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Abstract. The Leibniz-Hopf algebra is the free associative algebra on one generator, Sn, in each
positive degree, with coproduct �.Sn/D

P
Sj ˝Sn�j . Let C and R denote coarsening and

reversing operations on the mod 2 dual Leibniz-Hopf algebra. We consider decomposition of the
Hopf algebra conjugation �D C ıR in this dual Hopf algebra and calculate bases for the fixed
points of the operations C and R.
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1. INTRODUCTION

The Leibniz-Hopf algebra F is the free associative Z-algebra on generators
S1;S2;S3 : : : with the graded cocommutative Hopf algebra structure determined by
�.Sn/ D

P
iCjDnS

i ˝Sj (where S0 denotes the unit 1). F is isomoprhic to the
‘ring of noncommutative symmetric functions’ [7] and has been studied in [9–11].
The graded dual Hopf algebra, F � D ˚nHom.Fn;Z/ (where Fn denotes the de-
gree n part of F ), is the ring of quasi-symmetric functions with the outer coproduct,
which has been studied in [2, 6, 8–12]. This algebra was the subject of the Ditters
conjecture [1,5,11] which makes it important in combinatorics. The mod 2 reduction
F ˝Z=2 also has a connection with topology, since the mod 2 Steenrod algebra is
naturally defined as a quotient of F ˝Z=2 by the Adem relations [13]. From now on
we denote F ˝Z=2 by F2.

As F2 is the free Z=2-algebra on S1;S2; : : : , a basis for F2 is given by all words
Sj1Sj2 � � �Sjl . We denote the corresponding dual basis for F �2 D˚nHom.Fn;Z=2/
by fSj1;j2;:::;jl

g. Since F is the cocommutative graded Hopf algebra, F � is a com-
mutative graded Hopf algebra with a unique conjugation operation, �, which satisfies

c
 2018 Miskolc University Press



1218 NEŞET DENIZ TURGAY

�2 D 1(where 1 denotes the identity homomorphism). A formula for � was intro-
duced by Ehrenborg [6, Proposition 3.4] and for F �2 we can simplify it to:

�.Sj1;j2;:::;jl
/D

X
Si1;:::;ik

summed over all coarsenings i1; : : : ; ik of the reversed word jl ; : : : ;j1; i.e., all words
i1; : : : ; ik that admit jl ; : : : ;j1 as a refinement. As an example,

�.S5;2;1/D S1;2;5CS3;5CS1;7CS8:

The length of a word is the number of its letters so S2;1;2;6 has length 4. A word of
length n has n�1 commas and, hence, 2n�1 coarsenings.

Using conjugation invariants in F �2 is an algebraic tool to understand the conjuga-
tion invariants in the mod 2 dual Steenrod algebra [14, Section 5]. Motivated by this
in [4], the author and Crossley calculated a vector space basis for the invariants of
F �2 under the operation �. In [3] the analogous question was considered for F2. In
[16, Section 6] the author and Kaji introduced an explicit correspondence between
the invariant elements of F2 and of F �2 under the Hopf algebra conjugation opera-
tion. See also [15] for the relationship between the conjugation invariants in F2 and
the conjugation invariants in the mod 2 Steenrod algebra.

The conjugation operation � comprises both coarsening and reversing operations.
In this paper we calculate vector space bases for the invariants under coarsening and
reversing operations. We also investigate relations between those spaces with the
space of conjugation invariants in F �2 .

2. TERMINOLOGY AND RESULTS

Given a word Si1;i2;:::;ik
, define its image under the map C to be

C.Si1;i2;:::;ik
/D

X
Sl1;:::;ln

(2.1)

summed over all coarsenings l1; : : : ; ln of i1; : : : ; ik , and define its image under the
map R to be R.Si1;i2;:::;ik

/ D Sik ;:::;i2;i1
. Here, C and R denote coarsening and

reversing operations on F �2 . It is clear that R2 D 1. Both C and R are homomorph-
isms on F �2 , and by definition we have: � D C ıR: Moreover, one can see that C

and R commute, i.e., C ıR DR ıC . This together with the property that �2 D 1

implies that C2 D 1.
An element x 2 F �2 is an invariant under C if, and only if, C.x/ D x, i.e., .C �

1/.x/D 0. Hence, Ker.C�1/ is a subspace of F �2 , which is formed by the invariants
under C in F �2 : Similarly, Ker.R� 1/ is a subspace of F �2 , which is formed by the
invariants under R in F �2 : We now introduce a new terminology. A word Si1;i2;:::;ik

is said to be uniterminal if its last letter is equal to 1, i.e., ik D 1. We denote this word
by UT.

