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Abstract. We derive identities for the determinants of matrices whose entries are (rising) powers
of (products of) polynomials that satisfy a recurrence relation. In particular, these results cover
the cases for Fibonacci polynomials, Lucas polynomials and certain orthogonal polynomials.
These identities naturally generalize the determinant identities obtained by Alfred, Carlitz, Pro-
dinger, Tangboonduangjit and Thanatipanonda.
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1. INTRODUCTION

Let (Fu)n>0 be the Fibonacci sequence. Let m > 1 and n be any nonnegative
integer. Let [F,:n+i+j]0§i,j5m be the (m + 1) x (m 4 1) matrix with entries F, 44,
0<i,j <m. In 1966, Carlitz [4] derived the following determinant identity for the
matrix [Fr:”+i+j]osi,j5m:

m
m+1 _ m
det([FY i losij=m) = (DO (FrE=1. F)2 T S]oan
i=0

This identity is related to the problems posted by Alfred [, p. 48] in 1963 and Parker
[9, p- 303] in 1964 respectively. Let s and k be any integers. Tangboonduangjit and
Thanatipanonda [12] generalized the determinant identity (1.1) as follows:

m
Aet([F iy plosinjem) = (DT (g pm=t g 02 TT (7
=0 (1.2)
Let Fn(m) be the rising powers of the Fibonacci numbers defined by
Fi™ = FyFoyr+ Fagmet.
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Prodinger [10] obtained the following determinant identity for the matrix

[F,fﬂﬂ]osi,jSmi

det([F"), Jozijzm) = (1" IOV E By Byt (13)

Tangboonduangjit and Thanatipanonda [ | 1] generalized the determinant identity (1.3)
as follows:

d—1 2(d-1)

dyy (d+1 i 1—d

det((F\7), osinj<a—1) = (D" T (F Fpgrod™ - T ES.
i=1 i=d—1

(1.4)

where d > 2. It is worthwhile to note that Tangboonduangjit and Thanatipanonda
[11,12] derived the determinant identities more generally, for matrices whose entries
include (rising) powers of terms that satisfy a second-order linear recurrence relation
with constant coefficients. By using analogous techniques in determinant calculus,
we derive determinant identities for matrices whose entries are (rising) powers of
polynomials that satisfy certain recurrence relations. As corollaries, we provide de-
terminant identities for matrices whose entries are (rising) powers of Fibonacci poly-
nomials, Lucas polynomials and certain orthogonal polynomials. As an application,
we obtain new identities in the case of Fibonacci numbers. For example, for n > 1,
by Corollary 2, we get

m+1 —7
1 (—1y("2 )1_[§”=0F,~2+(T )
det([ } B ): . (1.5)
Fpgitjd0si.j<m Ho<i,j<m Fn+i+j

2. MAIN RESULTS

Definition 1. Let p,q,r,a,b and ¢ be any real numbers. Let Z>¢ = {0,1,2,...}.
The sequence of polynomials in variable x,

Px)(p.q.ria.b.c) = (Pn)nez.
is defined by
Po:=p, Pi:=qx+r, Ppyzr:=(ax+b)Pyy1+cPy, forneZsy.
For n <0, P, is defined by

ax+b 1
Py i=— c Pn+1+;Pn+2-

The discriminant A » is defined by

Ap = (q2 —apq)x2 + (2gr—apr—bpg)x + (r2 —bpr —cpz).
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Theorem 1. Let P (x)(p1.q1.r1:a,b,¢) = (Pp)nez, @(x)(p2,.q92.r2;a,b,c) =
(On)nez and U(x)(0,0,1;a,b,c) = (Uyp),ez be the sequences of polynomials defined
by real numbers p1, p2,41.42,71,72,a,b,c where ¢ # 0. Then

PstiQs4j— PsQstivj = (=) (P1Q; — PoQj+1)Ui
for all integers s,i, J.

