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ABSTRACT.  The so called “model-free” or isoconversional way of kinetic modelling was examined.  In 

this field the available evaluation methods do not aim at an optimal fit for the experimental data.  In the 

present work the functions of the corresponding kinetic equation were approximated by simple versatile 

formulas; the number of the unknown parameters was kept on reasonably low levels; and the evaluation 

aimed at the best fit for the experiments by the method of least squares.  The considerations and methods 

were tested on 85 thermogravimetric (TGA) experiments which had been published earlier with different 

types of kinetic modelling.  The experiments belonged to 16 biomass samples including woody biomass, 

agricultural residues and industrial wastes.  The temperature programs comprised constant heating rates, 

stepwise heating, constant reaction rate heating (CRR), isothermal temperature programs, and a modulated 

temperature program.  The evaluations were based on four to nine experiments for each sample.  The best 

fit was searched for the mass loss rate curves because they reflect better the peculiarities of the pyrolysis 

than the integral curves.  An empirical model with variable activation energy provided good fit for all 

experimental data.  It described the experiments of a biomass sample by 11 parameters. Another model 

with constant E values provided rougher, but still usable approximations for the data.  It allows fast 

numerical solutions that may be helpful in complex modelling tasks.  Both models described the 

experiments at a variety of temperature programs by a given set of model parameters.    

 

https://doi.org/10.1021/acs.energyfuels.9b00040
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1. INTRODUCTION 

The kinetics of the biomass pyrolysis is usually based on models that are built of equations of type 

d/dt = A exp(-E/RT) f()  (1) 

where  is a reacted fraction (conversion), E is the apparent activation energy, and A is the pre-

exponential factor.  Obviously more than one such equation is needed when the model reflects the 

complexity of the biomass pyrolysis reactions.  In such cases  refers only to a part of the sample.  If 

distributed activation energy models are employed, then an infinite number of reactions are assumed with 

an infinite number  conversions. 

An entirely different approach is when only one equation of type 1 is assumed with varying E and A: 

d/dt = A()f() exp(-E()/RT)  (2) 

Here A(), f(), and E() are empirical functions.  Obviously only the product of A() and f() can be 

determined from the experimental data.  More precisely, an empirical [A()f()] function can be factored 

to an A() and an f() part in an infinite number of ways. 

For historical reason the kinetic evaluations by eq 2 are frequently called “model-free” methods.  This 

term is misleading since eq 2 itself is a model.1  It is more precise to call eq 2 “isoconversional” which 

means that the reaction rate, d/dt, is a function of the temperature only at any selected  value and does 

not depend on the temperature history that led to a given (, T) point.1  This definition, and eq 2 itself can 

only be approximatively true for biomass materials because they have complicated reactions, and the 

temperature history may affect the importance of the various partial reactions in the overall decomposition.  

The literature of the “model-free” or isoconversional evaluations is huge.  About 4000 scientific papers 

contain the characteristic terms of these methods in the Web of Science database.2  The present paper is 

restricted to the kinetic studies on biomass pyrolysis, where the isoconversional methods have been present 

for nearly 40 years.3  According to the Web of Science, more isoconversional evaluations are reported in 

the literature of biomass pyrolysis than all other methods combined.  A recent review and case study deals 

with the isoconversional kinetics of lignocellulosic materials.4  Its treatment includes a concise description 

of the most important evaluation techniques emphasizing their advantages and disadvantages and giving 

ample references from 1956 till the present.  

Eq 2 is usually employed for thermogravimetric (TGA) and differential scanning calorimetric (DSC) 

experiments.  Nevertheless, it may be employed for any experimental technique which provides the reacted 

fraction / conversion of either the whole sample or a given species while the temperature of the sample is 

measured with an adequate precision.  (Here the term “adequate” depends obviously on the sensitivity of 

the model and the evaluation method to the experimental errors.) 

Several factors led to the writing of the present work.  One of them was that I see questions and problems 

with this type of research, as outlined below.  Another factor was the high number of the publications with 

isoconversional kinetics; I wished to contribute to the analysis of their reliability.  Besides, the potential of 

eq 2 as a relatively simple empirical model is also interesting.5-8  

One of the open questions with the isoconversional evaluations is the high number of the parameters 

which are derived from a few, rather similar TGA curves.  Though there are evaluation methods that can 

be carried out at any T(t) temperature programs,1,4 practically all studies in the field are based on constant 

heating rate experiments only.  The Kinetics Committee of the International Confederation for Thermal 

Analysis and Calorimetry (ICTAC) recommends carrying out the evaluation at 9 – 19 fixed  values: “It is 

recommended to determine the E values in a wide range of = 0.05–0.95 with a step of not larger than 

