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Abstract. The generalized convexity of the inverse hyperbolic cosine function related to the hy-
perbolic metric is investigated in this paper.
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1. INTRODUCTION

The hyperbolic functions and their inverses play an important role in the study
of the hyperbolic geometry and quasiconformal mappings [1, 4, 5, 8, 9, 11, 12]. For
example, the explicit formulas for the hyperbolic metric in the unit disk B2 and the
upper half plane H2 are given in terms of the inverse hyperbolic sine and cosine
functions, respectively, as follows [5, p.35, p.40]:

�B2.x;y/D 2arsh
jx�yjp

.1�jxj2/.1�jyj2/
;

�H2.x;y/D arch
�
1C

jx�yj2

2 Imx Imy

�
:

In recent papers [9,11], the authors investigated the properties of hyperbolic Lambert
quadrilaterals in the unit disk by studying the inverse hyperbolic tangent and sine
functions.

The study of the convexity/concavity with respect to Hölder means, or simply
Hp;q-convexity/concavity, of special functions has attracted attentions of many re-
searchers, see [2, 6, 7, 9–11, 13–17]. In particular, the convexity/concavity of the
inverse hyperbolic tangent and sine functions has been studied in [9] and [11], re-
spectively. For the definition of the above so-called generalized convexity/concavity,
the reader is referred to Section 2.

In this paper, we continue the work of [9, 11] to study the generalized convexity
for the inverse hyperbolic cosine function. Our main result is stated in the following
theorem.
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Theorem 1. For p;q 2 R, the inverse hyperbolic cosine function arch is strictly
Hp;q-convex on .1;C1/ if and only if .p;q/ 2 D1, while arch is strictly Hp;q-
concave on .1;C1/ if and only if .p;q/ 2D2[D3, where

D1 D f.p;q/j�1< p � 0; 2� q <C1g;

D2 D f.p;q/j0� p �
2

3
; �1< q � C.p/g;

D3 D f.p;q/j
2

3
< p <C1; �1< q � 2g;

and C.p/ is the same as in Lemma 3(4) with C.0/D 1 and C.2
3
/D 2. In particular,

for all x; y 2 .1;C1/, there hold

arch
p
xy �

s
arch2xC arch2y

2
� arch

vuut 
3
p
x2C

3
p
y2

2

!3

; (1.1)

with equalities if and only if x D y.

2. PRELIMINARIES

For r;s 2 .0;C1/, the Hölder mean of order p is defined by

Hp.r; s/D
�rpC sp

2

� 1
p

for p ¤ 0; H0.r; s/D
p
rs:

For p D 1, we get the arithmetic mean A D H1; for p D 0, the geometric mean
G D H0; and for p D �1, the harmonic mean H D H�1. It is well known that
Hp.r; s/ is continuous and increasing with respect to p.

A function f : I ! J is called Hp;q-convex (concave) if it satisfies

f
�
Hp.r; s/

�
� .�/Hq

�
f .r/;f .s/

�
for all r;s 2 I , and strictlyHp;q-convex (concave) if the inequality is strict except for
r D s.

The following monotone form of l’Hôpital’s rule is of great use in deriving mono-
tonicity properties and obtaining inequalities. See the extensive bibliography of [3].

Lemma 1 ([1, Theorem 1.25]). For�1<a< b <1, let functions f; g W Œa;b�!
R be continuous on Œa;b�, and be differentiable on .a;b/. Let g0.x/¤ 0 on .a;b/. If
f 0.x/=g0.x/ is increasing (deceasing) on .a;b/, then so are

f .x/�f .a/

g.x/�g.a/
and

f .x/�f .b/

g.x/�g.b/
:

If f 0.x/=g0.x/ is strictly monotone, then the monotonicity in the conclusion is also
strict.

We prove the following three lemmas before giving the proof of Theorem 1.
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Lemma 2. Let r 2 .1;C1/.
(1)The function f1.r/�

archrp
r2�1

is strictly decreasing with range .0;1/;

(2)The function f2.r/� 2C
archrCr

p
r2�1�2r3

p
r2�1

.r2�1/
�

archrCr
p

r2�1
� is strictly decreasing with range

.0; 2
3
/.

