
JORDAN TRIPLE ENDOMORPHISMS AND ISOMETRIES

OF UNITARY GROUPS

LAJOS MOLNÁR

Abstract. In this paper we present the general form of all continuous
endomorphisms of the group Un of n×n complex unitary matrices with
respect to the Jordan triple product. These are the continuous maps
φ : Un → Un which satisfy

φ(VWV ) = φ(V )φ(W )φ(V ), V,W ∈ Un.

The result is applied to determine the structure of certain isometries
of Un. These include the isometries relative to any metric given by a
unitarily invariant norm on the space Mn of all n× n complex matrices
and also the isometries relative to any member of a new class of metrics
on Un recently introduced by Chau, Li, Poon and Sze [6].

1. Introduction and statement of the main results

The famous Mazur-Ulam theorem states that every surjective isometry
(i.e., surjective distance preserving mapping) between real normed spaces
is automatically affine, it preserves the operation of convex combination.
Motivated by this important result, in the paper [9] Hatori, Hirasawa, Miura
and Molnár made attempts to generalize it for the noncommutative setting,
especially for metric groups and for certain substructures of them. The
authors managed to obtain results saying that under certain conditions,
the surjective isometries of groups equipped with translation and inverse
invariant metrics locally preserve an operation called inverted Jordan triple
product. In some cases the local preservation of that operation can be
shown to extend globally. These results demonstrate that in the considered
cases the surjective isometries have a certain remarkable algebraic property,
they are some sort of isomorphisms between the underlying groups. In [10]
the results given in [9] were utilized to describe the structure of surjective
isometries of the unitary group of an arbitrary complex Hilbert space relative
to the metric induced by the usual operator norm. In [15] Molnár and
Šemrl determined the structure of surjective isometries of the unitary group
of a complex infinite dimensional separable Hilbert space with respect to
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any unitarly invariant uniform norm on the full operator algebra over the
underlying Hilbert space. By employing different analytical tools but using
the same algebraic properties of surjective isometries between groups that
were obtained in [9], Hatori and Molnár presented results in [11] on the
structure of surjective isometries (relative to the usual norm) of unitary
groups in C∗-algebras and in von Neumann algebras. An interesting recent
result on the form of certain isometries of the special orthogonal group is to
appear in [1].

In [15] the problem of describing the surjective isometries of the unitary
group under unitarily invariant norms in the finite dimensional case was
left as an open problem, see [15, 4. Remarks, examples, open problems].
One of the aims of this paper is to give a solution of that problem. On the
other hand, below we determine the structure of all isometries of the unitary
group Un relative to a new class of metrics on Un that has been introduced
by Chau, Li, Poon and Sze very recently [6].

As can be suspected from the discussion above the isometries we are go-
ing to consider turn to be isomorphisms under a certain algebraic operation
on Un. Indeed, this operation is the inverted Jordan triple product that
we define by the formula VW−1V . Morphisms with respect to this product
are very closely related to morphisms with respect to a much more common
and important operation which is called the Jordan triple product. This is
defined by the formula VWV . Transformations preserving this operation or
alike operations are extensively investigated in ring theory and its applica-
tions. The second main aim of this paper is to obtain the full description of
all continuous Jordan triple endomorphisms of the group Un.

We begin with presenting the notation and definitions that we shall use
throughout the paper. We denote by Mn the space of all n × n complex
matrices, by Hn the space of all self-adjoint elements of Mn and by Un the
group of all unitary elements of Mn. A unitary matrix is called a symmetry if
it is self-adjoint (it has eigenvalues ±1). It is well-known that every unitary
matrix is the exponent of a skew-symmetric matrix, i.e., every U ∈ Un can
be written of the form U = eiH with some H ∈ Hn. In what follows ‖.‖
denotes the usual operator norm (or, in another words, spectral norm) on
Mn (i.e., ‖A‖ is the square-root of the largest eigenvalue of the positive
semi-definite matrix A∗A). If not specified otherwise, when we speak of
metrical or topological properties related to Un we always mean the metric
induced by the norm ‖.‖. In what follows I stands for the identity matrix,
tr denotes the transpose of matrices, Tr is the usual trace functional, and

refers to complex conjugate. Recall that a norm N(.) on Mn is called
unitarily invariant if N(UAV ) = N(A) holds for all A ∈ Mn, U, V ∈ Un.
In what follows we assume that n ≥ 2 (in the case n = 1 the results below
follow from classical mathematical analysis).

Our first main result which gives the complete description of Jordan triple
endomorphisms of Un reads as follows.
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Theorem 1. Let φ : Un → Un be a continuous map which is a Jordan triple
endomorphism, i.e., assume that φ satisfies

φ(VWV ) = φ(V )φ(W )φ(V ), V,W ∈ Un.
Then there exist a unitary matrix U ∈ Un, an integer k, a number c ∈
{−1, 1}, and a set {P1, . . . , Pn} of mutually orthogonal rank-one projections
in Mn, a set {k1, . . . , kn} of integers and a set {c1, . . . , cn} ⊂ {−1, 1} such
that φ is of one of the following forms:

(j1) φ(V ) = c(detV )kUV U−1, V ∈ Un;
(j2) φ(V ) = c(detV )kUV −1U−1, V ∈ Un;
(j3) φ(V ) = c(detV )kUV trU−1, V ∈ Un;
(j4) φ(V ) = c(detV )kUV U−1, V ∈ Un;
(j5) φ(V ) =

∑n
j=1 cj(detV )kjPj, V ∈ Un.

