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Abstract. In this paper we determine the structure of certain algebraic mor-

phisms and isometries of the space Pn of all n × n complex positive definite
matrices. In the case n ≥ 3 we describe all continuous Jordan triple endomor-

phisms of Pn which are continuous maps φ : Pn → Pn satisfying

φ(ABA) = φ(A)φ(B)φ(A), A,B ∈ Pn.

It has recently been discovered that surjective isometries of certain substruc-

tures of groups equipped with metrics which are in a way compatible with the
group operations have algebraic properties that relate them rather closely to

Jordan triple morphisms. This makes us possible to use our structural results

to describe all surjective isometries of Pn that correspond to any member of
a large class of metrics generalizing the geodesic distance in the natural Rie-

mannian structure on Pn. Finally, we determine the isometry group of Pn

relative to a very recently introduced metric that originates from the diver-
gence called Stein’s loss.

1. Introduction and statement of the main results

The study of analytical and geometrical properties of spaces of positive definite
matrices plays an important role in several areas of pure and applied mathematics
due to the wide spreading applications. One can get an adequate picture of inves-
tigations in that direction and find a lot of information relating to applications in
the monograph [1] by R. Bhatia.

In the present paper we consider the set Pn of all n×n complex positive definite
matrices from certain algebraic and metrical points of view. As for the former one,
Pn becomes an algebraic structure under the Jordan triple product (A,B) 7→ ABA.
We recall that this product is rather extensively investigated in pure ring theory
and also in the theory of operator algebras and its applications. In the case n ≥ 3,
the structure of all continuous Jordan triple automorphisms of Pn has been deter-
mined in our paper [20] (see Theorem 1 there). Here we substantially strengthen
that former result and describe all continuous Jordan triple endomorphisms of Pn

(which are continuous maps that simply respect the Jordan triple product but not
necessarily bijective).

There is another algebraic operation on Pn which is closely related to the Jordan
triple product. This is what we have called in our recent paper [13] inverted Jordan
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triple product and defined as (A,B) 7→ AB−1A. The reason to introduce that op-
eration is the following. In [13] we have made attempts to generalize Mazur-Ulam
theorem in a non-commutative context. That famous result states that the sur-
jective isometries (i.e., surjective distance preserving maps) between normed real
linear spaces are automatically affine. Our aim has been to find extensions of this
theorem concerning normed spaces to the setting of fairly general non-commutative
metric groups. In the paper [13] we have presented some results that show that
under certain conditions surjective isometries between metric groups or between
certain substructures of groups equipped with metrics that are in some sense com-
patible with the algebraic structure necessarily posses an algebraic property: they
locally preserve the inverted Jordan triple product. We have then utilized this fact
and determined the isometries of different non-linear structures. For example, in
[14] we have described the surjective isometries of the unitary group over a complex
Hilbert space equipped with the operator norm. This result has been generalized
for the context of C∗-algebras in [15]. In [23] we have considered the group of
unitary matrices and determined their surjective isometries under general unitarily
invariant norms and also under a class of recently defined metrics that originate
from certain considerations in quantum information processing.

In the present paper we continue that line of investigations. Namely, making
use of our results on Jordan triple endomorphisms of Pn we determine the isometry
groups of Pn relative to a large class of metrics. A particular member of that class
is the geodesic distance corresponding to the most natural Riemannian structure
on Pn. That metric is studied and applied extensively, see, for example, Chapter 6
in [1]. Another particular metric that we are considering is a brand new distance
measure that comes from the symmetric Stein divergence. In fact, in the recent
paper [26] Sra has proved that the square root of that sort of divergence is a true
metric and presented a number of its nice and interesting properties. Below we
determine all surjective isometries of Pn relative to that metric.

Before presenting our results, we fix the notation. In what follows we denote
by Mn the space of all n× n complex matrices. Whenever we mention metrical or
topological properties or notions concerning matrices without specifying the metric,
we always have in mind the usual operator norm (or, in another word, spectral
norm) ‖.‖ on Mn (‖A‖ equals the largest singular value of A). The real linear space
of all self-adjoint (or, in another word, Hermitian) elements of Mn is denoted by
Hn and Un stands for the group of all unitaries in Mn.

In the first main result of the paper that follows we give the complete description
of the structure of all continuous Jordan triple endomorphisms of Pn (n ≥ 3) and
hence we generalize the finite dimensional part of Theorem 1 in [20] significantly.

Theorem 1. Assume n ≥ 3. Let φ : Pn → Pn be a continuous map which is a
Jordan triple endomorphism, i.e., φ is a continuous map which satisfies

φ(ABA) = φ(A)φ(B)φ(A), A,B ∈ Pn.

Then there exist a unitary matrix U ∈ Un, a real number c, a set {P1, . . . , Pn}
of mutually orthogonal rank-one projections in Mn, and a set {c1, . . . , cn} of real
numbers such that φ is of one of the following forms:

(e1) φ(A) = (detA)cUAU∗, A ∈ Pn;
(e2) φ(A) = (detA)cUA−1U∗, A ∈ Pn;
(e3) φ(A) = (detA)cUAtrU∗, A ∈ Pn;
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(e4) φ(A) = (detA)cUAtr−1
U∗, A ∈ Pn;

(e5) φ(A) =
∑n

j=1(detA)cjPj, A ∈ Pn.

Above and throughout the paper projection means self-adjoint idempotent. As
an immediate corollary of our first theorem we have the following result which was
originally obtained in [20, Theorem 1].

Corollary 2. Assume n ≥ 3. Let φ : Pn → Pn be a continuous Jordan triple
automorphism, i.e., a continuous bijective map which satisfies

φ(ABA) = φ(A)φ(B)φ(A), A,B ∈ Pn.

Then there exist a unitary U ∈ Un and a number c 6= −1/n such that φ is of one
of the following forms:

(a1) φ(A) = (detA)cUAU∗, A ∈ Pn;
(a2) φ(A) = (detA)cUA−1U∗, A ∈ Pn;
(a3) φ(A) = (detA)cUAtrU∗, A ∈ Pn;

(a4) φ(A) = (detA)cUAtr−1
U∗, A ∈ Pn.

The structure of the morphisms above and results what we are about to obtain
on the way leading to that will be utilized to describe the surjective isometries of
Pn with respect to members of a large class of metrics.

Particular elements of that class have strong differential geometrical origins and
connections. The set Pn of positive definite matrices is an open subset of the space
Hn, hence it is a differentiable manifold which can naturally be equipped with a
Riemannian structure in the following way. For any A ∈ Pn the tangent space of
Pn at A can be identified with Hn on which we define an inner product by

〈X,Y 〉A = Tr(A−1/2XA−1Y A−1/2), X, Y ∈ Hn.