Proof. We prove it by induction on i. It is trivial for i = 0. If i = 1, we have

(Ps+1 Qs+j+l) (aX+b C)( Py Qsyj ):
Py Qs+j 0 Ps—1 Qs+j—1
ax+b ¢\ (P Qj+1
( ) (%) @

-1
Psi1 Ostj+1 ax+b c Pytr Qstjt2) _
Py Qs+j 0 Ps11 Qs+j+1

s
_(ax+b ¢\ (P1 Qs 2.2)

1 0 Py 0O
for s > 0 and s < O respectively. We take the determinants on both sides of (2.1) and
(2.2) to get

Pst10s54) = Ps Qs+ j+1=(=¢)’(P1Q; — PoQj+1)

= (=¢)*(P1Q; — PoQ;+1)U1.

Fori > 1, we assume that the identity is true for i — 1 and i —2. We have

(2.3)

Ps1iQs+j— PsQs+it
|\ Ps+i Os+i+j

Py Qs+j
_ |(ax+D)Psti—1+cPyyia (ax+Db)Qs+itj—1+Qsti+j—2
Py Qs+j
= (ax+b) s+z 1 Dstj+-1| o |Psti-2 Qstjri-2)
Py QS+j Py Qs+j

= (ax +b)(=c)*(P1Q; — PoQj+1)Ui—1 +c(=¢)*(P1Q; — PoQ+1)Ui—2
= (=0)’ (P10 — PoQj+1)((ax +b)Ui—1 +cUi—2)
= (=¢)*(P1Q; — PoQ+1)U;.

For i < 0, we assume that the identity is true for i 4+ 1 and i + 2. We have

Psvi Qs+i+j
Ps Qs+j

1
Psyivi+ ¢ Psyivo +  Os+it+j+2
Py Qs—l—j

Ps+iQs+j_Pst+i+j =

ax+b
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1
+ -
4

_ax+b|Psyiv1 Ostitj+1 Psyivz Ostitj+2
C

Ps Qs+j Ps Qs+j
ax+b

1
= (—C)S(Ple—Pij+1)Ui+1+;(—C)S(P1Qj—P0Qj+1)Ui+z

= (=¢)* (P10 = PoQ;+1)( -
= (—¢)*(P1Q; — PoQ;+1)U;.

ax—+b 1
Ui+1+;Ui+2>

g

Remark 1. We recover the generalized Catalan Identity by Melham and Shannon
[8] (see also Tangboonduangjit and Thanatipanonda [12, Proposition 1]) by substi-
tuting x = 1 in Theorem 1.

Corollary 1. Let P (x)(p,q,r;a,b,c) = (Pn)pez and U(x)(0,0,1;a,b,c) =
(Un)nez be the sequences of polynomials defined by real numbers p,q,r,a,b,c
where ¢ # 0. Then

PiPi—PyPjt1=Ap-Uj, 2.4
Ps4iPstj—PsPsyiyj = (—c)Ap-U;U; (2.5)

where Agp is the discriminant of P (x)(p,q,r;a,b,c).

Proof. Bysettings =0,j =1, p1 = p» = p,q1 =92 =¢q,r1 =rp =r in Theorem
1, we get

P;Py—PoPi1 = (P1P1— Py P2)U;. (2.6)

We note that Py = p, Py =gx+r and P, = (ax +b)P1 +cPo = (ax+b)(gx +
r) + cp. Hence, we obtain (2.4) by simplifying (2.6). On the other hand, by setting
P1=Pp2=p.q1 =q2 =¢q,r1 =rp =r in Theorem 1, we get

PsiiPsyj—PsPsyiyj=(—c)(P1P; — PoPjy1)U; = (—c)’Ap - U; U;
in which the last equality is based on (2.4). ([l

Lemma 1. Letm > 1. Let B;, D; be polynomials in variable x, A;,C; be rational
functions in variable x, for 0 <i <m. Let [(Aj B; + C;jD;)"]o<i,j<m be the (m +
1) x (m + 1) matrix with entries (A; B; + C; D;)™,0 <i,j <m. Then we have the
following determinant identity:

det([(A; B; + C; Di)"o<i,j<m) =
" 2.7
= H ((BiDj—BjDi)(AiCj—AjCi))'tO(l?)- @D

0<i<j<m 1
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Proof. We invoke the following result by Krattenthaler [7, Lemma 10] (see also
Tangboonduangjit and Thanatipanonda [12, Lemma 3]:

det([(c;di + D lo<ijem) = ] ((df—dj)(ci—cj))-l‘[(T) 28)
o<i<j<m i=0

where ¢;,d; are real numbers for 0 < i, j < m. First, we prove the lemma for poly-
nomials A;, B;,C;, D; for all 0 <i < m. For the values of x such that C; # 0 and
D; #0for0<i,j <m,let