0.05 and to report the resulting dependencies of E vs. .”1  (Here E is a shorthand for E()).  Keeping in 
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mind that there is a [A()f()] value for each E, the total number of the unknowns in a typical 

isoconversional evaluation is 9×2 – 19×2.  However, higher number of unknown parameters are also 

determined in the isoconversional studies.  For example, Samuelsson et al. determined 23×2 parameters 

from 10 constant heating rates experiments5 while Carrier et al. presented E –  figures with 41 E values 

using four heating rates.9  Naqvi et al. presented 39×2 parameters in a detailed table that were determined 

from three constant heating rate experiments.10 

During my work in various teams for 30 years we realized that the simultaneous evaluation of linear and 

non-linear temperature programs increases the information of the series of TGA experiments,11-17 and 

kinetic models with 12-13 adjustable parameters were sufficient for fitting such series of experiments by 

the method of least squares for the pyrolysis of a wide variation of biomass samples.13,14,16,17  (Models 

assuming pseudo-components and parallel reactions were employed in these works.)  Moreover, the number 

of parameters could be decreased further by assuming partly common kinetic parameters for different 

biomass samples.14-17  Here the question arises: If 13 parameters are enough for a good fit then why should 

anyone determine 19×2 or 39×2 parameters?  Are the obtained parameters just redundant or do they serve 

for averaging out the experimental errors in their further processing?  In the latter case why not a true least 

squares evaluation is chosen for averaging out the experimental errors via a curve fitting? 

Another question is the large variation of activation energies in the literature of the isoconversional 

studies.  In the case of biomass pyrolysis kinetics E values as high as 1070 and 1327kJ/mol were 

reported.18,10  Unrealistically low E values also arose, for example 10 – 12 kJ/mol.10,19  (We shall turn back 

to the meaning of the term “unrealistic E” in the article.) Several causes may be assumed here, among 

others:  (i) Eq 2 is not suitable for the description of the given pyrolysis process with realistic E values;  

(ii) The evaluation method is too sensitive to the experimental errors;  (iii) Eq 2 itself is ill-conditioned, 

meaning that a small error in the initial data can result in much larger errors in the results whatever 

evaluation method is employed.  The present work aims at the clarification of the above questions. 

The available “model-free” evaluation methods appear to be arbitrary and sensitive to the experimental 

errors.  Here the term “arbitrary” means that their elaboration aimed at relatively simple procedures instead 

of finding the best fit between the predicted values and the observed data.  I think there is no need for such 

simplifications in the 21th century due to the high development of the computers and computing methods.  

In other areas of the sciences the usual way of the evaluation is to find the best fit between the predicted 

and the observed data by the method of least squares.  The use of this approach for isoconversional 

evaluations is a main goal in the present work. 

 

2. SAMPLES AND METHODS 

2.1 Samples and Experiments.  The considerations of the present work were tested by evaluating TGA 

experiments that had been evaluated earlier by other models and appeared in six publications in Energy & 

Fuels.12-17  85 TGA experiments were reevaluated in the present paper.  They belonged to 16 biomass 

samples which comprised woody biomasses,12,16,17 agricultural residues,14,15 and industrial wastes.13  The 

temperature programs included constant heating rates, stepwise heating, constant reaction rate heating 

(CRR), isothermal temperature programs, and a modulated temperature program.  There were 4 – 9 

experiments with for each biomass sample.  The list of the samples and the TGA experiments belonging to 

them is given in Subsection 4.3.  Figure 1 displays the temperature programs employed in the work of 

Tapasvi et al.  The corresponding figures for the other samples are given in the Supporting Information.  

Four different TGA apparatuses were involved in the studies.  Emphasis was given to ensure a true kinetic 
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regime by employing small sample masses and considering that very small sample masses are needed at 

higher heating rates (because the peak height of the mass loss rate curves is roughly proportional to the 

heating rate).12-17 

 

Figure 1.  Temperature programs used in the TGA experiments of Tapasvi et al.16  

2.2. Evaluation by the Method of Least Squares and Characterization of the Fit Quality.  Such 

values were searched for the unknown model parameters that minimize the difference between the 

experimental (Xobs) and the predicted (Xcalc) data: 
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Here of is the objective function to be minimized; Nexper is the number of experiments evaluated together; 

Nj is the number of ti time values in experiment j; and the w j weight factors express the different 

uncertainties of the different experimental curves.  In the case of TGA experiments eq 3 may aim at an 

optimal fit either on the normalized sample mass, mobs(t), or on its derivative.  The latter is more 

characteristic for biomass pyrolysis; we fitted the -dmobs/dt curves in nearly all of our works since 1989.20  

In this case the objective function is 
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Here m is the sample mass normalized by the initial dry sample mass.  The division by ℎ𝑗
2 serves to 

counterbalance the high magnitude differences.  Traditionally h j is the highest observed value of the given 

experiment: 

h j = max (
𝑑𝑚

𝑑𝑡
)

𝑗

𝑜𝑏𝑠

 (5) 

The normalization by the highest observed values in the least squares sum assumes implicitly that the 

relative precision is roughly the same for the different experiments.  This assumption has proved to be 

useful in numerous works on non-isothermal kinetics since 1993.21   

The obtained fit quality can be characterized separately for each of the experiments evaluated together.  