The corresponding norm is given by

‖X‖A = ‖A−1/2XA−1/2‖HS , X ∈ Hn.

Here ‖.‖HS stands for the Hilbert-Schmidt norm (or, in another word, Frobenius
norm) which is defined by ‖T‖2HS = Tr(T ∗T ), T ∈ Mn. In that way we obtain a
Riemannian space which has long been studied in the literature for many reasons.
For example, it provides probably the most important example of a manifold of
non-positive curvature. The geometry of this manifold is intimately connected with
some matrix inequalities and hence it has a wide range of applications in matrix
analysis. We also point out its connections to problems relating to matrix means,
a really vivid topic in recent days. As to our present results, it is important to
recall that the geodesic distance δR(A,B) between the points A,B ∈ Pn in this
Riemannian space is given by

δR(A,B) = ‖ logA−1/2BA−1/2‖HS .

For details we refer to, e.g., [2] or Chapter 6 in [1].
Connections between means, geodesics, and inequalities were explored in several

interesting papers by G. Corach and his coauthors. In fact, in the 1990’s they
defined and studied a Finsler structure on the manifold of all invertible positive
elements of a general C∗-algebra (see, among others, [6], [7], [8]). In the present
setting of matrices this means the following. At any point A in Pn, on the tangent
space Hn they defined the Finsler metric (norm) by

‖X‖A = ‖A−1/2XA−1/2‖, X ∈ Hn,
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where ‖.‖ is again the usual operator norm (spectral norm). Among revealing many
interesting and important properties of the so-obtained Finsler space they obtained
that the geodesic distance between A and B is given by ‖ logA−1/2BA−1/2‖. Let us
make a short remark here. It is rather surprising that this last quantity appears in
a different context, too. Namely, ‖ logA−1/2BA−1/2‖ equals the distance between
A and B relative to the so-called Thompson metric that was defined as a useful
modification of the Hilbert projective metric in a setting much more general than
that of C∗-algebras. We refer to our paper [22] where we have determined the
surjective Thompson isometries of the space of all invertible positive operators on
a complex Hilbert space which result has recently been generalized for the setting
of general C∗-algebras in [15].

Above we have mentioned norms on Hn as a tangent space that correspond either
to the Hilbert-Schmidt norm or to the operator norm. In the paper [10] Fujii has
presented a common generalization of the above two approaches for the setting
of finite dimensional C∗-algebras. In the case of the algebra Mn this means the
following (cf. Section 6.4 in [1]). Consider an arbitrary unitarily invariant norm N
on Mn and define

N(X)A = N(A−1/2XA−1/2)

for each point A ∈ Pn and every vector X from Hn. By Theorem 1 in [10], this
formula determines a Finsler metric on Pn and Theorem 5 in the same paper tells
that the shortest path length dN (A,B) between A,B ∈ Pn is given by

dN (A,B) = N(logA−1/2BA−1/2).

In our next theorem we determine the surjective isometries of Pn relative to any
of the metrics dN .

Theorem 3. Suppose n ≥ 2. Let N be a unitarily invariant norm on Mn and
φ : Pn → Pn a surjective isometry relative to the metric dN . Assume n ≥ 3 and N
is not a scalar multiple of the Hilbert-Schmidt norm. If n 6= 4, then there exists an
invertible matrix T ∈Mn such that φ is of one of the following forms:

(t1) φ(A) = TAT ∗, A ∈ Pn;
(t2) φ(A) = TA−1T ∗, A ∈ Pn;
(t3) φ(A) = TAtrT ∗, A ∈ Pn;

(t4) φ(A) = TAtr−1
T ∗, A ∈ Pn.

If n = 4, then beside (t1)-(t4) the following additional possibilities can occur:

(d1) φ(A) = (detA)−2/nTAT ∗, A ∈ Pn;
(d2) φ(A) = (detA)2/nTA−1T ∗, A ∈ Pn;
(d3) φ(A) = (detA)−2/nTAtrT ∗, A ∈ Pn;

(d4) φ(A) = (detA)2/nTAtr−1
T ∗, A ∈ Pn.

In the case where n ≥ 3 and N is a scalar multiple of the Hilbert-Schmidt norm, φ
is of one of the forms (t1)-(t4), (d1)-(d4). Finally, if n = 2, then φ can necessarily
be written in one of the forms (t1)-(t4).

We note that the remarkable fact that in the case n = 4 we have some special
additional possibilities follows from a beautiful general result describing the linear
isometries of symmetric gauge functions which was obtained by D̄oković, Li and
Rodman in [9].
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We have already mentioned that positive definite matrices play an important
role in several areas of pure and applied mathematics. In many of the ap-
plications the metrical structure of Pn is of particular interest. For example,
in optimization problems relating to Pn measuring distances between elements
is a key task and a very nontrivial one when the distance function must re-
spect a non-Euclidean geometry on Pn. The already mentioned distance measure
δR(A,B) = ‖ logA−1/2BA−1/2‖HS is a particularly important example which is
computationally very demanding and also complicated to use. In order to allay
those difficulties, in the paper [26] (also see [25]), Sra has introduced a new metric
on Pn which not only respects non-Euclidean geometry but offers faster compu-
tation than the previous one and it is also much less complicated to use. In the
mentioned papers several results have been presented that shed light on the advan-
tages of the new metric and relate it to δR in order to justify it is a good proxy for
δR. Moreover, some experimental results have also been given to demonstrate the
usefulness of the new metric which is defined in the following way.

For any pair A,B ∈ Pn of positive definite matrices their symmetric Stein diver-
gence is defined by

S(A,B) = log det

(
A+B

2

)
− 1

2
log det(AB).

Actually, it is just the Jensen-Shannon symmetrization of the divergence called
Stein’s loss (see the first two sections in [26]). In fact, driven by the computational
concerns related to the use of δR, the measure S has originally been introduced in
[4]. The authors of that work claimed that

δS(A,B) =
√
S(A,B), A,B ∈ Pn

is not a metric while the authors in [3] conjectured that it is. The problem has got
a solution in [26, Theorem 5], where it has been proved that δS is a true metric
on Pn (also see [25]). Beside presenting several interesting results concerning the
properties of the new metric, in the same paper [26] Sra has initiated the study
of the metric space (Pn, δS) from further aspects. We aim to contribute to his
program by the following theorem in which we determine the precise structure of
the isometry group of (Pn, δS). This is the last main result of the present paper.