From the above result one can immediately deduce the structure of all
continuous Jordan triple automorphisms of Un.

Corollary 2. Let φ : Un → Un be a continuous Jordan triple automorphism,
i.e., a continuous bijective map which satisfies

φ(VWV ) = φ(V )φ(W )φ(V ), V,W ∈ Un.
Then there exist a unitary matrix U ∈ Un and a number c ∈ {−1, 1} such
that φ is of one of the following forms:

(a1) φ(V ) = cUV U−1, V ∈ Un;
(a2) φ(V ) = cUV −1U−1, V ∈ Un;
(a3) φ(V ) = cUV trU−1, V ∈ Un;
(a4) φ(V ) = cUV U−1, V ∈ Un.

As our second main aim in this paper, in the next theorem we determine
the structure of all isometries of the unitary group Un with respect to any
unitarily invariant norm given on Mn.

Theorem 3. Let N(.) be a unitarily invariant norm on Mn. If φ : Un → Un
is an isometry, i.e., φ is a map which satisfies

N(φ(V )− φ(W )) = N(V −W ), V,W ∈ Un,
then there exists a pair U,U ′ ∈ Un of unitary matrices such that φ is of one
of the following forms:

(i1) φ(V ) = UV U ′, V ∈ Un;
(i2) φ(V ) = UV −1U ′, V ∈ Un;
(i3) φ(V ) = UV trU ′, V ∈ Un;
(i4) φ(V ) = UV U ′, V ∈ Un.

In our fourth theorem we determine the isometries of Un with respect to
a recently defined class of interesting metrics on Un. Motivated by consider-
ations in quantum information processing, in [5] Chau introduced a certain
family of metrics on Un. In the paper [6] Chau, Li, Poon and Sze have
extended this class significantly and presented a number of its interesting
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properties. It is a remarkable fact that starting from a very much different
origin in [2], Antezana, Larotonda and Varela have been led practically to
the same class of distances on Un.

As for the definition of the metrics in question, we first remark the follow-
ing. To any V ∈ Un there corresponds a unique self-adjoint matrix H ∈ Hn

with spectrum in ]−π, π] such that V = exp(iH). Indeed, H can be obtained
in the following way. Applying an appropriate unitary similarity transfor-
mation, V is transformed into a diagonal matrix. The diagonal elements
of this matrix are complex numbers of modulus 1. For each such diagonal
element take the corresponding unique angle that belongs to ]−π, π]. From
the so obtained angles form the corresponding diagonal matrix and finally
transform it with the inverse of the previously mentioned unitary similarity
transformation. What we get is just the self-adjoint matrix H that we have
been looking for. For temporary use, in this paper we call this self-adjoint
matrix H the angular matrix of V . Now, given a unitarily invariant norm
N(.) on Mn, for any pair V,W ∈ Un of unitary matrices pick the angular
matrix H of VW−1 and define dN (V,W ) = N(H). It has been proven in
[6] that dN is a metric on Un and several interesting properties of dN have
been derived.

In our last result we determine the structure of the corresponding isome-
tries of Un.

Theorem 4. Let N(.) be a unitarily invariant norm on Mn. The structure
of the isometries of Un with respect to the metric dN defined above is exactly
the same as in Theorem 3.

Remark 5. At this point let us remark the following. The results in the
previous statements can all be reversed, meaning that all transformations
of any of the forms which appear in the conclusions are in fact isometries,
continuous Jordan triple automorphisms, and continuous Jordan triple en-
domorphisms, respectively. To verity these one needs to apply only simple
observations.

2. Proofs

In this section, after verifying some auxiliary results, we present the proofs
of our main theorems.

Our first lemma that follows states that the continuous Jordan triple
endomorphisms of Un are all Lipschitz functions. The result could also
be derived following the argument given in [13] (p. 177, Satz 1) relating
to group endomorphisms of linear groups. For the sake of completeness
below we present a more direct and simple proof in the case of Jordan triple
endomorphisms of Un.

Lemma 6. Let φ : Un → Un be a continuous Jordan triple endomorphism.
Assume φ(I) = I. Then φ is a Lipschitz function.
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Proof. We begin with the following observation. For an arbitrary V ∈ Un
let H be the angular matrix of V and denote the operator norm ‖H‖ of H
by m(V ). Apparently, we have the inequalities

‖V − I‖ ≤ m(V ) ≤ 2‖V − I‖.

Moreover, if m(V ) < π and k is a positive integer such that km(V ) < π,
then we have m(V k) = km(V ).

Turning to the proof of the lemma, we first assert that there exists a
positive real number L such that ‖φ(U) − I‖ ≤ L‖U − I‖ holds for all
U ∈ Un. Assume on the contrary that we have a sequence (Uk) in Un and a
sequence (ck) of positive integers such that ck →∞ and

(1) ‖φ(Uk)− I‖ > ck‖Uk − I‖

holds for every k ∈ N. Since Un is a compact metric space, (Uk) has a
convergent subsequence. Without serious loss of generality we may and do
assume that already the original sequence (Uk) is convergent. If its limit were
different from I, by (1) we would have ‖φ(Uk)− I‖ → ∞ which contradicts
‖φ(Uk) − I‖ ≤ 2. Therefore, Uk → I and φ(Uk) → I as k → ∞. We can
also assume that

‖φ(Uk)− I‖ = εk, εk < 1/2

holds for all k ∈ N. Choose positive integers lk such that

1/(lk + 1) ≤ εk < 1/lk.