For this purpose, the relative deviation (reldev, %) will be used.  The root mean square (rms) difference 

between the observed and calculated values is expressed as percent of peak maximum.  For experiment j 

we get: 
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reldev (%) = 100 { ∑
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The fit quality for a given group of experiments is characterized by the root mean square of the 

corresponding relative deviations. For example, the root mean square reldev on all the 85 experiments of 

this study is denoted by reldev85. 

Section 5 deals with the least squares curve fitting for other experimental quantities. 

2.3. Computational Methods.  Simple, but safe numerical methods were selected similarly to our 

previous works.11-17,20-22  The experimental temperature values were connected by linear interpolation and 

the kinetic differential equation (eq 2) was solved by an adaptive stepwise Runge-Kutta method23 for each 

experiment in each [ti-1, ti] interval.  (The forms of the E() and A()f() functions considered in this work 

are shown in Subsections 3.1-3.2.) 

The minimization of the objective function was carried out by a variant of the Hook−Jeeves method. The 

Hook−Jeeves method is a slow but simple and dependable direct search algorithm.24  The original algorithm 

was supplemented by a parabolic interpolation for finding the optimal step sizes. The safety and the speed 

of the convergence were enhanced by simple parameter transformations which are outlined after the setup 

of the model, in Subsection 3.2.  The scaling of the parameters to similar magnitudes may also be helpful 

in the direct search method.  The Supporting Information contains 32 sets of model parameters that an 

interested reader may use in his/her own calculations as initial values.  It is possible to start the optimization 

from the results of a plain first order kinetic evaluation, too.  

The experimental -dm/dt values were obtained by approximating the measured m(t) values by smoothing 

splines.25  The root mean square difference between the original m(t) and the smoothing spline were 

typically much below 1 µg.  Such a small difference does not introduce considerable systematic errors into 

the least-squares kinetic evaluations.22 

Fortran 2003 and C++ programs were used for the numerical calculations and for graphics handling, 

respectively.  

2.4. Automation.  The present work was based on around 1000 least squares evaluations of which 556 

proved to be useful for the tables and figures of this article and its Supporting Information.  16 experimental 

series were evaluated in 34 ways, as described in Section 4, and a few additional evaluations were needed 

for Section 5.  Obviously, some automation was needed for so many evaluations.  The calculations were 

organized by batch files.  The user dialogues of the evaluation programs were recorded in text files which 

were read together with the experimental data by the programs at each evaluation.  The evaluation programs 

generated several thousand graphical and textual output files that were collected and arranged by small 

script programs so that they could be surveyed within reasonable amounts of time.  

 

3. EMPIRICAL FUNCTIONS FOR THE MODELLING 

3.1. Formulation.  As outlined in the Introduction, the E() és A()f() functions are approximated by 

simple formulas so that the resulting empirical model would contain only a limited number of parameters 

and the evaluation could be carried out by the method of least squares.  This is the topic of the present 

section. 

E() and A()f() can be arbitrary functions with positive values in the domain 0≤<1 in eq 2.  A()f() 

must be zero at =1 because only a zero value ensures mathematically the termination of the process.  To 
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make the fulfillment of this requirement easier we shall introduce an (1-) factor into A()f()and write eq 

2 as follows: 

d/dt = Ã()(1-) exp(-E()/RT) (7) 

Here Ã() is A()f()/(1-) when <1.  The division by (1-) is not possible at the =1 point, but Ã() 

can have any finite value there.  Note that the appearance of (1-) in eq 7 does not mean the assumption of 

a first-order kinetics; it serves only to for a convenient treatment. 

Taking the logarithm of Ã() and rearranging eq 7 we get: 

d/dt = (1-) exp(ln Ã() – E()/RT) (8) 

When taking a logarithm, one must assume that the argument does not take zero values.  This is not a 

strong assumption, however, because Ã() may have arbitrarily small positive values. For example, the 

lowest Ã() value in the test evaluations of this work was around 10–72 at =1. 

The next step of the work is to introduce straightforward approximations for ln Ã() and E().  A general 

and widespread way for function approximations is the use of polynomials because they have simple form; 

their handling is easy; and they can approximate a wide range of functions.  Accordingly, polynomials up 

to fifth order will be used in this work.  