Theorem 4. Assume n ≥ 2. Let φ : Pn → Pn be a surjective isometry relative to
the metric δS. Then there is an invertible matrix T ∈ Mn such that φ is of one of
the following forms:

(s1) φ(A) = TAT ∗, A ∈ Pn;
(s2) φ(A) = TA−1T ∗, A ∈ Pn;
(s3) φ(A) = TAtrT ∗, A ∈ Pn;

(s4) φ(A) = TAtr−1
T ∗, A ∈ Pn.

2. Proofs

In this section we present the proofs of our main results.
We begin with collecting some elementary algebraic properties of Jordan triple

endomorphisms of Pn. So let φ : Pn → Pn be such a transformation (a Jordan
triple map in short), i.e., assume that

φ(ABA) = φ(A)φ(B)φ(A), A,B ∈ Pn.
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We have φ(I) = φ(I)3 which implies φ(I)2 = I and we then obtain φ(I) = I. It is
now easy to see that φ(Ak) = φ(A)k holds for all A ∈ Pn and positive integer k.
We show that φ respects the inverse operation, too. For an A ∈ Pn, let B ∈ Pn be
such that B2 = A. We compute

φ(B)φ(A−1)φ(B) = φ(BA−1B) = φ(I) = I

which implies that

φ(A−1) = φ(B)−2 = φ(B2)−1 = φ(A)−1.

Therefore, it follows that φ(Ak) = φ(A)k holds for every integer k and A ∈ Pn.
If k is a positive integer and A ∈ Pn, then we have φ(A1/k)k = φ(A) implying
that φ(A1/k) = φ(A)1/k. Consequently, we obtain that φ(Ar) = φ(A)r holds for all
A ∈ Pn and rational number r.

In what follows we first prove Theorem 1 concerning the structure of continuous
Jordan triple endomorphisms of Pn. Our strategy is similar in spirit to the proof
of Theorem 1 in [23] that describes the continuous Jordan triple endomorphisms
of the unitary group Un. Namely, we first prove that the continuity of a Jordan
triple map φ : Pn → Pn implies the (local) Lipschitz property and using that we
can show that φ gives rise to a linear transformation f : Hn → Hn that preserves
commutativity. We can then employ a structural result concerning that kind of
transformations and deduce that φ is necessarily of one of the forms that appear
in Theorem 1. However, although the strategy is similar, the work-out differs at a
number of points as one can see below.

We begin with the following lemma.

Lemma 5. Assume n ≥ 2. Let φ : Pn → Pn be a continuous Jordan triple
endomorphism. Then φ is a Lipschitz function in a neighborhood of the identity
(e.g., in the closed ball with center I and radius 1/5).

Proof. We mention that a result on the Lipschitz property of group endomorphisms
of linear groups was proved in [18] (p. 177, Satz 1). That argument could closely
be followed in the present situation too but here we present a shorter and hopefully
somewhat more transparent argument to verify our lemma.

We begin with the following important observation. For any A ∈ Pn which is
close enough to I we have

(1)
1

2
‖A− I‖ ≤ ‖ logA‖ ≤ 2‖A− I‖.

Indeed, this follows easily from the inequalities

‖eH − I‖ ≤ e‖H‖ − 1, H ∈ Hn,

and
‖ logA‖ ≤ − log(1− ‖A− I‖), A ∈ Pn, ‖A− I‖ < 1,

and from elementary properties of the exponential and logarithm functions of a real
variable.

For temporary use, let Gr denote the closed ball in Pn with center I and radius
0 < r < 1. We assert that there exists a positive real number L such that ‖φ(A)−
I‖ ≤ L‖A − I‖ holds for all A ∈ G1/2. Assume on the contrary that we have a
sequence (Ak) of elements of G1/2 and a strictly increasing sequence (ck) of positive
integers such that

(2) ‖φ(Ak)− I‖ > ck‖Ak − I‖
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holds for every k ∈ N. By the compactness of G1/2 it follows that (Ak) has a
convergent subsequence. Without serious loss of generality we may and do assume
that already the original sequence is convergent. If its limit were different from I,
by (2) we would obtain that the numerical sequence ‖φ(Ak)− I‖ tends to infinity
which contradicts to the boundedness of φ on the compact set G1/2. Therefore,
Ak → I and hence φ(Ak)→ I as k →∞. Observe that we can also assume that

‖φ(Ak)− I‖ = εk, εk < 1

holds for all k ∈ N. Choose positive integers lk such that

1/(lk + 1) ≤ εk < 1/lk.

By (1), for large enough k we have ‖ logAk‖ ≤ 2‖Ak − I‖ and hence obtain

‖ logAlk
k ‖ = lk‖ logAk‖ ≤ 2lk‖Ak − I‖ < 2lk(εk/ck) < 2/ck → 0

as k → ∞. It follows that Alk
k → I and hence Alk+1

k → I. Therefore, we infer

φ(Alk+1
k )→ φ(I) = I. However, using (1) again, for large enough k we also have

1

2
≤ εk(lk + 1)

2
=
lk + 1

2
‖φ(Ak)− I‖ ≤

(lk + 1)‖ log φ(Ak)‖ = ‖ log φ(Alk+1
k )‖ → 0

which is a contradiction. Consequently, there does exist a positive real number L
such that ‖φ(A)− I‖ ≤ L‖A− I‖ holds for all A ∈ G1/2.

To complete the proof pick arbitrary C,D ∈ Pn which belong to the closed ball
G1/5. Choose B ∈ Pn with B2 = C and let A = B−1DB−1. It is easy to check that
A ∈ Pn has distance at most 1/2 from I. Indeed, this follows from the following
inequalities

2

3
I =

4

5

5

6
I ≤ 4

5
B−2 ≤ B−1DB−1 ≤ 6

5
B−2 ≤ 6

5

5

4
I =

3

2
I.

Assuming C 6= D we compute

‖φ(D)− φ(C)‖
‖D − C‖

=
‖φ(B)φ(A)φ(B)− φ(B)2‖

‖BAB −B2‖
≤

‖B−1‖2‖φ(B)‖2‖φ(A)− I‖
‖A− I‖

= ‖C−1‖‖φ(C)‖‖φ(A)− I‖
‖A− I‖

≤ L‖C−1‖‖φ(C)‖.

Clearly, the function C 7→ ‖C−1‖‖φ(C)‖ is bounded on the closed ball G1/5 and
thus we obtain the desired Lipschitz property of φ in a neighborhood of I. �

The following lemma which shows that every continuous Jordan triple endo-
morphism of Pn is the exponential of a commutativity preserving linear map on Hn

composed by the logarithmic function plays an essential role in the proof of our first
main result. Recall that we say a linear transformation f on Hn preserves commu-
tativity if for any pair T, S ∈ Hn of commuting matrices we have that f(T ), f(S)
commute, too.