B.
cj=2L di:#, for0<i,j <m.
1

We note that

e + Pl = (2P

1
:( [ (CT)’”)'det([(AjBi+CjDi)m]05i,jsm)- (2.9)

0<i<m

Also, we have

[ ((di_dj)(ci—Cj)>= I ((B"Dlgi_Dliji),(AiCéi—ijCi))

o<i<j<m 0<i<j=<m
1
= 11 (o) [T (@iD=B0004C-4,0). (2.10)
0<i<m Ll 0<i<j<m

By (2.8), (2.9), (2.10), we get (2.7) as desired.

Based on the facts that there are only a finite number of roots for C;, D; where
0 <i,j <m and the determinant of a matrix with polynomial entries is a continuous
function in x, the equality (2.7) still holds true for the values of x such that C; =0
or D; =0 for somei or j.

Next, we assume that A; and C; are rational functions for all 0 <i < m. We write
A; and C; as follows:

E; G;
A,-=—l, C,'=—lf0r0§i§m,
F; H;
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where E;, F;,G;, H; are all polynomials for 0 <i < m. For the values of x such that
F; #£0and H; #0forall 0 <i <m, we get

HE;B; + D; FjG;\m
S0 e = s [ L]
JH shi=

:( I W).det([((HjEj)Bi+(Gij)Di)m]OSi,j§m)

0<i<m

(I (1)

(" T1 (BiD;—B;D)(H;EiG, F; — H;E;Gi Fy))

0<i<j<m
DI oo
= (llj (}:1)) (Oﬁl;[fm(& D; — B; D;)(A;C; —Ajcl-))_

For the values of x such that F; = 0 or H; = 0 for some i, the equality still holds true
as the determinant of a matrix with polynomial entries is a continuous function. [J

Theorem 2. Let s, k,n be any integers, m > 1. Let P (x)(p,q.r;a,b,c) = (Pp)nez
and U(x)(0,0,1;a,b,c) = (Uy)nez be the sequences of polynomials defined by real
numbers p,q,r,a,b,c where ¢ # 0. The determinant of the matrix
[P;"/li‘k(n'i‘l."rj)]ofi’jsm is given by

det([Pﬂk(nH_H)]Osi,j <m)

m
_ k(MY AT stk (M) 2k (3! m\ . 2(m—i)
= (-1 (2)A3) c (") (3)1_[ ; Uk(i-l—l)
i=0
where Agp is the discriminant of P (x)(p.q,r;a,b,c).
Proof. By substituting s = —km,i = kj’,j =5 +k(n+m+i’) into (2.5) in
Corollary 1 and then replacing s’,i’, j’ by s,i, j respectively, we get

Pi(j—m) Pstk(u+) = Pokom Pssknri+ ) = (=) ™ Ap - U U sk (nm+i)-

Pr(j— (=) M Ap - Uy,
Psikm+i+j) = % Pyt k(i) + L Us ik (ntm+i)-
—Km

@2.11)

P—km
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By substituting s = s’ +k(n+m+1i’),i =k(j’'—i’), j = —km into Theorem 1 and
then replacing s’,i’, j/ by s,i, j respectively, we get

Py ki) Us+kntm+j) = Psvkn+ ) Us+kmtm+i)

= (=) TROFmED (U Py — Uo P4 1) U= 2.12)

— (_c)s—i-k(n-i-m-i-i)p_km Uk(j—i)-
By substituting s = ki’,i = k(j’ —i’), j = —km into Theorem 1 and then replacing
i’,j' by i, j respectively, we get

Pr—m Ukj = Picj—m)Uri = (=)' P Ug(j—iy. (2.13)
By (2.11), we get

det([PS g ntit jylosi,j=m)

Pr(j—m) —(—c)*mAp - Uy; m
([ S
€ Pim s+k(n+i) + Pim s+k(n+m+i) 0<i.j<m
(2.14)

