)
exist by conditions (2.12) and (2.13).This implies that the method A�;�� 2 .c0, c).
Thus using Theorem 3, the condition (2.7) is satisfied. Lastly, relation (2.14) holds
from (2.16).
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Sufficiency: Suppose that (2.6)-(2.7) and (2.11)-(2.13) are fulfilled. We observe
that the relation (2.16) holds for every xD .�k/2 c� and also the finite limits ı=

k
; ı=;a�

exist by (2.11), (2.12) and (2.13) respectively. Since (2.6) also holds, so A� 2 .c;c/
by Theorem 2 and therefore for every x 2 c�; relations (2.15) and (2.16) hold. Now
by conditions (2.12) and (2.13), the finite limits for the last two summands in the right
side of (2.16) exist as n!1. Finally using conditions (2.7), (2.11) and Theorem 3
we can conclude that the method A�;�� 2 .c0,c). Hence, A2 .c�; c��/. �

It is easy to see that conditions (2.4) and (2.6) imply the conditionX
k

jı
=

k
j

�k
<1 (2.17)

Also conditions (2.7) and (2.17) imply condition (2.6). Therefore, from Theorem 6
and Theorem 7, we get the following corollary:

Corollary 1. The condition (2.6) in Theorem 6 and Theorem 7 can be replaced by
the condition (2.17).

Using Theorem 6 and Corollary 1, we get the following corollary:

Corollary 2. A method AD .ank/ 2 .m�; c�/ if and only if the conditions (2.4),
(2.6) and (2.9) are fulfilled and the finite limit limn

P
k�ank D ı

= exists. Also the
condition (2.6) can be replaced by the condition (2.17).

Theorem 8. A method AD .ank/ 2 .c�;m
�
�/ if and only if the conditions (2.4)-

(2.7) are satisfied.
Also if �n = O.1/ and �n ¤O.1/, then in (2.7), it is necessary to replace O.1/ by

o.1/.

Proof. Necessary Part: Suppose that A D .ank/ 2 .c�;m
�
�/. It is easy to see

that ek; e 2 c�: Hence conditions (2.4) and (2.5) are valid. As equality (2.8) holds
for every x D .�k/ 2 c�, and .

P
k ank/ 2 m

�
� by (2.5), then the method A� trans-

forms the convergent sequence .vk/ into c: Similar to the proof of necessary part of
Theorem 6, it can be easily shown that for every sequence .vk/ 2 c, there exists a
sequence x D .�k/ 2 c� such that vk = �k(�k � �). Hence A� 2 .c;c/. This implies
by Theorem 2, the condition (2.6) is satisfied.

Using condition (2.8), for every x D .�k/ 2 c�, we can write

�= D lim
n
�.Ax/n D

X
k

ı
=

k

��
vkC � lim

n

X
k

�ank :

If �n ¤O(1), then from relation (2.10) and using condition (2.5) we can assert that
the method

A�;�� 2 .c;m/:
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Therefore using Theorem 4, condition (2.7) is fulfilled.

For �n DO(1), then in (2.7) it is necessary to replace O(1) by o(1); which is equi-
valent to (2.9).

If �n DO(1), then the proof is similar to the case �n ¤O(1), but in this case
.vk/ 2 c0, and instead of the Theorem 2, it is necessary to use the Theorem 3.

Sufficient Part: It is obvious from the Theorem 6. �
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(Summability factors for the series �-bounded by the methods of Riesz and Cesàro).” Tartu Riikl.
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