Proof. (1) Let f11.r/D archr and f12.r/D
p
r2�1, then f11.1

C/D f12.1
C/D

0. By differentiation, we have
f 011.r/

f 012.r/
D
1

r
;

which is strictly decreasing. Hence by Lemma 1, the function f1 is strictly decreasing
with f1.1

C/D 1 and f1.C1/D 0.
(2) Let f21 D archr C r

p
r2�1 � 2r3

p
r2�1 and

f22 D .r
2 � 1/

�
archrC r

p
r2�1

�
, then f21.1

C/ D f22.1
C/ D 0. By differenti-

ation, we have
f 021.r/

f 022.r/
D

�4

2C f1.r/
r

;

which is strictly decreasing by (1). Hence by Lemma 1, the function f2 is strictly
decreasing with f2.1

C/D 2
3

and f2.C1/D 0. �

Lemma 3. For p 2 R and r 2 .1;C1/, define

hp.r/D 1Cp
p

r2�1 �
archr
r
C

1
p
r2�1

�
archr
r

:

(1) If p � 2
3

, then hp is strictly increasing with range .2;C1/.
(2) If p < 0, then hp is strictly decreasing with range .�1;2/.
(3) If p D 0, then hp is strictly decreasing with range .1;2/.
(4) If 0 < p < 2

3
, then hp is not monotone and the range of hp is ŒC.p/;C1/, where

C.p/D min
r2.1;C1/

hp.r/

with 1 < C.p/ < 2.

Proof. By Lemma 2(1), it is easy to get

hp.1
C/D 2 and hp.C1/D

8<: C1; p > 0;

1; p D 0;

�1; p < 0:

By differentiation, we have

h0p.r/D
1

r

�
1C

archr

r
p
r2�1

�
.p�f2.r// ;

where f2.r/ is the same as in Lemma 2(2).



876 YUE HE AND GENDI WANG

By Lemma 2(2), we have (1)–(3).
(4) If 0 < p < 2

3
, since the range of f2 is .0; 2

3
/, there exists one and only one

point rp 2 .1;C1/ such that p D f2.rp/. Then hp is strictly decreasing on .1;rp/
and increasing on .rp;C1/. Since hp is continuous in r , there exists

C.p/D min
r2.1;C1/

hp.r/

and 1 < C.p/ < 2. �

Lemma 4. Let p; q 2 R, r 2 .1;C1/, and C.p/ be the same as in Lemma 3(4).
Let

gp;q.r/D
archq�1 r

rp�1
p
r2�1

:

(1) If p � 2
3

, then gp;q is strictly decreasing for each q � 2, and gp;q is not monotone
for any q > 2.
(2) If p < 0, then gp;q is strictly increasing for each q � 2, and gp;q is not monotone
for any q < 2.
(3) If p D 0, then gp;q is strictly increasing for each q � 2, and gp;q is strictly
decreasing for each q � 1, and gp;q is not monotone for any 1 < q < 2.
(4) If 0 < p < 2

3
, then gp;q is strictly decreasing for each q � C.p/, and gp;q is not

monotone for any q > C.p/.

Proof. By logarithmic differentiation in r , we have

g0p;q.r/

gp;q.r/
D

1
p
r2�1 � archr

�
q�hp.r/

�
;

where hp.r/ is the same as in Lemma 3. Hence the results immediately follow from
Lemma 3. �

3. PROOF OF MAIN RESULT

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Without loss of generality, we may assume that 1 < x � y <
C1. Let t DHp.x;y/, then x � t � y and

@t

@x
D
1

2

�x
t

�p�1

:

The proof is divided into the following four cases.
Case 1. p ¤ 0 and q ¤ 0.
Define

F.x;y/D archq .Hp.x;y//�
archq xC archq y

2
:
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By differentiation, we have

@F

@x
D
q

2
xp�1

 
archq�1 t

tp�1
p
t2�1

�
archq�1x

xp�1
p
x2�1

!
D
q

2
xp�1

�
gp;q.t/�gp;q.x/

�
;

where gp;q is defined in Lemma 4.
Case 1.1 p � 2

3
and q � 2.