3.2. Simple Parameter Transformations for a Safer Optimization.  Elementary mathematical 

operations will be given here which enhance the safety and the speed of the convergence during the 

minimization of the lest squares sum.  They aim at decreasing the interrelations (compensation effects) 

between the parameters in the evaluation process.  The first step is to map the domain of the polynomials 

from [0,1] to [-1,1].  For this a variable x is introduced: 

x=2-1 (9) 

The polynomials describing E and ln Ã will be written as functions of x: 

E() = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5  (10) 

ln Ã() = b0 + b1x + b2x
2 + b3x

3 + b4x
4 + b5x

5  (11) 

An example for the usefulness of this mapping: The 4 and 5 values are close to each other in domain 

[0,1], hence their coefficients can compensate each other a bit during the minimization.  On the other hand, 

x4 and x5 differ very much at negative x values hence their coefficients cannot compensate each other.  A 

further, optional step in this direction is the use of the Chebyshev polynomials of the first kind due to their 

favorable properties.23  An identical rearrangement of equations 10 and 11 yields 

E() = ā0 + ā1T1(x) + ā2T2(x) + ā3T3(x) + ā4T4(x) + ā5T5(x)  (12) 

ln Ã() = b̄0 + b̄1T1(x) + b̄2T2(x) + b̄3T3(x) + b̄4T4(x) + b̄5T5(x) (13) 

where T1 … T5 are the Chebyshev polynomials of the first kind,23 while ā and b̄ are coefficients to be 

determined during the minimization of the objective function.  Note that the calculations with the 

Chebyshev polynomials of the first kind is fast and easy through their well-known recurrence relations.23  

(The evaluation of the T1 … T5 polynomials at any x can be carried out through a few simple program 

lines.)  The results can be transformed back to the form of equations 10 and 11 for reports and publications.  

The models given in the Supporting Information are presented in both formats.  

Another elementary parameter transformation serves to decrease the interrelation between the 

preexponential factor and the activation energy during the minimization.26  At constant A and E it can be 

carried out by minimizing a transformed variable Z instead of A : 
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Z = ln A - E/RTm (14) 

where Tm is arbitrarily chosen fixed temperature somewhere in the middle of the temperature interval.26  

This method can be employed for Ã() and E(), too, by substituting equations 12 and 13 (or equations 10 

and 11) into the place of E and ln A in equation 14.  Then the coefficients of the resulting Z polynomial are 

determined together with the coefficients of the E polynomial. 

3.3.  Scale Factors.  The solution of eq 2 yields the calculated  and d/dt values.  It would be 

straightforward to compare them to the experimental  or d/dt points by the method of least squares.  This 

topic will be treated in Section 5.  The correct determination of the experimental (t) values is problematic 

because the thermal decomposition of the biomass materials continues to very high temperatures by the 

slow carbonization of chars.27  Part of the pyrolysis reactions overlap more or less with the charring of the 

residues, especially when the sample contains a considerable amount of lignin.  Accordingly, exp can only 

be determined approximately.  We shall turn back to this point in Section 5.   

Herewith a simpler approach is employed: dmcalc/dt is obtained from dcalc/dt by a multiplication: 

dmcalc/dt = c dcalc/dt (15) 

where c is a scale factor to be determined during the evaluation.  c is equal to the amount of volatiles 

forming from a unit mass of the sample by the model.  Hence 1-c is the char yield predicted by the model.   

Three options will be considered for the determination of c: 

(1) A separate c j value is assumed for each experiment and the c j values are determined together with the 

other model parameters in the least squares evaluation.  Disadvantage: this approach highly increases the 

number of parameters in the model. 

(2) A common c  value is assumed for all experiments.  c  is determined together with the other model 

parameters in the least squares evaluation.  Disadvantage: this is only an approximation because the char 

yield, 1-c, may depend on the temperature programs.27 However, this dependence is usually smaller than 

the baseline uncertainties of the apparatuses. 

(3) A separate c j value is assumed for each experiment and the c j values are approximated by the 

experimental mass loss values in the domain of experiments.  Disadvantages:  (i) It is only approximation; 

(ii) It cannot be employed if the temperature programs are terminated without a heating to higher 

temperatures (like the isothermal experiments in Figure 1). 

In the present work each of the above approaches were tested.  The number of least squares evaluations 

were 224, 224 and 96 for methods (1), (2) and (3), respectively, as outlined in the next section.  The results 

were roughly the same at each approach.  The author’s preference is method (2). The figures of the next 

section and the models and figures in the Supplementary Information were determined in that way, 

assuming a common c for all experiments with a given sample. 

 

4. RESULTS AND DISCUSSION 

4.1. The Effects of the Polynomial Order on the Results.  The experiments belonging to the 16 biomass 

samples have been evaluated by different ways.  When 5th order polynomial approximation was employed 

for both E and ln Ã, the model proved to be ill-conditioned.  Four of the 16 samples yielded E() curves 

with negative values around =1 in that case, and two other samples produced E values of 15 – 17 kJ/mol.  

To get rid of such meaningless E values, the calculations were carried out with polynomials of lower order, 

too.  The results are shown in Table 1.  The first two columns show the orders of the polynomials tested.  
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In each case all available experiments were evaluated by the method of least squares (eq 4) for the 16 

biomass samples.  Both methods (1) and (2) of the previous subsection were tested in these evaluations.  

Accordingly, the eight rows in Table 1 contain data that were obtained from 8×16×2 least squares 

evaluations on altogether 85 TGA experiments.  The results were characterized by calculating the root mean 

square of the relative deviations for the 85 experiments.  The average, the lowest and the highest E values 

are also displayed in each group. 