Lemma 6. Assume n ≥ 2. Let φ : Pn → Pn be a continuous Jordan triple
endomorphism. Then there exists a commutativity preserving linear transformation
f : Hn → Hn such that

(3) φ(A) = ef(log A), A ∈ Pn.
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Proof. We define f : Hn → Hn by

f(T ) = log φ(eT ), T ∈ Hn.

We clearly have (3) and need to show that f is linear and preserves commutativity.
We recall that in the beginning of the section we have shown that φ(Ar) = φ(A)r

holds for all A ∈ Pn and rational number r. By the continuity of φ we obtain that
φ(At) = φ(A)t is true for every real number t, too. This easily implies that f is
homogeneous.

We next prove that f : Hn → Hn is additive. Pick T, S,H ∈ Hn. We compute

e(t/2)T etSe(t/2)T − etH

t
=

(e(t/2)T − I)etSe(t/2)T + (etS − I)e(t/2)T + (e(t/2)T − I)− (etH − I)

t
→

T/2 + S + T/2−H = T + S −H
as t→ 0. It follows that

lim
t→0

e(t/2)T etSe(t/2)T − etH

t
= 0⇐⇒ H = T + S.

If H = T + S, then using (3) and the Lipschitz property of φ in a neighborhood of
I that has been proved in Lemma 5 we have

e(t/2)f(T )etf(S)e(t/2)f(T ) − etf(H)

t
=

φ(e(t/2)T )φ(etS)φ(e(t/2)T )− φ(etH)

t
=

φ(e(t/2)T etSe(t/2)T )− φ(etH)

t
→ 0

as t→ 0. On the other hand, just as above we deduce

e(t/2)f(T )etf(S)e(t/2)f(T ) − etf(H)

t
→ f(T ) + f(S)− f(H).

This gives us that f(T ) + f(S)− f(T + S) = 0, i.e., f is additive.
To verify the commutativity preserving property of f first observe that we have

φ(
√
AB
√
A) = φ(

√
A)φ(B)φ(

√
A) =

√
φ(A)φ(B)

√
φ(A)

for every A,B ∈ Pn. We now recall the following notion and fact. Given positive
semidefinite matrices or positive Hilbert space operators D,F , the operation defined
by
√
DF
√
D is called the sequential product of D and F , see [12]. This operation

has the interesting property [12, Corollary 3] that commutativity with respect to the
sequential product is equivalent to the commutativity relative to the usual product.
If we pick commuting matrices T, S ∈ Hn, then it follows that

(4)

√
ef(T )ef(S)

√
ef(T ) = φ(

√
eT eS

√
eT ) =

φ(
√
eSeT

√
eS) =

√
ef(S)ef(T )

√
ef(S).

Therefore, we infer from (4) that

ef(T )ef(S) = ef(S)ef(T ).

Since the logarithms of commuting matrices also commute, we obtain f(T )f(S) =
f(S)f(T ) verifying that f indeed preserves commutativity. �
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The following lemma describes the structure of scalar valued continuous Jordan
triple endomorphisms of Pn and hence it provides a particular case of Theorem 1.
The statement immediately follows from [19, Theorem 2], therefore we omit the
proof.

Lemma 7. Assume n ≥ 3. Let ϕ : Pn →]0,∞[ be a continuous Jordan triple
functional, i.e., assume that ϕ is continuous and satisfies

ϕ(ABA) = ϕ(A)ϕ(B)ϕ(A), A,B ∈ Pn.

Then there is a real number c such that

ϕ(A) = (detA)c, A ∈ Pn.

After these preparations we are now in a position to prove our first main theorem.

Proof of Theorem 1. By Lemma 6, there exists a commutativity preserving linear
transformation f : Hn → Hn such that

(5) φ(eT ) = ef(T ), T ∈ Hn.

It is assumed that n ≥ 3. In that case the structure of commutativity preserving
linear maps on Hn is known and was described in [5]. The result [5, Theorem 2]
tells us that we have the following possibilities for f :

(a) either the range of f is commutative;
(b) or there exist a unitary matrix U ∈ Un, a linear functional l : Hn → R and

a nonzero scalar d ∈ R such that f is of the form

(6) f(T ) = dUTU∗ + l(T )I, T ∈ Hn

or of the form

(7) f(T ) = dUT trU∗ + l(T )I, T ∈ Hn.

First consider the case (b) where f is of the form (6). We have

φ(eT ) = edUTU∗+l(T )I , T ∈ Hn.

Apparently, it follows that

U∗φ(eT )U = edT+l(T )I , T ∈ Hn.

Clearly, U∗φ(.)U is a continuous Jordan triple endomorphism of Pn. Hence, in
the remaining steps of the proof we may and do assume without serious loss of
generality that

(8) φ(eT ) = edT+l(T )I = el(T )edT

holds for all T ∈ Hn. If f is of the form (7), then considering the map (U∗φ(.)U)tr

we can again assume that (8) holds. Moreover, composing the transformation by
the inverse operation if necessary, it can further be supposed that the number d is
positive.

We observe that φ(A) is a scalar multiple of Ad for every A ∈ Pn. By the
Jordan triple multiplicativity of φ we deduce that (ABA)d and AdBdAd are linearly
dependent for every A,B ∈ Pn. Letting B converge to any rank-one projection P ∈
Mn, it follows that (APA)d and AdPAd are linearly dependent. We now consider
matrices as linear operators on the n-dimensional complex Hilbert spaceH. For any
pair of vectors x, y ∈ H we denote by x⊗y the operator defined by (x⊗y)z = 〈z, y〉x,
z ∈ H. Pick an arbitrary unit vector x ∈ H. Then P = x ⊗ x is a rank-one
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projection, (APA)d is a scalar multiple of Ax ⊗ Ax and AdPAd = Adx ⊗ Adx.
Hence Ax ⊗ Ax and Adx ⊗ Adx are linearly dependent. Consequently, we obtain
that for all A ∈ Pn and for all x ∈ H, the vectors Ax and Adx are linearly dependent.
It is easy to verify that for positive d this can happen only if d = 1. (Consider, for
example, the operator A represented by the n× n diagonal matrix diag(1, . . . , 1, 2)
and a vector x ∈ H represented by the column matrix (1, . . . , 1)tr.) Next, we can
write φ as φ(A) = ϕ(A)A, A ∈ Pn. Clearly, ϕ is necessarily a continuous Jordan
triple functional and hence Lemma 7 applies and implies that ϕ is a power of the
determinant function. Remember now the reductions what we may have applied
for φ above. We may have composed it with an inner automorphism U∗(.)U and/or
with the transpose operation and/or with the inverse operation. Having these in
mind we deduce the following. In the case (b) what we are considering, dropping
all reductions concerning the original transformation φ we obtain that it is of one
of the forms (e1)-(e4) that appear in the formulation of Theorem 1.