Clearly, lk ≥ 2. Since εk > ck‖Uk − I‖, we have ‖Uk − I‖ < εk/ck and this
implies that

m(Uk) ≤ 2‖Uk − I‖ < (2εk)/ck.

On the other hand, we have

2εklk
ck

<
2

ck
< π.

Therefore, we infer m(U lkk ) = lkm(Uk) < 2/ck which implies

‖U lkk − I‖ ≤ m(U lkk ) < 2/ck.

Consequently, U lkk → I and since Uk → I also holds, we have U lk+1
k → I as

k →∞.
We continue with the inequalities

m(φ(Uk)) ≤ 2‖φ(Uk)− I‖ = 2εk

and

2εk(lk + 1) < 2(lk + 1)/lk < π,

where in the last inequality we have used lk ≥ 2. These imply that

m(φ(Uk)
lk+1) = (lk + 1)m(φ(Uk)).
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Hence we compute

1 = (1/εk)‖φ(Uk)− I‖ ≤ (lk + 1)‖φ(Uk)− I‖

≤ (lk + 1)m(φ(Uk)) = m(φ(Uk)
lk+1) ≤ 2‖φ(U lk+1

k )− I‖.

Consequently, φ(U lk+1
k ) 6→ I and this contradicts U lk+1

k → I. Therefore, we
have a positive real number L such that ‖φ(U) − I‖ ≤ L‖U − I‖ holds for
every U ∈ Un.

To complete the proof pick arbitrary unitariesW,W ′ ∈ Un. We can choose
V ∈ Un such that V 2 = W ′ and then find U ∈ Un such that V UV = W .
We infer

‖φ(W )− φ(W ′)‖ = ‖φ(V UV )− φ(V 2)‖ = ‖φ(V )φ(U)φ(V )− φ(V )Iφ(V )‖
= ‖φ(U)− I‖ ≤ L‖U − I‖ = L‖V UV − V 2‖ = L‖W −W ′‖.

This proves that φ is a Lipschitz function. �

In the next auxiliary result we show that every continuous Jordan triple
endomorphism of Un which is unital (i.e., maps I to I) gives rise to a linear
transformation on Hn. The use of one-parameter groups in the proof that
originates from [12] has already been exploited in the papers [11] and [1].

Lemma 7. Let φ : Un → Un be a continuous Jordan triple endomorphism
with φ(I) = I. Then there exists a linear transformation f : Hn → Hn such
that

φ(eitA) = eitf(A), t ∈ R, A ∈ Hn.

Moreover, f satisfies

f(V AV ) = φ(V )f(A)φ(V )

for every A ∈ Hn and symmetry V ∈ Un.

Proof. Since φ is a unital Jordan triple endomorphism, it is easy to check
that φ(V k) = φ(V )k holds for every V ∈ Un and positive integer k. We
show that φ preserves the inverse operation. To prove this, let W ∈ Un be
such that W 2 = V . We compute

φ(W )φ(V −1)φ(W ) = φ(WV −1W ) = φ(I) = I

which implies that

φ(V −1) = φ(W )−2 = φ(W 2)−1 = φ(V )−1.

Therefore, we obtain that φ(V k) = φ(V )k holds for every integer k and
V ∈ Un. In the rest of the paper we shall use several times that, in particular,
φ maps symmetries to symmetries.

In the next step, following an argument similar to the proof of Theorem 7
in [11] we show that φ maps one-parameter unitary groups to one-parameter
unitary groups. Pick an arbitrary self-adjoint matrix T ∈ Hn and define
ST : R→ Un by

ST (t) = φ(eitT ), t ∈ R.
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We assert that ST is a continuous one-parameter unitary group in Mn. Since
φ is continuous, we only need to prove that ST (t + t′) = ST (t)ST (t′) holds
for every pair t, t′ of real numbers. First select rational numbers r and r′

such that r = k
m and r′ = k′

m′ with integers k, k′,m,m′. We compute

ST (r + r′) = φ(ei
km′+k′m

mm′ T ) = φ(ei
1

mm′ T )km
′+k′m

= φ(ei
1

mm′ T )km
′
φ(ei

1
mm′ T )k

′m = ST (r)ST (r′).

Since φ is continuous, we deduce that ST (t+t′) = ST (t)ST (t′) holds for every
pair t, t′ of real numbers. By Stone’s theorem we obtain that there exists a
unique self-adjoint matrix f(T ) ∈ Hn (the generator of the one-parameter
unitary group ST ) such that

φ(eitT ) = ST (t) = eitf(T ), t ∈ R.

We next prove that f : Hn → Hn is in fact a linear transformation. Pick
A,B,C ∈ Hn. We compute

ei(t/2)AeitBei(t/2)A − eitC

it

=
(ei(t/2)A − I)eitBei(t/2)A + (eitB − I)ei(t/2)A + (ei(t/2)A − I)− (eitC − I)

it
→ A/2 +B +A/2− C = A+B − C

as t→ 0. It follows that

lim
t→0

ei(t/2)AeitBei(t/2)A − eitC

it
= 0⇐⇒ C = A+B.

If C = A + B, then using the Lipschitz property of φ proven in Lemma 6
we have

ei(t/2)f(A)eitf(B)ei(t/2)f(A) − eitf(C)

it

=
φ(ei(t/2)A)φ(eitB)φ(ei(t/2)A))− φ(eitC)

it

=
φ(ei(t/2)AeitBei(t/2)A))− φ(eitC)

it
→ 0

as t→ 0. On the other hand, just as above we deduce

ei(t/2)f(A)eitf(B)ei(t/2)f(A) − eitf(C)

it
→ f(A) + f(B)− f(C).