Table 1.  Evaluations with Different Degrees of Polynomialsa,b 

Order of poly- 

nomials for 

Separate c j for each experiment Common c value for a sample 

E() ln Ã() reldev85 mean 

E 

lowest 

E 

highest 

E 

reldev85 mean 

E 

lowest 

E 

highest 

E 

0 5 3.60 188 163 210 3.75 185 168 207 

1 5 3.44 190 127 266 3.63 190 130 268 

2 5 3.08 179 75 276 3.34 182 91 278 

3 5 2.72 184 67 408 2.97 185 63 469 

4 5 2.61 172 -600 429 2.84 173 -666 529 

5 5 2.55 178 -347 395 2.76 180 -76 408 

3 3 4.70 152 -430 235 4.73 152 -430 235 

4 4 3.06 158 -736 364 3.08 157 -733 360 

a The experiments for 16 biomass samples were evaluated in different ways.  reldev85 is the root mean square 

relative deviation which was calculated for the 85 available experimental -dm/dt curves at each type of evaluations.  
b 

The dimensions of E and reldev85 are kJ/mol and %. 

 

The activation energies varied in reasonable ranges when E() was approximated by polynomials of 0 to 

3 order and ln Ã() was described by 5th order polynomials.  When the order of polynomials for ln Ã() 

was decreased, unacceptable results were obtained, as the last two rows shows in Table 1. 

Obviously, the fit qualities were the best when 5th order polynomials were employed both for E() and 

ln Ã(): reldev85 values 2.55 and 2.66% were obtained then.  It is possible to force the values of E() into 

preset limits by constraints during the minimization to avoid the meaningless activation energies.  However, 

the use of 3rd order polynomials for E() is much simpler than the use of constraints and the increase of the 

reldev85 values was not substantial in this way, as the data in Table 1 shows.  For 3rd order E() polynomials 

the number of parameters is 11 if common c values are used for the experiments of a biomass sample: four 

coefficients for E, and six coefficients for Ã, and a scale factor c.  The fit quality and the curves calculated 

from this model variant are shown in Figure 2 and in the figures of the Supporting Information. 

4.2.  Approximations with Constant Activation Energies.  The first line of data in Table 1 shows 

evaluations when E did not depend on .  They provided reasonable descriptions for the 85 experiments 

treated in this work.  The fit quality is illustrated in Figure 2 and in further figures in the Supporting 

Information.  The blue-colored curves belong to this approximation.  If the c scale factors are determined 

by the second method of Subsection 3.3 then the number of model parameters is 8: one E, six coefficients 

for Ã, and a scale factor, c.  Four to nine experiments were available for each biomass sample hence the 

number of unknowns for an experiment varied between 0.9 and 2 in this type of evaluations.  Therefore, 

the model parameters were based on an ample amount of experimental information. 
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Figure 2.  Illustration of the fit quality when E is constant (blue color), and E is a third order polynomial 

of  (red color).  Ã() was approximated by fifth order polynomials.  The thick gray lines represent the 

experimental curves.  The temperature programs, when present, are shown by thin, dashed green lines.  

Note that the same experimental curves were presented with other type of modelling in the works of 

Mészáros et al. 2004;12 (a, b); Becidan et al. 2007;13 (c, d); Várhegyi et al. 2011;14 (e, f); Tapasvi et al., 

2013;16 (g, h), and Barta-Rajnai et al. 2017;17 (i, j).  

 

This approximation can be recommended for complex modelling tasks because it can be solved 

numerically by high-speed algorithms with relatively easy computer programming.  For this purpose the 

obtained A()f() function can be factored into a constant A and an f() part.  The uniqueness of the 

factorizing can be ensured by a normalization so that the maximum of f() would be 1.  (This sort of 

normalization has been employed for other empirical f() functions, too.11)  In this way the kinetic equation 

has the form of eq 1 and can be solved numerically by separating the variables: 
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The left-hand-side is usually denoted by g().  No analytical approximations are available for the present 

g() or for its inverse function.  However, one can calculate numerically a few thousand values for this 

constant E:
reldev=5.2%

3rd order E:
reldev=4.2%

Temperature  [°C]

-d
m

/d
t 

 [
s-1

] 
 ×

  
1
0

3

150 200 250 300 350 400 450 500 550 600

0

1

2

3

4

5

6

7

8

9

      (g)  Birch, 40°C/min

constant E:
reldev=2.8%

3rd order E:
reldev=2.3%

Time  [min]

-d
m

/d
t 

 [
s-1

] 
 ×

  
1
0

3

T
e
m

p
e
ra

tu
re

  [°C
]

50 100 150 200

0.0

0.1

0.2

0.3

0.4

0.5

0.6

150

200

250

300

350

400

450

500

550

600

(h)  Birch, modulated T(t)

constant E:
reldev=3.3%

3rd order E:
reldev=3.1%

Temperature  [°C]