By Lemma 4(1), the function gp;q is strictly decreasing on .1;C1/.
Case 1.1.1 If q > 0, then @F

@x
� 0. Hence F.x;y/ is strictly decreasing and

F.x;y/� F.y;y/D 0. Namely,

arch.Hp.x;y//�

�
archq xC archq y

2

� 1
q

DHq.archx;archy/;

with equality if and only if x D y.
Case 1.1.2 If q <0, then @F

@x
� 0. HenceF.x;y/ is strictly increasing andF.x;y/�

F.y;y/D 0. Namely,

arch.Hp.x;y//�

�
archq xC archq y

2

� 1
q

DHq.archx;archy/;

with equality if and only if x D y.
In conclusion, arch is strictly Hp;q-concave on the whole interval .1;C1/ for

.p;q/ 2 f.p;q/j2
3
� p <C1; 0 < q � 2g[f.p;q/j2

3
� p <C1; q < 0g.

Case 1.2 p � 2
3

and q > 2.
By Lemma 4(1), the function gp;q is not monotone on .1;C1/. With an argument

similar to Case 1.1, it is easy to see that arch is neitherHp;q-concave norHp;q-convex
on the whole interval .1;C1/ for .p;q/ 2 f.p;q/jp � 2

3
; q > 2g.

Case 1.3 p < 0 and q � 2.
By Lemma 4(2), the function gp;q is strictly increasing on .1;C1/ and hence

@F
@x
� 0. Then F.x;y/ is strictly increasing and F.x;y/� F.y;y/D 0. Namely,

arch.Hp.x;y//�

�
archq xC archq y

2

� 1
q

DHq.archx;archy/;

with equality if and only if x D y.
In conclusion, arch is strictly Hp;q-convex on the whole interval .1;C1/ for

.p;q/ 2 f.p;q/jp < 0; q � 2g.
Case 1.4 p < 0 and q < 2.
By Lemma 4(2), the function gp;q is not monotone on .1;C1/. With an argument

similar to Case 1.3, it is easy to see that arch is neitherHp;q-concave norHp;q-convex
on the whole interval .1;C1/ for .p;q/ 2 f.p;q/jp < 0; q < 0g[f.p;q/jp < 0; 0 <
q < 2g.

Case 1.5 0 < p < 2
3

and q � C.p/.
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By Lemma 4(4), the function gp;q is strictly decreasing on .1;C1/.
Case 1.5.1 If q > 0, then @F

@x
� 0. Hence F.x;y/ is strictly decreasing and

F.x;y/� F.y;y/D 0. Namely,

arch.Hp.x;y//�

�
archq xC archq y

2

� 1
q

DHq.archx;archy/;

with equality if and only if x D y.
Case 1.5.2 If q <0, then @F

@x
� 0. HenceF.x;y/ is strictly increasing andF.x;y/�

F.y;y/D 0. Namely,

arch.Hp.x;y//�

�
archq xC archq y

2

� 1
q

DHq.archx;archy/;

with equality if and only if x D y.
In conclusion, arch is strictly Hp;q-concave on the whole interval .1;C1/ for

.p;q/ 2 f.p;q/j0 < p < 2
3
; 0 < q � C.p/g[f.p;q/j0 < p < 2

3
; q < 0g.

Case 1.6 0 < p < 2
3

and q > C.p/.
By Lemma 4(4), the function gp;q is not monotone on .1;C1/. With an argument

similar to Case 1.5, it is easy to see that arch is neitherHp;q-concave norHp;q-convex
on the whole interval .1;C1/ for .p;q/ 2 f.p;q/j0 < p < 2

3
; q > C.p/g.

Case 2. p ¤ 0 and q D 0.
Define

F.x;y/D
arch2 .Hp.x;y//

archx � archy
:

By logarithmic differentiation, we obtain

1

F

@F

@x
D xp�1.gp;0.t/�gp;0.x//;

where gp;0 is defined in Lemma 4.
Case 2.1 p � 2

3
and q D 0.

By Lemma 4(1), the function gp;q is strictly decreasing on .1;C1/ and hence
@F
@x
� 0. Then F.x;y/ is strictly decreasing and F.x;y/� F.y;y/D 1. Namely,

arch.Hp.x;y//�
p

archx � archy DH0.archx;archy/;

with equality if and only if x D y.
In conclusion, arch is strictly Hp;q-concave on the whole interval .1;C1/ for

.p;q/ 2 f.p;q/jp � 2
3
; q D 0g.