This gives us that f(A) + f(B) − f(A + B) = 0, i.e., f is additive. The
homogeneity of f is trivial to see. Indeed, we have

eitλf(A) = φ(eitλA) = eitf(λA)

for every t, λ ∈ R which implies λf(A) = f(λA). Consequently, f is a linear
transformation on Hn.
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To obtain the last statement of the result we compute

eitφ(V )f(A)φ(V ) = φ(V )eitf(A)φ(V )

= φ(V )φ(eitA)φ(V ) = φ(V eitAV ) = eitf(V AV ).

Since this holds for every t ∈ R we easily get the desired equality f(V AV ) =
φ(V )f(A)φ(V ) for every A ∈ Hn and symmetry V ∈ Un. �

In what follows T denotes the circle group which is just the unitary group
in the one-dimensional case. The next auxiliary result describes the struc-
ture of continuous Jordan triple functionals on Un. It can be viewed also as
a characterization of the determinant function on the unitary group.

Lemma 8. Let ϕ : Un → T be a continuous Jordan triple functional, i.e.,
assume that ϕ is continuous and satisfies

ϕ(VWV ) = ϕ(V )ϕ(W )ϕ(V ), V,W ∈ Un.
Then there is an integer k and a number c ∈ {−1, 1} such that

ϕ(V ) = c(detV )k, V ∈ Un.

Proof. Clearly, ϕ(I)3 = ϕ(I) implying that ϕ(I) = ±1. There is no loss of
generality in assuming that ϕ(I) = 1. Since, by the transformation λ 7→
diag(λ, 1, . . . , 1), the group T embeds trivially into Un, the functional ϕ :
Un → T gives rise to a continuous unital Jordan triple endomorphism of Un.
Applying Lemma 7 to this transformation one can easily check that there
is a linear functional l : Hn → R such that ϕ(eitA) = eitl(A), t ∈ R, A ∈ Hn.
By the second statement in Lemma 7 we further have that l(V AV ) = l(A)
holds for all A ∈ Hn and symmetry V ∈ Un.

Proceeding further, since l is a linear functional on the real Hilbert space
Hn, by Riesz representation theorem there is an element H ∈ Hn such that
l(A) = Tr(AH), A ∈ Hn. Then

Tr(AH) = l(A) = l(V AV ) = Tr(V AV H) = Tr(AVHV )

holds for every A ∈ Hn which implies that H = V HV for every symmetry
V ∈ Hn. Multiplying by V , this gives us that H commutes with all symme-
tries in Un. Since any symmetry V is of the form V = 2P − I with some
projection, it follows that H commutes with every projection and we obtain
that H is necessarily a scalar multiple of the identity. Let h ∈ R be such
that H = hI. We have

ϕ(eitA) = eithTr(A), t ∈ R, A ∈ Hn.

Pick a rank-one projection P ∈Mn. Since exp iπP is a symmetry, it follows
that its image under ϕ is a number that has square equal to 1. Therefore,
exp(iπhTr(P )) = exp(iπh) equals ±1 which yields that h is an integer.
Denote it by k. We compute

ϕ(eitA) = eitkTr(A) = (eTr(itA))k = (det(eitA))k

which shows that ϕ(V ) = (detV )k holds for every V ∈ Un.
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In the case where ϕ(I) = −1 we apply the above argument to the Jordan
triple functional −ϕ. �

After these preliminaries we are now in a position to prove our first main
theorem. The basic idea of the proof is the use of a structural result con-
cerning commutativity preserving linear transformations of Hn. That result
holds only when n ≥ 3. The two-dimensional case requires some special
considerations.

Proof of Theorem 1. Let φ : Un → Un be a continuous Jordan triple endo-
morphism.

Clearly, we have φ(I) = φ(I)3 which implies that I = φ(I)2, i.e., φ(I) is
a symmetry.

We have φ(V ) = φ(IV I) = φ(I)φ(V )φ(I) for every V ∈ Un. Multiplying
by φ(I) from either side we obtain that φ(I) commutes with every element
φ(V ) of the range of φ. Defining ψ(V ) = φ(I)φ(V ), the transformation
ψ : Un → Un is a continuous map which is easily seen to be a Jordan triple
endomorphism of Un which sends I to I. In what follows we assume that
already our original map φ fixes the identity I.

By Lemma 7 we have a linear transformation f : Hn → Hn such that

(2) φ(eitA) = eitf(A), t ∈ R, A ∈ Hn.

We prove that f preserves commutativity meaning that if A,B ∈ Hn are such
that AB = BA, then f(A)f(B) = f(B)f(A) holds, too. Pick commuting
matrices A,B ∈ Hn. Then for every t, s ∈ R we have

eitAei2sBeitA = eisBei2tAeisB

implying

φ(eitA)φ(ei2sB)φ(eitA) = φ(eisB)φ(ei2tA)φ(eisB)

and hence

eitf(A)ei2sf(B)eitf(A) = eisf(B)ei2tf(A)eisf(B).