Let us now examine the case (a), i.e., assume that the range of the linear trans-
formation f : Hn → Hn satisfying

φ(eT ) = ef(T ), T ∈ Hn

(see (5)) is commutative. It follows that the elements of that range can be diagonal-
ized simultaneously. Therefore, we have a commuting set {P1, . . . , Pn} of rank-one
projections in Mn and a collection ϕ1, . . . , ϕn : Pn →]0,∞[ of functions such that

φ(A) =

n∑
j=1

ϕj(A)Pj , A ∈ Pn.

Clearly, every ϕi is a continuous Jordan triple functional, i.e., satisfies

ϕi(ABA) = ϕi(A)ϕi(B)ϕi(A), A,B ∈ Pn.

Applying Lemma 7 we obtain that there are real numbers c1, . . . , cn such that

φ(A) =

n∑
j=1

(detA)cjPj , A ∈ Pn.

The proof of the theorem is complete. �

Proof of Corollary 2. Clearly, from Theorem 1 we have only the first four possibil-
ities (e1)-(e4). One can easily check that the transformations which appear there
are bijective precisely when c 6= −1/n. �

We now turn to the proofs of our results on isometries. For the proofs of The-
orems 3 and 4 we need to recall the following assertion from the paper [13] which
states that under some conditions the surjective isometries between certain sub-
structures of groups equipped with metrics compatible with the group operations
locally preserve the inverted Jordan triple product. The proposition below appears
as Corollary 3.10. in [13] and is recalled as Proposition 5 in [14].

Proposition 8. Let Gi be groups, Xi ⊂ Gi subsets such that yx−1y ∈ Xi holds
for all x, y ∈ Xi, i = 1, 2. Suppose that X2 is 2-torsion free meaning that the unit
element e of G2 belongs to X2 and for any x ∈ X2 the equality x2 = e implies
x = e. We also assume that X2 is 2-divisible, i.e., for every x ∈ X2 there is a
y ∈ X2 such that y2 = x. Let Xi be equipped with metric di, i = 1, 2.
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Assume φ : X1 → X2 is a surjective isometry. Pick a, b ∈ X1 with the following
properties:

(p1) for all x, y ∈ X1 we have

d1(bx−1b, by−1b) = d1(x, y);

(p2) there exists a constant K > 1 such that we have

d1(bx−1b, x) ≥ Kd1(x, b)

for all x ∈ La,b = {x ∈ X1 : d1(a, x) = d1(ba−1b, x) = d1(a, b)};
(p3) there exists an element c ∈ X2 with cφ(a)−1c = φ(ba−1b) such that the

equality d2(cx−1c, cy−1c) = d2(x, y) holds for all x, y ∈ X2.

Then we have
φ(ba−1b) = φ(b)φ(a)−1φ(b).

Beside the above proposition, for the proof of Theorem 3 we need to recall the
correspondence between unitarily invariant norms on Mn and symmetric gauge
functions on Rn. A unitarily invariant norm on Mn is a norm N that satisfies
N(UAV ) = N(A) for any A ∈ Mn and U, V ∈ Un. To define the concept of a
symmetric gauge function we first need the concept of a generalized permutation
matrix. This is a matrix in Mn with the property that in its each row and each
column there appears exactly one nonzero element and it is either 1 or -1. The
collection of all generalized permutation matrices in Mn is denoted by GPn. A
symmetric gauge function on Rn is a function Φ : Rn → [0,∞[ which is a norm that
satisfies Φ(Px) = Φ(x) for any vector x ∈ Rn and generalized permutation matrix
P ∈ GPn. It is well known that there is a one-to-one correspondence between
unitarily invariant norms on Mn and symmetric gauge functions on Rn. For every
unitarily invariant norm N on Mn there is a symmetric gauge function Φ on Rn such
that the following holds: for any matrix A ∈Mn with singular values λ1, . . . , λn we
have N(A) = Φ(λ1, . . . , λn). Conversely, every symmetric gauge function gives rise
to a unitarily invariant norm in that way.

After these preparations we can now present the proof of Theorem 3.

Proof of Theorem 3. Let N be a unitarily invariant norm on Mn and let φ : Pn →
Pn be a surjective isometry relative to the metric dN . We are going to apply
Proposition 8. In order to do that, we need to check if all conditions listed in there
are satisfied.

First, we have X1 = X2 = Pn and hence X2 is obviously 2-torsion free and
2-divisible.

Next, observe that the equalities

(9) dN (A−1, B−1) = dN (A,B), dN (TAT ∗, TBT ∗) = dN (A,B)

hold for all A,B ∈ Pn and invertible matrix T ∈ Mn. In fact, the first equality
is easy to see, while the second one follows from Lemma 3 and Theorem 5 in [10].
Using this second invariance property of the metric dN we see that considering the
transformation φ(I)−1/2φ(.)φ(I)−1/2 we get a unital map which is again a surjective
isometry of Pn. Therefore, without serious loss of generality we may and do assume
that our original isometry φ satisfies φ(I) = I.

Pick A,B ∈ Pn. By the equalities in (9), the condition (p1) is satisfied. As for
the property (p3), we find that for any x, y ∈ X2 there exists c ∈ X2 such that
cx−1c = y. In fact, this follows from the 2-divisibility of X2 (see the discussion after
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Definition 3.4 in [13]). For curiosity we admit that in our particular case X2 = Pn

this c is the geometric mean of x and y, i.e., c = x1/2(x−1/2yx−1/2)1/2x1/2. The
metrical condition in (p3) is a consequence of the already mentioned invariance
properties of the metric dN . It remains to verify (p2). For any X ∈ Pn we have

(10)
dN (BX−1B,X) = dN (X,BX−1B) =

N(log((X−1/2BX−1/2)2)) = 2N(log(X−1/2BX−1/2)) = 2dN (X,B).

Therefore, all assumptions in Proposition 8 are fulfilled for any A,B ∈ Pn. Hence
it follows that φ : Pn → Pn is a bijective unital map which satisfies

φ(AB−1A) = φ(A)φ(B)−1φ(A), A,B ∈ Pn.

Plugging A = I we obtain that φ(B−1) = φ(B)−1, B ∈ Pn and then we can
immediately conclude that φ is a Jordan triple automorphism of Pn.