By (2.7), the term in (2.14) becomes

m
m
l_[ <i ) : 1_[ ((Ps+k(n+i)Us+k(n+m+j) - Ps+k(n+j)Us+k(n+m+i)))'
=0 0<i<j<m
(—(—C)_kmA:P
2
P—km

By (2.12), (2.13), the term in (2.15) becomes

m
m .
1_[ (i ) . 1_[ ((_1)S+kn+1cs+k(”+2’)Ag> . Ukz(j—i))' (2.16)

i=0 0<i<j<m

(Pk(i—m)Ukj - Pk(j—m)Uki))>. (2.15)

As a consequence, we get the desired result by standard counting arguments. O

Remark 2. We recover Theorem 5 in the work of Tangboonduangjit and Thana-
tipanonda [12] by substituting x = 1 in Theorem 2.

Next, we look at other determinant identities.

Lemma 2. Let m > 1. Let B;, D; be polynomials in variable x for 0 <i < m. Let
Aj,Cj be rational functions in variable x fori € Z. Let (d;)1<i<r and (e;)1<i<r be
sequences of integers. Then

m J
det([ TT (A, B+ Cap D) T (Aec B +Co, 1)

; Osi,jsm)
f=i+1 g=1
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= l_[ (BZDJ_BJDI) l_[ (CeiAdj_Aedej)~
O<i<j<m 1<i<j<m

Proof. By the factorization method of Krattenthaler [7, Section 4], it is plain to get
the following identity:

m j
det([ I1 (Xi+Ff).1_[(Xi+Gg)]0<ij<m>
f=j+1 g=1 -
= [] x-x)- J] (F-G) @17
0<i<j<m 1<i<j<m

where X; for 0 <i <m, D;,E; for 1 < j < m are some indeterminates. For the
values of x such that D; #0and A; #0for0 <i <mand j € Z, let

B; Cy. Ce,
Xi=—, Fi=—", Gj= Ae"
€j

D; Adj '
for 0 <i <m and 1 < j <m. By similar reasoning as in the proof of Lemma 1, we
get the desired result by clearing the denominators on both sides of (2.17). For the
values of x which are the roots of D; or A; for some i or j, the equality still holds
true based on the fact that the determinant of a matrix with polynomial entries is a

continuous function. O

Theorem 3. Let s,k ,n be any integers, m > 1. Let P (x)(p,q,r;a,b,c) = (Py)nez
and U(x)(0,0,1;a,b,c) = (Uy)nez be the sequences of polynomials defined by real
numbers p,q,r,a,b,c where ¢ # 0. Let (d;)1<i<m and (e;)1<i<m be sequences of
integers. Then

m j
det([ 1_[ Psik(m+i+dy) 1_[ Ps+k(n+i+eg)]
f=j+1 g=1

m
m+1 m+1 m+1 — i
= (=Ap) ("7 ) ()R (") +R(" )| |U1?z'+1 , | | (=Y Urer—a)

I=1 1<i<j<m

Ofi,j§m>

where Agp is the discriminant of P (x)(p,q,r;a,b,c).

Proof. By (2.11), Lemma 2 and Corollary 1, the theorem can be proved in the
same way as in the proof the Theorem 2. O

Lemma 3. Let m > 1. Let A;, B; are polynomials in variable x for 0 <i < m.
Let C;, D; be rational functions in variable x for 0 <i < m. Then,

det([;] ) _ To<i<j<m(Ai Bj — A; Bi)(C; Dj — D; C;)
AiD; + B;Cjlo<i,j<m ]'[OSi,jEm(AiDj + B;Cj)

provided that the denominators on both sides of the identity are nonzero.
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Proof. First, we invoke a result of Krattenthaler [7, Theorem 12]. That is,

det([ ] N ): 1_[0§1<J§m( i j)(yl yj) (218)
Xi +yjdo<i,j<m [To<i j<m(xi + /)

where x; and y; are indeterminates for 0 <i, j <m. We first assume that 4;, B;,C;, D;
are all polynomials for all 0 <i < m. For the values of x such that B;, D; are nonzero
forall0 <i <m, let

A i :

Xi=—, yi=—"for0<i<m.