-d
m

/d
t 

 [
s-1

] 
 ×

  
1
0

3

200 300 400 500 600 700

0

1

2

3

4

      (i)  Spruce bark, 40°C/min

constant E:
reldev=2.9%

3rd order E:
reldev=2.2%

Time  [min]

-d
m

/d
t 

 [
s-1

] 
 ×

  
1
0

3

T
e
m

p
e
ra

tu
re

  [°C
]

20 40 60 80 100 120

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

150

200

250

300

350

400

450

500

550

600

650

700

(j)  Spruce bark, stepwise T(t)



 Empirical models with constant and variable activation energy  

 11 

integral and store them together with the corresponding  and f() values in arrays for the modelling work.  

(The search in a sorted array is very fast.  At each right-hand-side value arising in the work the software 

can search for the nearest g() in the array and the  and f() values stored with it.)  The right-hand-side 

contains the well-known exponential integral at constant heating rates or at T(t) programs consisting of 

linear sections. In such cases one of the widely used approximate formulas can be employed.  Otherwise 

quadrature formulas can be recommended. 

Compared to the one-step kinetic models of the literature, the present empirical model variant has an 

advantage: it can describe the pyrolysis at a wide range of T(t) functions with a given set of model 

parameters.  Among others it could reasonably approximate the TGA experiments from the work of Tapasvi 

et al.16 at the T(t) programs shown in Figure 1.  (The Supporting Information contains ten figures on the fit 

quality for these samples.)  

4.3.  The Shape of the Employed Empirical Functions and the Fit Quality for 16 Biomass Samples.  

The E vs  dependences and the shape of the A()f() functions are shown in Figure 3 for the five biomasses 

presented in Figure 2.  Figures 3a and 3b visualize the spread of the E values.  The constant E values scatter 

in a narrow interval while the variation of the approximated by 3rd order polynomials results in a much 

wider range of E values.  It may be interesting to observe that the E() of the two woody biomasses, denoted 

by dashed lines in Figure 3, tend to low E values at high  values while the other three biomasses had high 

E values around =1.  We have no reason to assume a physical reality behind this behavior, it may be just 

two different ways to describe formally the flat tailing sections of the -dmexp/dt curves of the biomass 

materials.  The corresponding A()f() functions also show different behaviors for the dashed and the solid 

lines in Figure 3d; this may be connected to the well-known compensation effect between A and E: an 

increase in E induces a rise in A.   

Table 2 displays more details on the evaluation of the biomasses.  The results with the 3rd order E() 

polynomials were characterized by the mean E values and by the E values at the end of the domain, E=1.  

E=1 < 100 kJ/mol values appeared mainly at the wood samples.  The exceptions are the spruce and its bark 

in the last two rows.  On the other hand, the sorghum sample also exhibited low E=1.  These observations 

support the view that the isoconversional kinetics provides only formal approximations for biomass 

pyrolysis. 

The lowest fit quality was obtained for the brewer spent grains and birch samples at constant E : 

reldev5=5.28% and reldev9=5.17%, respectively.  Both samples are shown in Figure 2.  The Supporting 

Information contains further figures on the fit quality of these samples.  As these plots show, the fit quality 

is reasonable for these samples, too.  
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Figure 3. The E() and A()f() functions for the five biomasses presented in Figure 2 at constant E 

(a,c); and at E() functions approximated by 3rd order polynomials.  (The color codes and line types are 

presented in panel (a); their listing follows the order of Figure 2.) 

 

 

 

Table 2.  Evaluations of 16 Biomass Samples by Two Selected Model Variantsa,b 

Source of 

the experi-

ments 

Temperature 

programs 

Biomass E is constant E is 3rd order 

polynomial of  

  reldevN E reldevN Emean E=1 

Mészáros 

et al. 

200412 

10, 20 and 40 

°C/min; 

Stepwise T(t). 

Black locust shoots 3.11 201 2.65 178 71 

Poplar shoots 3.78 207 3.13 187 68 

Willow shoots 3.42 192 2.74 179 86 

Becidan et 

al. 200713 

5, 10 and 20 

°C/min; 

CRR T(t); 

Stepwise T(t). 

Brewer spent grains 5.28 206 3.94 237 469 

Coffee waste 3.76 206 2.65 223 343 

Medium-density 

fiberboard 

3.56 179 3.08 167 99 

Corn stalk 2.99 188 1.83 189 300 

Rice husk 3.54 181 2.17 198 390 
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Várhegyi 

et al. 

201114 

4 and 40 

°C/min; 

Two stepwise 

T(t) programs. 

Sorghum 2.49 188 2.23 165 63 

Wheat straw 1.76 188 1.60 188 229 

Trninić et 

al. 201215 

5, 10 and 20 

°C/min; 

Stepwise T(t) 

Corncob (Hawaii) 3.09 185 2.44 183 248 

Corncob (Serbia) 2.21 187 2.17 194 252 

Tapasvi et 

al., 201316 

5, 10, 20 and 40 

°C/min; CRR 

T(t); Modulated 

T(t); Stepwise 

T(t); Two 

isothermal T(t) 

programs. 