We assert that φ is continuous. It was mentioned in [22] that the Thompson
metric (i.e., the metric d‖.‖) induces the same topology as the operator norm ‖.‖
(see [22], p. 3854). Since N is equivalent to ‖.‖, we deduce that dN induces the
same topology as the Thompson metric. It now follows that the Jordan triple
automorphism φ of Pn is continuous relative to the topology of the operator norm.

Assume now that n ≥ 3 in which case we can apply Corollary 2. We have a
unitary matrix U ∈ Un and a scalar c 6= −1/n such that φ is of one of the forms
(a1)-(a4) that appear in Corollary 2. We need to determine the possible values of
the scalar c. Observe that the unitary similarity transformation U∗(.)U and the
inverse operation are both isometries of Pn (these follow again from (9)). It is easy
to check that the transpose operation is an isometry, too. Therefore, if φ is one of
the forms (a1), (a3), then we obtain that A 7→ (detA)cA is an isometry of Pn while
if φ is of the form (a2) or (a4), then we deduce that A 7→ (detA)−cA is an isometry
of Pn. We examine only the former case (the latter one then follows readily). In
that case we have

N(log((detA−1/2BA−1/2)c(A−1/2BA−1/2))) = N(log(A−1/2BA−1/2))

for all A,B ∈ Pn. Since A−1/2BA−1/2 runs through the whole set Pn and the
formula log detC = Tr logC holds for all C ∈ Pn, it follows that the above displayed
equality is equivalent to

N(cTr(T )I + T ) = N(T ), T ∈ Hn.

Inserting T = I we have N((cn + 1)I) = N(I) and this yields |cn + 1| = 1. It
follows that either c = 0 or c = −2/n.

Let us examine if the possibility c = −2/n can really occur, i.e., if it can happen
that

N(T − (2/n) Tr(T )I) = N(T ), T ∈ Hn.

Denoting by Φ the symmetric gauge function on Rn corresponding to N , the above
equality can be reformulated by saying that the transformation

(11) (λ1, . . . , λn)tr 7→ (λ1 − (2/n)

n∑
i=1

λi, . . . , λn − (2/n)

n∑
i=1

λi)
tr

on Rn is an isometry relative to Φ.
The complete description of linear isometries of symmetric gauge functions is

given in [9] and surveyed in [16]. Assume Φ is not a scalar multiple of the usual
Euclidean norm. It follows from Theorem 2.5 in [16] (also see Theorem 4.2 in [9])
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that in the case where n 6= 4 the isometry group corresponding to Φ equals the
group GPn of generalized permutation matrices. Therefore, the transformation
(11) is not an isometry and, consequently, the possibility c = −2/n is ruled out.
However, if n = 4, the situation is different, there does exist a symmetric gauge
function on R4 with respect to which the transformation (11) is an isometry. To
present an example, we follow Example 4.4 in [9] and the discussion preceding it.
Pick any bounded set S ⊂ R4. Define

Φ(x) = max{|〈x, Py〉| : y ∈ S, P ∈ GPn}, x ∈ R4.

Then Φ is a symmetric gauge function on R4. As written in [9], the matrix M ∈
M4(R) gives rise to an isometry of R4 relative to Φ if and only if M tr leaves the
set S = {Py : y ∈ S, P ∈ GPn} invariant. We now define

S = {(1, 0, 0, 0)tr, (1/2)(1, 1, 1, 1)tr}.

One can easily verify that the matrix of the transformation (11) is symmetric and
leaves the corresponding set S invariant. This implies that the transformation (11)
is an isometry relative to the above defined particular gauge function. Consequently,
the possibility c = −2/4 can really appear, the transformation A 7→ (detA)−1/2A
is an isometry of P4 under a certain unitarily invariant norm on M4. As for the
case where Φ is a scalar multiple of the Euclidean norm, one can easily check that
the transformation in (11) is an isometry. We are done whenever n ≥ 3.

It remains to treat the case n = 2. We can argue as follows. First of all, observe
that we have even in that case that φ is a continuous Jordan triple automorphism
of Pn (see the first part of the proof before employing the assumption n ≥ 3).
It follows from Lemma 6 that there is a commutativity preserving bijective linear
transformation f : Hn → Hn such that φ(A) = ef(log A), A ∈ Pn.

We have

N(f(T )) = dN (I, ef(T )) = dN (φ(I), φ(eT )) = dN (I, eT ) = N(T ), T ∈ Hn

and this shows that f is an isometry of Hn with respect to the norm N . The
structure of isometries of Hn under any unitary similarity invariant norm was de-
termined in [17]. Here we apply the result for the case n = 2. Assume N is not
induced by any inner product on H2. Theorem 2 in [17] tells us that we have the
following two possibilities:

(i) There is a unitary matrix U ∈ U2 and a scalar d ∈ {−1, 1} such that
f : H2 → H2 is either of the form f(T ) = dUTU∗, T ∈ H2 or of the form
f(T ) = dUT trU∗, T ∈ H2.

(ii) N(A) is a function of |TrA| and ‖A‖HS and f is a unitary transformation
on H2 satisfying f(I) = I or f(I) = −I.

The case (i) brings nothing new, it implies that we have one of the possibilities (t1)-
(t4) for φ. In the case (ii) f is unitary on H2 and we can assume that it sends I to
I (otherwise we would consider −f , i.e. we compose φ by the inverse operation).
The fact that f is unitary means that it preserves the standard inner product on
H2 (the one defined via the trace functional). Moreover, f maps I to I and hence
we can compute

TrA = Tr(A I) = Tr(f(A)f(I)) = Tr f(A), A ∈ H2.
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Consequently, f is trace preserving. Pick an arbitrary rank-one projection P ∈M2.
Then f(P ) has trace 1 and we have

0 = Tr(P (I − P )) = Tr(f(P )(I − f(P ))

implying that the trace of f(P )2 is also 1. It follows easily that the eigenvalues of
f(P ) are precisely 0 and 1 which means that f(P ) is a rank-one projection. Con-
sequently, f : H2 → H2 is a linear bijection which maps projections to projections.
It is well known (cf., [21], Appendix) that any linear transformation of Hn (for
any integer n ≥ 2) which sends each projection to a projection is necessarily either
zero or a so-called Jordan *-automorphism of Hn. The structure of those automor-
phisms is known, they are unitary similarity transformations or unitary similarity
transformations composed by the transposition operation. Thus we have a unitary
matrix U ∈ U2 such that either

f(T ) = UTU∗, T ∈ H2

or
f(T ) = UT trU∗, T ∈ H2

holds true. Apparently, this means that for φ we have one of the possibilities (t1),
(t3). If f(I) = −I, we obviously obtain the remaining possibilities (t2), (t4).