Case 2.2 p < 0 and q D 0.
By Lemma 4(2), the function gp;q is not monotone on .1;C1/. With an argument

similar to Case 2.1, it is easy to see that arch is neitherHp;q-concave norHp;q-convex
on the whole interval .1;C1/ for .p;q/ 2 f.p;q/jp < 0; q D 0/g.

Case 2.3 0 < p < 2
3

and q D 0.
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By Lemma 4(4), the function gp;q is strictly decreasing on .1;C1/ and hence
@F
@x
� 0. Then F.x;y/ is strictly decreasing and F.x;y/� F.y;y/D 1. Namely,

arch.Hp.x;y//�
p

archx � archy DH0.archx;archy/;

with equality if and only if x D y.
In conclusion, arch is strictly Hp;q-concave on the whole interval .1;C1/ for

.p;q/ 2 f.p;q/j0 < p < 2
3
; q D 0g.

Case 3. p D 0 and q ¤ 0.
Define

F.x;y/D archq .
p
xy/�

archq xC archq y

2
:

By differentiation, we obtain
@F

@x
D

q

2x
.g0;q.t/�g0;q.x//;

where g0;q is defined in Lemma 4.
Case 3.1 p D 0 and q � 2.
By Lemma 4(3), the function gp;q is strictly increasing on .1;C1/ and hence

@F
@x
� 0. Then F.x;y/ is strictly increasing and F.x;y/� F.y;y/D 0. Namely,

arch.H0.x;y//�

�
archq xC archq y

2

� 1
q

DHq.archx;archy/;

with equality if and only if x D y.
In conclusion, arch is strictly Hp;q-convex on the whole interval .1;C1/ for

.p;q/ 2 f.p;q/jp D 0; q � 2g.
Case 3.2 p D 0 and q � 1.
By Lemma 4(3), the function gp;q is strictly decreasing on .1;C1/.
Case 3.2.1 If 0 < q � 1, then @F

@x
� 0. Hence F.x;y/ is strictly decreasing and

F.x;y/� F.y;y/D 0. Namely,

arch.H0.x;y//�

�
archq xC archq y

2

� 1
q

DHq.archx;archy/;

with equality if and only if x D y.
Case 3.2.2 If q <0, then @F

@x
� 0. HenceF.x;y/ is strictly increasing and F.x;y/�

F.y;y/D 0. Namely,

arch.H0.x;y//�

�
archq xC archq y

2

� 1
q

DHq.archx;archy/;

with equality if and only if x D y.
In conclusion, arch is strictly Hp;q-concave on the whole interval .1;C1/ for

.p;q/ 2 f.p;q/jp D 0; 0 < q � 1g[f.p;q/jp D 0; q < 0g.
Case 3.3 p D 0 and 1 < q < 2.



880 YUE HE AND GENDI WANG

By Lemma 4(3), the function gp;q is not monotone on .1;C1/. With an argument
similar to Case 3.2, it is easy to see that arch is neitherHp;q-concave norHp;q-convex
on the whole interval .1;C1/ for .p;q/ 2 f.p;q/jp D 0; 1 < q < 2/g.

Case 4. p D 0 and q D 0.
By Case 2.3, for all x;y 2 .1;C1/, we have

arch.Hp.x;y//�H0.archx;archy/ for 0 < p <
2

3
:

By the continuity of Hp in p and arch in x, we have

arch.H0.x;y//�H0.archx;archy/;

with equality if and only if x D y.
In conclusion, arch is strictly H0;0-concave on the whole interval .1;C1/.
By Case 1.1 and Case 3.1, arch is strictly H 2

3
;2-concave and strictly H0;2-convex

on .1;C1/. Therefore, the inequalities (1.1) hold with equalities if and only if xD y.
This completes the proof of Theorem 1. �

Setting p D 1D q in Theorem 1, we easily obtain the concavity of arch.

Corollary 1. The inverse hyperbolic cosine function arch is strictly concave on
.1;C1/.
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