Birch 5.17 171 3.43 152 71 

Spruce 3.51 168 3.30 161 139 

Barta-

Rajnai et 

al. 201717 

2.5, 10 and 40 

°C/min; 2 

stepwise and 3 

isothermal T(t) 

Bark of spruce 3.33 184 2.18 207 380 

Spruce 4.43 174 4.26 186 260 

a reldevN is the root mean square relative deviation of the experimental -dm/dt curves of a given sample. b 
The 

dimensions of E and reldevN are kJ/mol and %. 

4.4. Restricting the Evaluations to Constant Heating Rate Experiments.  As mentioned in the 

Introduction, almost all isoconversional kinetic studies were based only on constant heating rate 

experiments.  Herewith we examine this approach from the aspects of the present work.  In Tables 1 and 2 

there was at least one experiment with nonlinear T(t) for each sample.  Table 3 shows the evaluations that 

were carried out only on the constant heating rate experiments.  Here three ways were used for the 

determination of the c factors (as shown in Subsection 3.3), while the order of polynomials for E() varied 

from 0 to 3.  The evaluations were based on 46 constant heating rate experiments that were available for 

the 16 biomass samples, hence Table 3 was based on 3×4×16 evaluations. 

It turned out that the model variants with constant E gave better fit qualities (lower reldev46 values) for 

the subset of the constant heating rate experiments than the third order polynomials for all available 

experiments (reldev85) in Table 2.  Accordingly we do not need variable E() functions if the aim of the 

modelling is to describe only constant heating rate experiments. 

The parameters obtained from the constant heating rate experiments can provide some rough predictions 

for the remaining 39 experiments with nonlinear T(t), as the corresponding reldev39 values shows in the 

table.  From this respect the prediction power of the constant E model is close to those of the E() model 

variants. 

 

 

 



 Empirical models with constant and variable activation energy  

 14 

Table 3.  Evaluations of the Constant Heating Rate Experiments Onlya,b 

Order of polynomials for E 0 1 2 3 

Separate ci for each 

experiment 

fit (reldev46) 2.70 2.56 2.43 2.23 

predictions 

(reldev39) 

5.95 6.12 5.61 5.71 

mean E 203 207 190 191 

lowest E 172 126 -56 -492 

highest E 261 410 478 645 

Common c for the  

experiments of a 

sample 

reldev46 2.77 2.61 2.48 2.27 

predictions 

(reldev39) 

6.29 6.42 6.19 6.13 

mean E 203 207 191 192 

lowest E 172 139 24 -478 

highest E 261 408 478 648 

ci were approximated 

by mass loss values 

reldev46 2.85 2.74 2.56 2.33 

predictions 

(reldev39) 

6.01 6.16 5.99 5.93 

mean E 203 207 191 193 

lowest E 172 144 82 19 

highest E 262 383 411 669 

a The constant heating rate experiments were evaluated in different ways for the 16 biomass samples.  reldev46 is 

the root mean square relative deviation calculated for all constant heating rate -dmobs/dt curves.  reldev39 characterizes 

how the obtained models can predict the 39 experiments with nonlinear T(t). b 
The dimensions of E, reldev46 and 

reldev39 are kJ/mol and %. 

4.5. Realistic and Unrealistic E values.  As Table 3 shows, the evaluation of the constant heating rate 

experiments resulted in highly negative E=1 values when third order polynomials were used for E(), and 

the c scale factors were determined by the first and second methods of Subsection 3.3.  There were no 

negative E values when the c factors were approximated by the third way of Subsection 3.3 and the model 

contained only 10 parameters (4 coefficients for E() and 6 coefficients for ln Ã()).  However, unrealistic 

E values appeared in this case, too.  Positive, but unrealistically low E values were obtained at four of the 

16 biomass samples then.  The highest E value in this group, 669 kJ/mol, also appear to be unrealistic.  At 

this point we should clarify the term “unrealistic”.  One can start from the IUPAC definition of the activation 

energy: “An empirical parameter characterizing the exponential temperature dependence of the rate 

coefficient”.28  Therefore we may expect that even an empirical model should give realistic temperature 

dependences for the reaction rate at any  value.  The activation energy values 19 kJ/mol and 669 kJ/mol 

in Table 2 would correspond to rather unusual temperature dependences at 600°C: an increase from 600°C 
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to 915°C doubles only the reaction rate at E=19kJ/mol, while a step from 600°C to 650°C increases the 

reaction rate by a factor of 150 at E=699kJ/mol.  Such temperature dependences do not occur in the thermal 

analysis of biomass samples in the kinetic regime.  Accordingly one should choose a model variant with 

less than ten parameters if the evaluation is based only on constant heating rate experiments. 