Finally, we need to consider the case where the unitarily invariant norm N
(originally defined on M2) when restricted to H2 is induced by an inner product on
H2. It is mentioned in [17] (see p. 216) that N is necessarily of the form

N(T )2 = α(TrT )2 + β Tr(nT − (TrT )I)2, T ∈ H2.

In fact, that sort of representation holds also in the general case n ≥ 2. In the
particular case n = 2, it is easy to deduce from the above displayed formula that the
gauge function corresponding to N is necessarily a scalar multiple of the Euclidean
norm on R2, i.e., N is a scalar multiple of ‖.‖HS . Therefore, f is a unitary operator
on H2. By the commutativity preserving property of f it follows that f(I) is a real
scalar multiple of the identity which then implies that either f(I) = I or f(I) = −I
holds. After this we can follow the reasoning applied above to treat the case (ii)
and once again obtain one of the possibilities (t1)-(t4).

The proof of the theorem is complete. �

In the last part of the paper we present the proof of Theorem 4. In fact, we carry
it out via a few lemmas. In what follows we shall use several times the equality
log detA = Tr logA which holds for all A ∈ Pn.

Lemma 9. Let φ : Pn → Pn be a surjective isometry relative to the metric δS.
Then φ satisfies

φ(AB−1A) = φ(A)φ(B)−1φ(A), A,B ∈ Pn.

Proof. As in the proof of Theorem 3, we shall apply Proposition 8. First we check
if all the conditions listed there are satisfied. As already mentioned in the proof
of Theorem 3, since X1 = X2 = Pn, hence X2 is obviously 2-torsion free and
2-divisible.

By Lemma 2 in [26], the symmetric Stein divergence satisfies

(12) S(A−1, B−1) = S(A,B), S(TAT ∗, TBT ∗) = S(A,B)

for all A,B ∈ Pn and invertible matrix T ∈ Mn. It follows that the property (p1)
in Proposition 8 is fulfilled.
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Concerning (p3) recall that, as we have already referred to it in the proof of The-
orem 3, (p3) follows from the 2-divisibility of X2 (see the discussion after Definition
3.4 in [13]) and from the invariance properties (12) of the divergence S implying

similar properties for the metric δS =
√
S.

It remains to check (p2). We assert that

(13) S(BX−1B,X) ≥ 2S(X,B)

holds for every B,X ∈ Pn. Indeed, we compute

(14)

log det

(
(X−1/2BX−1/2)2 + I

2

)
+ log detX − log detB =

log det

(
X−1/2(BX−1B +X)X−1/2

2

)
+ log detX − log detB =

log det

(
BX−1B +X

2

)
− log detB =

S(BX−1B,X).

On the other hand, we have

(15)

log det

(
X−1/2BX−1/2 + I

2

)
+

1

2
(log detX − log detB) =

log det

(
X−1/2(B +X)X−1/2

2

)
+

1

2
(log detX − log detB) =

log det

(
B +X

2

)
− 1

2
(log detX + log detB) =

S(B,X).

We assert that for every Y ∈ Pn we have

(16) log det

(
Y 2 + I

2

)
≥ 2 log det

(
Y + I

2

)
.

Indeed, the function log((y2 +1)/2)−2 log((y+1)/2) is nonnegative on ]0,∞[. This
implies that for any Y ∈ Pn we have

log
Y 2 + I

2
≥ log

(
Y + I

2

)2

.

Since Tr is a positive functional, we obtain

Tr log

(
Y 2 + I

2

)
≥ 2 Tr log

(
Y + I

2

)
and this is exactly what has been asserted in (16). Using that inequality, (14), and
(15) we obtain (13).

Therefore, all assumptions in Proposition 8 hold for any A,B ∈ Pn and hence
we obtain the statement of the lemma. �

We proceed with the following assertion.

Lemma 10. The topologies induced by the metric δS and the operator norm ‖.‖
on Pn coincide.
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Proof. As in (15) we have

S(A,B) = log det

(
A−1/2BA−1/2 + I

2

)
− 1

2
log detA−1/2BA−1/2.

So, if (Bk) is a sequence in Pn such thatBk → A in the operator norm topology, then
we obtain A−1/2BkA

−1/2 → I, and the above formula gives us that S(A,Bk)→ 0.
Consequently, Bk → A holds in the metric δS .

Conversely, assume that S(A,Bk)→ 0. Then the numerical sequence

S(A,Bk) = Tr

[
log

(
A−1/2BkA

−1/2 + I

2

)
− log(A−1/2BkA

−1/2)1/2

]
.

converges to 0.
Define the scalar function

f(y) = log((y + 1)/2)− log
√
y, y > 0.

Since f is everywhere nonnegative, it follows that

Tr f(Y ) = Tr
(

log((Y + I)/2)− log(Y 1/2)
)
≥ 0, Y ∈ Pn.

Now assuming that for a positive definite matrix Y ∈ Pn the quantity Tr f(Y ) is
small, we have that all eigenvalues of f(Y ) are small. Having a look at the graph
of f and recalling that the set of all eigenvalues of f(Y ) equals the image of the
set of all eigenvalues of Y under f , we conclude that the eigenvalues of Y are
necessarily close enough to 1. It follows that for any given δ > 0 the eigenvalues of
A−1/2BkA

−1/2 fall between 1−δ and 1+δ for large enough k. From the inequalities

(1− δ)I ≤ A−1/2BkA
−1/2 ≤ (1 + δ)I

we deduce
−δA ≤ Bk −A ≤ δA

which implies that ‖Bk − A‖ ≤ δ‖A‖ holds for large k. It follows that Bk → A in
the operator norm. The proof of the lemma is complete. �

We now present the proof of Theorem 4. Observe that one could follow the
strategy in the proof of Theorem 3, use Theorem 1 in the case n ≥ 3 and treat
the remaining case n = 2 separately. However, here we shall apply an argument
employing differential calculus (together with the previous two auxiliary results and
Lemma 6) that works equally well in all dimensions.

Proof of Theorem 4. Let φ : Pn → Pn be a surjective isometry relative to the metric
δS . Considering the transformation φ(I)−1/2φ(.)φ(I)−1/2, by (12) we have a unital
map which is again a surjective isometry of Pn. Therefore, without serious loss of
generality we may and do assume that φ is a surjective isometry of Pn relative to
δS which maps I to I. Applying Lemma 9, we have that φ satisfies

φ(AB−1A) = φ(A)φ(B)−1φ(A), A,B ∈ Pn.