Fixing the real variable s and putting the complex variable z in the place of
it we have that the equality

ezf(A)ei2sf(B)ezf(A) = eisf(B)e2zf(A)eisf(B)

between matrix valued holomorphic (entire) functions of the variable z holds
along the y-axis. By the uniqueness theorem of holomorphic functions we
infer that the above equality holds necessarily on the whole complex plane.
Next, fixing z and inserting the complex variable w in the place of is, the
same reasoning leads to that the equality

ezf(A)e2wf(B)ezf(A) = ewf(B)e2zf(A)ewf(B)

holds for all values of the variables z, w ∈ C. In particular, for arbitrary real
numbers t, s setting z = t/2, w = s/2 we have

(3)
√
etf(A)esf(B)

√
etf(A) =

√
esf(B)etf(A)

√
esf(B).
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This is an important equality. Given positive semi-definite matrices or
Hilbert space operators D,F , the operation defined by

√
DF
√
D is called

the sequential product of D and F , see [8]. It was proved in [8, Corollary 3]
that commutativity of positive semi-definite operators with respect to that
product is equivalent to the commutativity relative to the usual product.
Using that result we infer from (3) that

etf(A)esf(B) = esf(B)etf(A)

holds for all t, s ∈ R. This easily implies f(A)f(B) = f(B)f(A) which
verifies that f indeed preserves commutativity.

Assume n ≥ 3. In that case the structure of commutativity preserving
linear maps on Hn is known and was described in [7]. The result [7, Theorem
2] tells us that we have the following possibilities for f :

(a) either the range of f is commutative;
(b) or there exist a unitary matrix U ∈ Un, a linear functional l : Hn →

R and a nonzero scalar c ∈ R such that f is of the form

(4) f(A) = cUAU∗ + l(A)I, A ∈ Hn

or of the form

(5) f(A) = cUAtrU∗ + l(A)I, A ∈ Hn.

First consider the case (b) where f is of the form (4). We have

φ(eitA) = eit(cUAU
∗+l(A)I), t ∈ R, A ∈ Hn.

Apparently, it follows that

U∗φ(eitA)U = eit(cA+l(A)I), t ∈ R, A ∈ Hn.

Clearly, U∗φ(.)U is a continuous Jordan triple endomorphism of Un which
maps I to I. Hence, in the remaining steps of the proof we may and do
assume without serious loss of generality that

(6) φ(eitA) = eit(cA+l(A)I) = eitl(A)eit(cA)

holds for all t ∈ R, A ∈ Hn. If f is of the form (5), then considering the map
(U∗φ(.)U)tr we can again assume that (6) holds.

It follows from (6) that φ(exp(itA)) is a scalar multiple of exp(it(cA)) for
every t ∈ R and A ∈ Hn. We claim that c = ±1. To verify this, we first
recall that φ sends symmetries to symmetries (this follows easily from the
fact that I is mapped into I). Let P be a rank-one projection in Mn. Then
exp(iπP ) is a symmetry and it follows that the symmetry φ(exp(iπP )) is
a scalar multiple of exp(iπcP ). It is easy to see that this scalar multiplier
is necessarily ±1 and then we obtain that the number exp(iπc) also equals
±1. From this we infer that c is an integer, say c = m. Since every element
of Un is of the form exp(iA) with some A ∈ Hn, we thus obtain from (6)
that φ(V ) is a scalar multiple of V m for every V ∈ Un. By the Jordan
triple multiplicativity of φ this gives us that m is a nonzero integer for
which (VWV )m and V mWmV m are scalar multiples of each other whenever
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V,W ∈ Un. Taking inverses here if necessary, we can obviously assume that
the integer m is positive. Since (VWV )mV −mW−mV −m is a scalar multiple
of the identity, it follows that it commutes with every matrix T ∈ Mn.
Inserting one-parameter groups of unitaries in the places of V and W we
deduce that

(eitHeisJeitH)me−imtHe−imsJe−imtHT

= T (eitHeisJeitH)me−imtHe−imsJe−imtH

holds for all t, s ∈ R, H,J ∈ Hn and T ∈ Mn. We now apply the method
that we have used to verify the commutativity preserving property of f
to replace the real variables t, s in the above displayed formula by general
complex variables z, w. Namely, fixing the real variable s and putting the
complex variable z in the place of it we obtain that the equality

(ezHeisJezH)me−mzHe−imsJe−mzHT

= T (ezHeisJezH)me−mzHe−imsJe−mzH

between matrix valued holomorphic (entire) functions of the complex vari-
able z holds along the y-axis. It follows that the equality must hold for every
complex value of z, too. Next, fixing z and inserting the complex variable
w in the place of is, the same reasoning yields that

(ezHewJezH)me−mzHe−mwJe−mzHT = T (ezHewJezH)me−mzHe−mwJe−mzH

holds for all z, w in C. In particular, we obtain that for all t, s ∈ R, H,J ∈ Hn

and T ∈Mn we have

(etHesJetH)me−mtHe−msJe−mtHT = T (etHesJetH)me−mtHe−msJe−mtH .

Since every positive definite matrix in Mn is the exponential of an element of
Hn, we deduce that (ABA)mA−mB−mA−m commutes with all elements of
Mn and hence it is a scalar multiple of the identity whenever A,B ∈Mn are
positive definite. Therefore, (ABA)m and AmBmAm are scalar multiples of
each other. Letting B converge to an arbitrary rank-one projection P we
obtain that (APA)m and AmPAm are linearly dependent for every positive
definite A and rank-one projection P in Mn. It requires only elementary
considerations to see that this can happen only if m = 1. Referring back to
the general case where m is not necessarily positive, we obtain that m = ±1.

By (6) it follows that one of the following two possibilities must hold:

φ(eitA) = eitl(A)eitA, t ∈ R, A ∈ Hn;

φ(eitA) = eitl(A)(eitA)−1, t ∈ R, A ∈ Hn.