As an example, in the degree 4 part of F �2 the UTs are: S3;1;S2;1;1;S1;2;1;S1;1;1;1:

We also recall terminologies from [4]. A word Si1;i2;:::;ik
is a palindrome if i1 D ik ,
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i2 D ik�1, etc. The non-palindromes form obvious pairs: a non-palindrome Si1;:::;ik

pairs with Sik ;:::;i1
. In each pair, one term will be higher in lexicographic ordering,

and one lower. We call the first an HNP (higher non-palindrome) and the second an
LNP. For example, S5;4;1;3 is an HNP, S4;1;2;4 is an LNP.

Theorem 1. In the mod 2 dual Leibniz-Hopf algebra invariants under C comprise
exactly the image of C �1, i.e., Ker.C �1/D Im.C �1/:

Theorem 2. In degree n part of mod 2 dual Leibniz-Hopf algebra the subspace
Im.R�1/ has a basis consisting of the .R�1/-images of all HNPs.

Consequently the dimension of Im.R� 1/ in degree n is 2n�2� 2.n�2/=2 if n is
even, and 2n�2�2.n�3/=2 if n is odd.

The dimension results in the last statement are obtained by simple combinatorial
calculations. (See [4, Section 3] and [3, Section 2] for details). Furthermore, The-
orem 2 together with the rank and nullity theorem gives the result.

Theorem 3. Let Ker.R�1/n denote the subspace of degree n invariants under R

in the mod 2 dual Leibniz-Hopf algebra. Then

dimKer.R�1/n D
�
2n�2C2.n�2/=2; if n is even;
2n�2C2.n�3/=2; if n is odd:

Theorem 4. The space of invariants under R, Ker.R�1/, has a basis consisting
of the following:

(1) All the palindromes; and
(2) The .R�1/-images of all HNPs.

Proposition 1. In the mod 2 dual Leibniz-Hopf algebra we have:
(1) Ker.��1/\Ker.C �1/D Ker.��1/\Ker.C �1/\Ker.R�1/:
(2) Ker.��1/\Ker.R�1/D Ker.��1/\Ker.R�1/\Ker.C �1/:
(3) Ker.C �1/\Ker.R�1/D Ker.C �1/\Ker.R�1/\Ker.��1/:

3. PROOF OF THEOREM 1

We first give the following auxiliary results.

Theorem 5. The image of .C � 1/ on F �2 has a basis consisting of the .C � 1/-
images of all UTs.

Lemma 1. Let Si1;:::;ik
be a UT. Among the summands of longest length in .C �

1/.Si1;:::;ik
/ there is a summand Si1;:::;ik�2;ik�1Cik

, and this summand does not occur
as a longest length summand in the C �1 image of any other UT.

Proof. Let Si1;:::;ik
be a k length UT, then the longest summands in .C�1/.Si1;:::;ik

/

are of length k � 1, and Si1;:::;ik�2;ik�1Cik
is one of them. We shall show that

Si1;:::;ik�2;ik�1Cik
cannot arise as a longest summand in the .C � 1/ image of any
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other UT, say Sj1;:::;jl
: In .C � 1/.Sj1;:::;jl

/, similarly the longest summands are of
length l �1, namely,

Sj1Cj2;j3;:::;jl
;Sj1;j2Cj3;:::;jl

; : : : ;Sj1;:::;jl�2Cjl�1;jl
;Sj1;:::;jl�2;jl�1Cjl

: (3.1)

We see that all the terms in (3.1) are UTs except the last term Sj1;:::;jl�2;jl�1Cjl

(jl�1Cjl > 1). For this term to equal Si1;:::;ik�2;ik�1Cik
, we must have l D k, ,j1 D

i1;j2 D i2; : : : ;jl�2 D ik�2, and jl�1C jl D ik�1C ik . By definition, jl D ik D 1

which implies that Sj1;:::;jl
D Si1;:::;ik

. On the other hand, none of the UT terms in
(3.1) can equal to a non-UT term Si1;:::;ik�2;ik�1Cik

: This completes the proof. �

Proof of Theorem 5. Suppose that we have a sum of UTs whose image under C�1

is 0. Order these summands so that shorter terms come before longer terms. Let
Si1;:::;ik

be the last summand with respect to this ordering, then it has the term
Si1;:::;ik�2;ik�1Cik

as longest summand in its image under C � 1. Lemma 1 tells
us that having length k�1, this term cannot arise in the .C �1/-image of any shorter
term or of any other UT of length k. Hence, in the .C �1/-image of the sum the term
Si1;:::;ik�2;ik�1Cik

cannot be cancelled, so this image cannot be zero. This contra-
dicts the hypothesis showing that Si1;:::;ik

cannot be a UT. This implies that the sum
is itself zero. Hence, the UTs have linearly independent images under C �1.