Just as in the proof of Theorem 3 we deduce that φ is in fact a Jordan triple
automorphism of Pn. In Lemma 10 we have learned that δS induces the same
topology as the operator norm. It follows that φ is continuous in this latter topology,
too. Consequently, Lemma 6 applies and we have a bijective linear transformation
f : Hn → Hn such that

(17) φ(A) = ef(log A), A ∈ Pn.
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In what follows we show that φ(A) = (f−1)∗(A) holds for every A ∈ Pn, where
∗ stands for the adjoint of a linear transformation on the real Hilbert space Hn

(equipped with the natural inner product defined by the help of the trace func-
tional).

We have

S(A,B) = Tr

[
log

(
A+B

2

)
− 1

2
(logA+ logB)

]
, A,B ∈ Pn.

Using this formula, the isometric property of φ and (17), for the linear transforma-
tion f we obtain that

(18)

Tr

[
log

(
ef(log A) + ef(log B)

2

)
− 1

2
(f(logA) + f(logB))

]
=

Tr

[
log

(
A+B

2

)
− 1

2
(logA+ logB)

]
holds for all A,B ∈ Pn. Now fix A ∈ Pn and consider the left and right hand sides in
(18) as functions of the variable B ∈ Pn. Clearly, those functions are differentiable.
In what follows we compute their derivatives at B = I.

In the paper [24] Pedersen studied differentiability properties of operator val-
ued functions of one operator variable that correspond to scalar functions via the
continuous functional calculus. We follow the notation given in that paper. For
any real function g on an open interval in R consider the matrix valued function
A 7→ g(A) defined on the open set of all self-adjoint matrices whose spectra is a
subset of the domain of g. If that function is Fréchet differentiable at some matrix
A ∈ Hn, then its derivative at A (which is a linear transformation from Hn into
Hn) is denoted by d gA. In [24], the derivatives of several such functions have been
calculated. By the proof of Theorem 3.2 and Paragraph 4 in [24] we have

(d expA)(X) =

∫ 1

0

esAXe(1−s)Ad s,

(d logA)(X) =

∫ ∞
0

(A+ sI)−1X(A+ sI)−1d s

In particular, it follows that

(19) (d logI)(X) = X.

Using the rules of differentiation we hence obtain the following formulae:

(20)

(d (Tr ◦ log)A)(X) = Tr

∫ ∞
0

(A+ sI)−1X(A+ sI)−1d s =∫ ∞
0

Tr
(
(A+ sI)−1X(A+ sI)−1

)
d s =∫ ∞

0

Tr
(
(A+ sI)−2X

)
d s =

Tr

∫ ∞
0

(A+ sI)−2Xds =

Tr((

∫ ∞
0

(A+ sI)−2d s)X) = Tr((d logA)(I)X) = Tr(A−1X)



18 LAJOS MOLNÁR

In the last equality we used Proposition 2.2 in [24] stating that for commuting A
and X we have (d gA)(X) = g′(A)X. Next, by the chain rule we have

(21)

(d (exp ◦f ◦ log)A)(X) =∫ 1

0

etf(log A)f

[∫ ∞
0

(A+ sI)−1X(A+ sI)−1d s

]
e(1−t)f(log A)d t.

Consequently,
(d (exp ◦f ◦ log)I)(X) = f(X)

Therefore, using the chain rule and the formulae (19), (20), (21), when we differ-
entiate in (18) at B = I (A is being fixed) we obtain that

(22)
Tr
(

(I + ef(log A))−1f(X)
)
− 1

2
Tr f(X) =

Tr
(
(A+ I)−1X

)
− 1

2
TrX

holds for every A ∈ Pn and X ∈ Hn.
By Lemma 6 we know that the bijective linear map f in (17) is commutativity

preserving. It follows that f(I) = cI holds for some nonzero real number c. We
may assume that c is positive, otherwise we consider the map A 7→ φ(A)−1 to which
the linear transformation −f corresponds. Replacing A by λA for any positive λ,
from (22) we obtain that

Tr
(

(I + λcef(log A))−1f(X)
)
− 1

2
Tr f(X) = Tr

(
(λA+ I)−1X

)
− 1

2
TrX

holds for every A ∈ Pn and X ∈ Hn. We claim that we necessarily have c = 1.
Indeed, for example, differentiation in the above formulae with respect to λ gives
us that

Tr
(

(I + λcef(log A))−2cλc−1ef(log A)f(X)
)

= Tr
(
(λA+ I)−2AX

)
.

Assuming 0 < c < 1 or c > 1 and letting λ → 0, it would follow that Tr(AX) = 0
holds for all A ∈ Pn, X ∈ Hn which is a contradiction. Therefore, c = 1 and we
have

Tr
(

(I + λef(log A))−2ef(log A)f(X)
)

= Tr
(
(λA+ I)−2AX

)
.

Letting λ→ 0, it follows that

Tr
(
ef(log A)f(X)

)
= Tr (AX) .

This can be rewritten as

Tr (φ(A)X) = Tr
(
Af−1(X)

)
which implies that

φ(A) = (f−1)∗(A), A ∈ Pn.

Therefore, the linear bijection F = (f−1)∗ on Hn is an extension of φ. It fol-
lows that F is a Jordan triple automorphism on Pn and by continuity it is a
Jordan triple map also on the set of positive semidefinite matrices meaning that
F (ABA) = F (A)F (B)F (A) holds for all positive semidefinite matrices A,B ∈Mn.
In particular, F maps projections to projections. At the end of the proof of Theo-
rem 3 we have already recalled the fact that this property implies that F is a Jordan
*-automorphism of Hn. The structure of those transformations is well known. As
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mentioned there, we have a unitary matrix U ∈ Un such that F is either of the
form

F (A) = UAU∗, A ∈ Hn

or of the form

F (A) = UAtrU∗, A ∈ Hn.

The proof of the theorem can now be completed trivially. �

Remark 11. We conclude the paper with two open problems.
Our statements concerning isometries are valid for any n ≥ 2 while the results on

the structure of Jordan triple endomorphisms and automorphisms are formulated
only for n ≥ 3. So the problem arises naturally if the conclusions in Theorem 1 or
Corollary 2 hold also when n = 2. We believe the question is quite difficult and leave
it as an open problem. Nevertheless, there is a hope for solution. Namely, in the
recent paper [11], Gselmann has managed to describe all Jordan triple functionals
of Pn in the general case n ≥ 2 even without assuming continuity. Her result
states that any such transformation can be obtained as the composition of the
determinant function and a multiplicative function of the positive real line (this
latter function can behave very badly, its graph may be everywhere dense in the
upper right quadrant of the plane). This result generalizes Lemma 7 substantially
and gives some hope that one can obtain the structure of Jordan triple maps in the
probably much more complicated matrix valued case, too.

The second problem we raise is to investigate the isometries of Pn relative to
the same metrics as what we have considered above but without assuming their
surjectivity.
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