Apparently, this shows that φ can be decomposed as φ(V ) = ϕ(V )V , V ∈ Un
or as φ(V ) = ϕ(V )V −1, V ∈ Un where ϕ : U → T is a continuous Jordan
triple functional. Hence Lemma 8 applies and we obtain that there is an
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integer k such that φ is of one of the following forms:

φ(V ) = (detV )kV, V ∈ Un;

φ(V ) = (detV )kV −1, V ∈ Un.

Remember now the reductions what we may have applied to get (6). First we
may have multiplied the original transformation by a symmetry (the image
of the identity) that is in the commutant of the range to obtain a unital
continuous Jordan triple endomorphism and then we may have composed it
with an inner automorphism U∗(.)U and/or with the transpose operation.
Having these in mind we deduce the following. In the present case what
we are considering (n ≥ 3, and the possibility (b) holds for f) the above
mentioned commutant is trivial implying that the symmetry in question
equals ±1 times the identity. Consequently, dropping all reductions, for the
original transformation φ we have that it is of one of the forms (j1)-(j4)
which appear in the formulation of Theorem 1.

Keeping further the assumptions n ≥ 3 and φ(I) = I, let us now examine
the case where the range of the linear transformation f : Hn → Hn satisfying

φ(eitA) = eitf(A), t ∈ R, A ∈ Hn

(see (2)) is commutative. Clearly, the same holds for the range of φ, too.
Therefore, the elements of that range can be diagonalized simultaneously
and hence we have a commuting set {P1, . . . , Pn} of rank-one projections
in Mn and a collection ϕ1, . . . , ϕn : Un → T of continuous Jordan triple
functionals such that

φ(V ) =

n∑
j=1

ϕj(V )Pj , V ∈ Un.

Applying Lemma 8 we obtain that there are integers k1, . . . , kn such that

φ(V ) =
n∑
j=1

(detV )kjPj , V ∈ Un.

Again remember that in the beginning of the course of the proof we may
have multiplied the original transformation by a symmetry from the com-
mutant of its range to get a unital Jordan triple endomorphism. In the
present case the commutant in question can be described as follows. From
the set {k1, . . . , kn} of integers and the set {P1, . . . , Pn} of mutually orthog-
onal rank-one projections form the new set {k′1, . . . , k′d} of pairwise different
integers such that

{k′1, . . . , k′d} = {k1, . . . , kn}
and then define the set {P ′1, . . . , P ′d} of mutually orthogonal projections with
sum I by

P ′l =
∑
{Pj : kj = k′l}, l = 1, . . . , d.

The commutant we are about to describe consists precisely of the unitaries
which commute with all projections P ′1, . . . , P

′
d. Regarding the symmetry in
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question which belongs to that commutant it follows that the projections
P ′l all split into two mutually orthogonal projections P ′l = P ′l1 + P ′l2 and we
have scalars cl1 , cl2 ∈ {−1, 1} such that the symmetry equals

d∑
l=1

(cl1P
′
l1 + cl2P

′
l2).

We easily conclude that the original transformation is of the form (j5) in
Theorem 1. This completes the proof if n ≥ 3.

In the remaining part we treat the case where n = 2. Applying the
reduction to get a unital Jordan triple endomorphism again, according to
(2) we have a linear transformation f : H2 → H2 such that

φ(eitA) = eitf(A)

holds for all t ∈ R and A ∈ H2. We also know that f preserves commuta-
tivity.

Now, we have the following possibilities concerning the range of f : It
is either commutative or not commutative. In the former case the proof
can be completed as in the corresponding higher dimensional case above
(we obtain the possibility (j5)). So we need to consider the case where the
range of f is not commutative. The commutativity preserving property of
f implies that the range of f commutes with f(I). If f(I) is not a scalar
multiple of the identity, then, considering matrices as linear operators, its
spectral distribution consists of two mutually orthogonal rank-one projec-
tions. Since all elements of the range of f commute with f(I), their spectral
distributions must commute with the previously mentioned two rank-one
projections. This easily implies that every element of the range of f is a
linear combination of those spectral projections and hence this range is nec-
essarily commutative, a contradiction. Therefore, we obtain that f(I) is
a scalar multiple of the identity, f(I) = sI holds for some real number s.
This yields φ(eitI) = eitsI for every t ∈ R. Inserting t = π, we have that
φ(−I) = φ(eiπI) = eiπsI is a symmetry which implies that s is an integer.
It follows that f(I) = mI holds with some integer m.

Pick a rank-one projection P ∈ H2. Since exp (iπP ) is a symmetry, so is
φ(exp (iπP )) = exp (iπf(P )). It follows that the elements of the spectrum
of f(P ) are integers. By the continuity of the spectrum on H2 and using the
connectedness of the set of rank-one projections in H2, it follows that the
spectrum of f(P ) does not depend on the choice of the rank-one projection
P , instead, it is independent of P . Let j, k be the elements of that uniquely
determined spectrum. If j = k, then it follows that the image of any rank-
one projection under f is a scalar multiple of the identity. This implies that
every element of the range of f is also a scalar multiple of the identity which
contradicts the assumption that this range is not commutative. Therefore,
we have j 6= k. Now set Q = I − P . Then Q is a rank-one projection and
hence the spectra of f(P ) and f(Q) are equal. Simultaneously diagonalizing
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the commuting matrices f(P ), f(Q), we can conclude that f(I) = f(P ) +
f(Q) = (j + k)I. Since f(I) = mI, we obtain j + k = m.