The number of UTs in degree n is 2n�2, since each UT has 1 as the last term
and the remaining terms can be any word of degree n� 1, of which there are 2n�2:

Hence, in n degrees, the UTs form a set of 2n�2 elements. Thus, the above linear
independence establishes that dimIm.C�1/� 2n�2:On the other hand, Im.C�1/�
Ker.C�1/, since C2D 1, so in each degree we have dimIm.C�1/� 1

2
dim.F �2 /. In

all degrees, this means dimIm.C � 1/ � 1
2
2n�1 D 2n�2: Consequently, dimIm.C �

1/ D 2n�2. We know the .C � 1/-images of UTs are linearly independent and the
number of UTs matches dimIm.C �1/. Hence, the .C �1/-images of UTs must be
a basis for Im.C �1/: Moreover, this shows that Ker.C �1/D Im.C �1/: �

This completes the proof of Theorem 1 giving a basis for Ker.C �1/.

4. PROOF OF THEOREM 4

We first deal with Theorem 2 (Theorem 3 was proved in Section 2).

Proof of Theorem 2. Let Si1;:::;ik
be an HNP, then it is clear that the longest sum-

mands in .R� 1/.Si1;:::;ik
/ are Si1;:::;ik

and its reverse. It is clear that these sum-
mands cannot arise in the .R�1/-image of any other HNP. Using this fact together
with the argument in the proof of Theorem 5 shows that the .R� 1/-images of all
HNPs are linearly independent. What is left to show that no other terms contribute
anything further to the image. i.e., the .R�1/-image of every palindrome and LNP
can be expressed in terms of the .R� 1/-images of HNPs. Let Si1;:::;ik

be a palin-
drome, then .R� 1/.Si1;:::;ik

/ D 0. On the other hand, if Si1;:::;ik
be an LNP, then
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.R�1/.Si1;:::;ik
/D .R�1/.Sik ;:::;i1

/; where Sik ;:::;i1
is a HNP. Hence, the image of

.R�1/ on F �2 is as stated. �

Lemma 2. In the mod 2 dual Leibniz-Hopf algebra all the palindromes and the
.R�1/-images of all HNPs are linearly independent.

Proof. Suppose that there are distinct palindromes p1; : : : ;pk and there are distinct
HNPs h1; : : : ;hr such that

p1C�� �Cpk D .R�1/.h1/C�� �C .R�1/.hr/: (4.1)

The longest summands (i.e., the maximal-length summands) on the left of Eq. (4.1)
are all palindromes and these summands cannot cancel, since p1; : : : ;pk are different.
On the other hand, the longest summands in .R�1/.hj / are hj and its reverse, both
of which are non-palindromes. Again, none of these summands can cancel since
h1; : : : ;hr are all different HNPs. Thus the maximal-length summands on the right of
Eq.(4.1) are non-palindromes. This contradiction establishes that Eq.(4.1) can only
hold if both sides are 0. Hence all the palindromes and the .R� 1/-images of all
HNPs are linearly independent. �

By Lemma 2 all the palindromes and the .R�1/-images of all HNPs are linearly
independent. We will complete the proof of Theorem 4 by using the dimension argu-
ment that we used for the proof of Theorem 5. Elementary combinatorial calculations
shows us that the number of palindromes in degree n is 2n=2 if n is even, and 2.n�1/=2

if n is odd. (See [4, Section 3] for details). By Theorem 2 we also know the number
of HNPs in even and odd degrees. From this we can see the number of palindromes
and HNPs in each degree matches the dimension given in Theorem 3. Hence, all the
palindromes and the .R�1/-images of all HNPs form a basis.

Proof of Proposition 1. We prove .1/, the proofs of .2/ and .3/ being similar.
Let x 2 Ker.�� 1/\Ker.C � 1/, then �.x/ D x and C.x/ D x. This implies that
�.x/D x D .R ıC/.x/DR.x/ from which we can deduce Ker.�� 1/\Ker.C �
1/� Ker.R�1/: This completes the proof.

�
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