B; D,
By similar reasoning as shown in the proof of Lemma 1, we get the desired result by
some algebraic simplification for the cases where A;, B;,C;, D; are polynomials for
all0 <i <m.

We extend the proof to the cases where C; and D; are rational functions by the
same arguments as in the proof of Lemma 1, based on the fact that the determinant of
a matrix with rational functions as entries is a continuous function provided that the
denominators on both sides of the identity are nonzero. O

Theorem 4. Let s,k,n be any integers, m > 1. Let P (x)(p.q,r;a,b,c) = (Py)nez
and U(x)(0,0,1;a,b,c) = (Uy)nez be the sequences of polynomials defined by real
numbers p,q,r,a,b,c where ¢ # 0. The determinant of the matrix

[1/ Pssk(n+i+j)lo<i,j<m is given by

m-+1 m—+1 m+1 2 3
cGHem) (") +2k ("] )Agpz )l_[;‘n=0 Uk((irz-ll))

Py tk(n+i+)
where Agp is the discriminant of P (x)(p.q,r;a,b,c), provided that the denominat-
ors on both sides of the identity are nonzero.

1
det([—] o )Z e
Py yk(nti+j)J0<i.j<m (DD Tosi i <m

Proof. The proof is essentially the same as the proof of Theorem 2 by applying
(2.11), (2.12), (2.13) to Lemma 3 and some standard counting arguments. ]

Let A be a m x m matrix. Let A (i, j) be the determinant of the k x k submatrix
of A whose first entry is at the position of the i*#-row and the j*-column of A.

Lemma 4. Let A be a m x m matrix whose entries are rational functions in vari-
able x. Then

An (1L, D)Ap—22,2) = Ap—1(1, D Am-12.2) = Ap—1(2. 1) App—1(1,2).

Proof. We invoke the Desnanot-Jacobi identity [3] for a matrix A of size m xm
with indeterminates as entries.

Am(ls I)Am—2(2’2) = Am—l(l’ I)Am—1(272) - Am—l(z’ 1)Am—l (1’2)

To extend this result to the case where the matrix A has rational functions as entries,
we simply use the same strategy as in the proof of Lemma 1. O
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Let m > 1. The rising powers of a sequence of polynomials
P(x)(p,q,r;a,b,c) = (Pp)nez is denoted by Pn<m), which is defined by

P = Py Pyt1 - Prgm—t1.

Theorem 5. Let n be any integer Let m > 1 and d > 1. Let
‘(/j(x)(p9q?r;a’b’c) = (Pn)nEZ Clnd ‘L((X)(0,0, l;a,b,C) = (Ul’l)I’lGZ be the sequen-
ces of polynomials defined by real numbers p,q,r,a,b,c where ¢ # 0. Then

det([P,gt,n_z-H]osi,j <d—1)

d—1 2(d—1)
d d+1 _ d d d—i —
= (=" +(F) (ntd 2)(2)A§3)~1_[ (UiUrg1—i)“ " l_[ Pn(ﬁ;rl “

where Agp is the discriminant of P (x)(p,q.,r;a,b,c).

Proof. The proof is based on induction on d, Lemma 4 and Theorem 1. It is
essentially identical to the proof of Theorem 2.1 in the work of Tangboonduangjit
and Thanatipanonda [1 1] and hence we skip it. O

Ifweset p =g =b=0andr =a =c = 1, then we get the sequence of Fibonacci
polynomials in £ (x)(0,0,1;1,0,1) = (F,(x)),ez Where the sequence (Fy(x)),ecz
is defined by

Fo(x) =0, Fi(x)=1, Fupa(x) =xFpp1(x)+ Fp(x).