Now, consider the linear transformation g : H2 → H2 defined by

g(A) =
f(A)− (kTr(A))I

j − k
, A ∈ H2.

It is easy to see that for any rank-one projection R, the spectrum of g(R)
equals {0, 1} and hence g(R) is a projection. Moreover, we have g(I) = I
and, trivially, g(0) = 0. Therefore, g : H2 → H2 sends projections to projec-
tions. It is well known (cf., [14], Appendix) that any linear transformation
of Hn (for any integer n ≥ 2) which sends each projection to a projection is
necessarily either zero, or a Jordan *-automorphism of Hn. It follows that
there exists a unitary matrix U such that either we have

g(A) = UAU∗, A ∈ H2

or we have

g(A) = UAtrU∗, A ∈ H2.

As for f , this means that either

f(A) = (j − k)UAU∗ + kTr(A)I, A ∈ H2

or

f(A) = (j − k)UAtrU∗ + kTr(A)I, A ∈ H2

holds true. The same analysis as the one presented above after the formulas
(4), (5) in the case where n ≥ 3 shows that j − k is ±1 and we can con-
clude the proof obtaining one of the possible forms (j1)-(j4) for the original
transformation φ.

The proof of the theorem is complete. �

Having the above result, the proof of Corollary 2 is just trivial, therefore
we omit it.

For the proof of Theorems 3 and 4 we need to recall the following as-
sertion from the paper [9] (see Corollary 3.9 there) which states that un-
der certain conditions the surjective isometries between metric groups with
translation and inverse invariant metrics locally preserve the inverted Jordan
triple product.

Proposition 9. Suppose that G1, G2 are metric groups with translation and
inverse invariant metrics (i.e., we assume that the two-sided multiplication
operators and the inverse operation are all isometries). Let φ : G1 → G2 be
a surjective isometry. Suppose that for a given pair a, b ∈ G1 there exists a
constant K > 1 such that

d(bx−1b, x) ≥ Kd(b, x)

holds for all x ∈ La,b = {x ∈ X : d(x, a) = d(ba−1b, x) = d(a, b)}. Then we
have

φ(ba−1b) = φ(b)φ(a)−1φ(b).
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We mention that in [9] (and also in [10]) some even more general results
have been presented leading to the same conclusion.

In the light of the above statement it is no wonder that we also need
the following proposition which describes the structure of all continuous
bijections of Un that preserve the inverted Jordan triple product. Observe
that the trivial idea of the proof together with the use of Theorem 1 could
result in the description of all continuous self-maps (not necessarily bijective)
of Un that preserve the inverted Jordan triple product.

Proposition 10. Assume φ : Un → Un is a continuous bijective map which
preserves the inverted Jordan triple product, i.e., φ satisfies

φ(VW−1V ) = φ(V )φ(W )−1φ(V ), V,W ∈ Un.

Then there exists a pair U,U ′ ∈ Un of unitary matrices such that φ is of one
of the following forms:

(t1) φ(V ) = UV U ′, V ∈ Un;
(t2) φ(V ) = UV −1U ′, V ∈ Un;
(t3) φ(V ) = UV trU ′, V ∈ Un;
(t4) φ(V ) = UV U ′, V ∈ Un.

Proof. Just as in the proof of Theorem 2.1 in [15] observe that φ(I)−1φ(.)
is a continuous Jordan triple automorphism of Un. The result follows from
Corollary 2. �

We can now present the proof of Theorem 3.

Proof of Theorem 3. First we recall that every unitarily invariant norm on
Mn is symmetric (e.g., see Proposition IV.2.4. in [3]) and hence N(.) sat-
isfies N(ABC) ≤ ‖A‖N(B)‖C‖ for all A,B,C ∈ Mn. Since Mn is finite
dimensional, the norms N(.) and ‖.‖ are equivalent. Therefore, Un is com-
pact also in the metric induced by N(.). Next we refer to the fact that any
isometry of a compact metric space is automatically surjective, see Exercise
2.4.1. in [4]. Therefore, the given isometry φ of Un relative to the metric
induced by N(.) is also surjective. One can easily check step by step that
the argument employed in the proof of Theorem 2.3 in [15] (that heavily
rests on the application of Proposition 9 above) can be followed literally to
verify that φ is a continuous bijective map on Un which satisfies

φ(VW−1V ) = φ(V )φ(W )−1φ(V ), V,W ∈ Un.

An apparent application of Proposition 10 completes the proof. �

The proof of our last theorem is as follows.

Proof of Theorem 4. First observe that dN and the metric induced by the
usual operator norm generate the same topology on Un. Indeed, since the
norm N(.) is equivalent to ‖.‖, we see that U, V are close enough relative
to dN if and only if the norm ‖H‖ of the angular matrix H of UV −1 is
small enough which is the case if and only if ‖UV −1 − I‖ = ‖U − V ‖ is
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small. Therefore, Un is compact also relative to the metric dN and hence
any isometry φ : Un → Un with respect to the metric dN is necessarily
surjective.

Let us check that the conditions in Proposition 9 are satisfied. We first
show that dN is translation and inverse invariant. Indeed,

dN (UW,VW ) = dN (U, V ), U, V,W ∈ Un
holds trivially and from the equality

V −1U = V −1(UV −1)V

we deduce that dN (V −1, U−1) = dN (U, V ). Therefore, dN is inverse in-
variant and, since it is right translation invariant, we obtain that it is left
translation invariant, too.