We recover the Fibonacci numbers and Pell numbers by evaluating F,(x) at x = 1
and x = 2 respectively. We note that Ap =1 and U(x)(0,0,1;1,0,1) = (Fp(x))nez.
By Theorem 2, Theorem 3, Theorem 4 and Theorem 5, we get the following corol-
lary:

Corollary 2. Letm > 1 and d > 1. Let s,k,n be any integers. Let (d;)1<i<m and
(ei)1<i<m be sequences of integers. Then

det([(Fyie(n-+i+/) (1) Joi.j=m) = (~1)EHen+DCTD.

m

T (T)(F<i+1)k()€))2(m_i),

=0

m J
det([ l_[ Fs+k(n+i+df)(x) l_[ FS+k(n+i+eg)(x):|
g=1

. Ofi,jfm)
f=j+1

— (_1)(s+kn+1)(m;-l)+k(m§i-l) H(Fk] (X))m+1_l A 1_[ (_l)kdj Fk(e,-—dj)(x)s

=1 1<i<j=<m
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m+1 o
det([ 1 ] ): (—1)G+km ("3 )H;nzo(Fk(iH)(x))z(m 0
Fytk(nti+j)(x)d0<i,j<m [To<i,j<m Fs+k@m+i+j)(X) ’
det([(Fn+i+7 () ™ o<i j<a—1)
o e, 47 4 24D
= (O T (F ) Fnr1=i ) [ Far o)1=,
i=1 i=d—1

Remark 3. We recover the identities (1.2) and (1.4) by setting x = 1 in the first
identity and the last identity in Corollary 2 respectively.

Remark 4. We recover the results shown by Alfred [2] by setting x = 1,5 =0,k =
I,bn=0andd; =0,¢; =1forall 1 <i,j <m in the second identity in Corollary 2.

Remark 5. We get the identity (1.5) by setting x = 1, s =0, k =n = 1 in the third
identity in Corollary 2.

Ifweset p=2,g=a=c=1andr =b =0, then we get the sequence of Lucas
polynomials in $(x)(2,1,0;1,0,1) = (L (x))necz where the sequence (L (X)),ecz
is defined by

Lo(x)=2, Li(x)=x, Lpy2(x)=xLyt1(x)+ Lp(x).

We recover the Lucas numbers by evaluating L,(x) at x = 1. We note that Ap =
(=x2—4) and U(x)(0,0,1;1,0,1) = (F,(x))nez. By Theorem 2, Theorem 3, The-
orem 4 and Theorem 5, we get the following corollary:

Corollary 3. Letm > 1 and d > 1. Let s,k,n be any integers. Let (d;)1<i<m and
(ei)1<i<m be sequences of integers.

det([(Ls+km+i+,) ()" lo<i,j<m)

= (_1)(s+kn)(m;”)(x2 _|_4)(m§”) l_[ (’:1) (F(i+1)k(x))2(m_i),
=0

n J
det([ 1_[ Lytkm+i+ds) (%) l_[ LS+k(n+i+eg)(x)]

; 05i,j5m)
f=ji+1 g=1

= (_1)(s+kn)(mj1)+k(m§r1) - _|_4)(m;r1) ﬁ(Fkl(x))m+1_l'
=1

[T D% Fre—a) ).

I<i<j<m

1
det([ ] o )
Lsikm+i+jy(x)do<ij<m
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_1)G+Hkn+D (") (2 4 g)("F) 7 :
&Y o +9) H(Fk(i+1)(x))2(m_l)
i=0

[To<i,j<m Ls+k+i+)(X)

det([(Ln+i+; ()™ o< j<a—1)

d—1
= O (2 4 )@ T (F ) Fmyri ()
i=1
2(d—1)

T o epfmti=4,

i=d—1

Ifweset p=gq=1,a=2,c=—1and r =b =0, then we get the sequence
of Chebyshev polynomials of the first kind in #(x)(1,1,0;2,0,—1) = (T, (x))nez
where the sequence (7}, (x)),cz is defined by

To(x)=1, Ti(x)=x, Tpya(x) =2xTpp1(x) —Ta(x).

We note that Ap = (—x2 + 1).

Ifweset p=1,a=q=2,c=—1and r = b =0, then we get the sequence of
Chebyshev polynomials of the second kind in #(x)(1,2,0;2,0,—1) = (S, (x))nez
where the sequence (Sy, (x)), ez is defined by

So(x) =1, Si1(x) =2x, Sp2(x) =2xSp41(x) —Sn(x).
We note that Ap = (=2x2 +1).
We note that
U(x)(0,0,1;2,0,—1) = (Un(x))nez
where
Uy(x) = Sp—1(x) forn e Z.
We get two corollaries by Theorem 2, Theorem 3, Theorem 4 and Theorem 5.

Corollary 4. Letm > 1 and d > 1. Let s,k,n be any integers. Let (d;)1<i<m and
(ei)1<i<m be sequences of integers. Then

det([(Tstk(nti+ ) (X)) o<i,j<m) = (x* — 1)(’”;1) l_[ (T) (S(i+1)k—1(x))2(m_i),
i=0

m J
det([ [ Tstktmsivan® [] Ts+k(n+i+eg)(x)]
g=1

; Ofi,jgm)
f=j+1

= =D TSk )™ [T Skeer—ay—1(0),

=1 1<i<j<m
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der(| ! ] )= (=% + D2 [Ty (St -1 (1))
Tyt kmtitj)(x)do=ij<m Mo<i.j<m Ts+k@mti+j) () ’
det([(TnHﬂ(x))<'">]o<i,j<d_1)
d+1 ; 2(d-1)
= (DA 2 11y 1_[ (Si—1(x)Sm— ,(x) 1_[ (T 1 () H1=4).
i=1 i=d—1

Corollary 5. Letm > 1 and d > 1. Let s,k,n be any integers. Let (d;)1<i<m and
(ei)1<i<m be sequences of integers. Then

det([(Ss+kn i+ ) () o, j<m) = 2x> = 1" ). H( )<S<z+1>k 12270,

i=0

m J
det([ l_[ Ss—i—k(n—i—i—}-d_/.)(x) 1_[ Ss-i-k(n—i—i—i-eg)(x)]
f=j+1 g=1

=@ = DI IS )™ [T Skei—ay-1(0).

=1 I<i<j<m

OSi,jsm)

’

m—+1 =
det ([ —————] )= (=2 + DD (Skgir1y-1 (602"
Ss+k(n+i+j)(x)do<i,j<m [To<i.j<m Ss+k@+i+j)(X)
det([(Snti+; ()™ o<i j<a-1)
2(d-1)

= (- l)d(d)+(d+)( 2x2 +1)()1_[ Si—1(x)Sm— ,(x) . 1_[ (Sp+1(x))mH1=d),

i=1 i=d—1

By Favard’s theorem [0] (see also the standard reference textbook by Chihara [5,
Chapter 2]), the sequence P (x)(1,q,7;1,b,¢) = (Pn)nez., forms a sequence of
orthogonal polynomials (with respect to certain linear functional) for ¢ # 0 and ¢ # 0.
By Theorem 2, Theorem 3, Theorem 4 and Theorem 5, we state some determinant
identities for matrices containing (powers of) such orthogonal polynomials.

Corollary 6. Letn >0, m > 1 and d > 1. Let (Pp)nez., be a sequence of
orthogonal polynomials of the form:

Po=1, Pi=qgx+r, Pyyo=x4+b)Pry1+cPy
where ¢ # 0, ¢ # 0 and r,b are any real numbers. Then
det([Py:n+i+j]0<i,j<m)

= D) 4 ) H(( ) UET).

=0
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m J
det([ l_[ Ppiiva, l_[ Pn+i+eg]0§i’j5m)

f=j+1 g=1

:(—A)(mirl)(—c)”(mgl)“'(m;l)HU,’”H_I- 1_[ (—c)df'Uei—dj,

=1 I<i<j<m

1
det(|p——ro] )
Py tknyi+j)l0=ij=m

m-+1 m—+1 m-+1 m—+1 2 7
B (1) HEm (") ((stkm (") +2k (") AT T Uk((fill))

’

HOgi,jgm Ps+k(n+i+j)

det([P"), Jo<i,j<d—1)

d—1 2(d-1)
:(_l)n(g)+(d;1)c<n+d—2)(§)A(;’).1‘[(U,.Um+1_,.)d". I plmii=d),
i=1 i=d—1

where A = (g% —q)x*> + (qgr —r —bq)x + (r> —br —c) and (Un)nez, is the se-
quence of orthogonal polynomials defined by

Up=0, Ui=1, Upya=x+b)Upt1+cU,.
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