We have noted in the proof of the previous theorem that N(.) is a sym-
metric norm equivalent to ‖.‖. Hence we have a positive scalar c such that
c‖.‖ ≤ N(.) ≤ N(I)‖.‖.

Set α = πc/4. Pick V,W ∈ Un with dN (V,W ) < α. Let X ∈ Un be such
that dN (X,V ) = dN (X,WV −1W ) = dN (V,W ). Then we have

dN (X,W ) ≤ dN (X,V ) + dN (V,W ) = 2dN (V,W ) < 2α = πc/2.

It follows that the angular matrix H of WX−1 = eiH satisfies N(H) < πc/2,
which implies that ‖H‖ < π/2. From this we infer that the angular matrix
of (WX−1W )X−1 = (WX−1)2 is just 2H. This yields

dN (WX−1W,X) = 2dN (W,X).

These show that the conditions in Proposition 9 are fulfilled (with constant
K = 2) and we conclude that

φ(VW−1V ) = φ(V )φ(W )−1φ(V )

holds for any V,W ∈ Un with dN (V,W ) < α. Next, choose a positive
number β such that β < α/(2N(I)). Assume ‖V −W‖ < β. Then ‖VW−1−
I‖ < β and it easily follows that the angular matrix H of VW−1 satisfies
‖H‖ < 2β. Hence dN (V,W ) = N(H) ≤ N(I)‖H‖ < N(I)2β < α holds
which further implies the equality

(7) φ(VW−1V ) = φ(V )φ(W )−1φ(V ).

Consequently, for any pair V,W ∈ Un with ‖V −W‖ < β (i.e., for elements
close enough relative to the usual metric) we have the above equality.

The argument given in the first part of the proof of Theorem 8 in [10]
is about showing that the above property which tells us that (7) holds lo-
cally in Un in fact implies that it holds also globally. We can employ that
argument here too and obtain that φ satisfies (7) for all pairs V,W ∈ Un.
Since φ is an isometry with respect to the metric dN which induces the
same topology as ‖.‖, it follows that φ is continuous in the operator norm.
Applying Proposition 10 we obtain the desired conclusion. �
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Remark 11. We finish with the following open problem and remarks.
In Theorem 1 we have described the Jordan triple endomorphisms of

Un. A natural problem arises which asks for the structure of all continuous
Jordan triple endomorphisms from Un into another unitary group Um. Of
course, if m ≤ n, our result can be applied (Um embeds into Un), but what
happens if m > n? Recall that in our proof above we have heavily used the
structure of commutativity preserving linear maps of Hn which statement is
no longer valid between different spaces.

We remark that the methods what we applied in [15] to determine the
Jordan triple automorphisms of the unitary group of a complex separable
infinite dimensional Hilbert space can most probably be modified to the
finite dimensional setting where n ≥ 3. However, because of the essential
use of the structure of commutativity preserving non-linear maps in [15],
the two-dimensional case would certainly remain uncovered. Observe that
the approach we have followed in the present paper has provided result also
in that low-dimensional case.

References

[1] T. Abe, S. Akiyama, and O. Hatori, Isometries of the special orthogonal group,
preprint.

[2] J. Antezana, G. Larotonda and A. Varela, Optimal paths for symmetric actions in
the unitary group, preprint, arXiv:1107.2439.

[3] R. Bhatia, Matrix Analysis, Springer-Verlag, New York Berlin Heidelberg, 1997.
[4] M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge Univ. Press,

2002.
[5] H.F. Chau, Metrics on unitary matrices and their application to quantifying the degree

of non-commutativity between unitary matrices, Quant. Inform. Comp. 11 (2011),
721-740.

[6] H.F. Chau, C.K. Li, Y.T Poon and N.S. Sze, Induced metric and matrix inequalities
on unitary matrices, J. Phys. A: Math. Theor. 45 (2012), 095201, 8 pp.

[7] M.D. Choi, A.A. Jafarian and H. Radjavi, Linear maps preserving commutativity,
Linear Algebra Appl. 87 (1987), 227–241.

[8] S. Gudder and G. Nagy, Sequentially independent effects, Proc. Amer. Math. Soc.
130 (2002), 1125–1130.

[9] O. Hatori, G. Hirasawa, T. Miura and L. Molnár, Isometries and maps compatible
with inverted Jordan triple products on groups, Tokyo J. Math. 35 (2012), 385–410.

[10] O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc.
140 (2012), 2141–2154.

[11] O. Hatori and L. Molnár, Isometries of the unitary groups and Thompson isometries
of the spaces of invertible positive elements in C∗-algebras, preprint

[12] S. Sakai, A characterization of W ∗-algebras, Pacific J. Math. 6 (1956), 763–773.
[13] W. Maak, Fastperiodische Funktionen, Die Grundlehren der Mathematischen Wis-

senschaften in Einzeldarstellungen, Berlin, 1950.
[14] L. Molnár, Selected Preserver Problems on Algebraic Structures of Linear Operators

and on Function Spaces, Lecture Notes in Mathematics, Vol. 1895, Springer, 2007.
[15] L. Molnár and P. Šemrl, Transformations of the unitary group on a Hilbert space, J.

Math. Anal. Appl. 388 (2012), 1205–1217.



18 LAJOS MOLNÁR

MTA-DE ”Lendület” Functional Analysis Research Group, Institute of
Mathematics, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hun-
gary

E-mail address: molnarl@science.unideb.hu

URL: http://www.math.unideb.hu/~molnarl/