The above observations indicate a particularly strong compensation effect between E() and A()f() in 

eq 2.  As mentioned above, E() and A()f() can be arbitrary functions which may have any positive 

values in the domain 0≤<1.  The test calculations of this work indicated that an arbitrary A()f() can 

compensate even the negative E values without a worsening of the fit quality. 

5. LEAST SQUARES CURVE FITTING FOR obs AND dobs/dt  

5.1 Evaluation of obs values.  The literature of the “model-free” evaluations is based on parameter 

determinations either from obs values, or from obs and dobs/dt values.1,3,4  The present section deals with 

the least squares evaluation of these experimental quantities.  As mentioned above, the experimental reacted 

fraction can only be determined approximately for biomass samples because part of the pyrolysis reactions 

overlap with the carbonization of the formed char.  An alternative would be the modeling of the whole 

thermal decomposition, pyrolysis and char carbonization together, but the latter process lasts until very high 

temperatures.27  

Table 4.  Least squares evaluation of  exp and d exp/dt a,b 

Sample B P W 

Constant E; evaluation of 

 exp  

E 192 213 197 

reldev4 1.05 1.48 1.08 

E is 3rd order polynomial; 

evaluation of exp  

mean E 189 211 196 

lowest E 161 155 182 

highest E 202 227 204 

reldev4 0.97 1.45 1.05 

Constant E; evaluation of 

d exp/dt  

E 197 207 193 

reldev4  3.26 3.79 3.39 

E is 3rd order polynomial; 

evaluation of dexp/dt  

mean E 179 189 181 

lowest E 70 78 89 

highest E 216 229 215 

reldev4 2.62 3.15 2.74 

a The experiments on young shoots of black locust (B), poplar (P), and willow (W) were evaluated. b 
The 

dimensions of E and reldev4 are kJ/mol and %. 
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The biomass samples from the work of Mészáros et al.12 were selected for test evaluations in this section.  

The reacted fraction was approximated as 

𝛼𝑜𝑏𝑠(𝑡)  
𝑚150°𝐶

𝑜𝑏𝑠 −𝑚𝑜𝑏𝑠(𝑡)

𝑚150°𝐶
𝑜𝑏𝑠 −𝑚600°𝐶

𝑜𝑏𝑠  (17) 

Here the starting point was selected to be 150°C, which is after the drying of the sample and before the 

start of the thermal decomposition.  The selected final point, 600°C is a compromise: the reaction rate is 

already low there while the long, flat, featureless tailing is not overemphasized in the domain of evaluation.  

(See Figure 2a – 2b and the figures on these samples in the Supporting Information.)  When obs is 

evaluated, the objective function, eq 3, and the formula for the relative deviation, eq 6, are written for obs 

and  calc. 

The results are summarized in Table 4.  The evaluation of the  exp values by constant E and by third order 

polynomials for E() gave nearly identical fit qualities.  The differences in reldev4 are 0.08 for the black 

locust and only 0.03 for the other two samples.  These data suggest that there is no need for a variable E 

when the investigators are interested in the modelling of obs only.  The parameters derived from the obs 

values provide some rough approximations for the dobs/dt curves, too, as shown in Figure 4.  There are no 

substantial differences between the constant E and the 3rd order E() models from this aspect.  Figure 4 

illustrates the fit qualities obtained by the constant E model. 

 

     

Figure 4.  Fit qualities for the 40°C/min experiment on the willow shoots sample.  The constant E model 

was employed for the least squares evaluation of obs (a), and dobs/dt (b).  The experimental data are 

shown by thick gray line.  The best fitting and the predicted curves are denoted by solid and dashed lines, 

respectively.  The magenta and the blue colors correspond to the evaluation of the obs and dobs/dt data. 

 

5.2 Evaluation of the d obs/dt curves.  The differentiation of eq 17 with respect to time yields eq 14 

with the c constants by method (3) of subsection 3.3. Accordingly the results of this evaluation are similar 

to the results presented in Section 4.  Figure 4a illustrate that the parameters obtained from the dobs/dt 

curves are suitable for an approximate description of the obs data, too. 
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6. CONCLUSIONS  

(1) The E() and A()f() functions of the isoconversional (“model-free”) evaluation were approximated 

by simple, versatile formulas.  The corresponding parameters were determined by the method of least 

squares by finding the best fit for the experimental data, -dmobs/dt or obs(t). 

(2) To provide a sound basis for the work, the evaluations with the various model variants were carried 

out on 85 thermogravimetric experiments which had been published earlier with different types of kinetic 

modelling.  The experiments belonged to 16 biomass samples including woody biomass, agricultural 

residues and industrial wastes and were performed at a variety of linear and non-linear temperature 

programs. 

(3) Ten kinetic parameters and one or more scale factors provided good fit with reasonable E values for 

the experimental -dm/dt data.  In this model variant E() was approximated by third order polynomials and 

the prefactor part of the kinetic equation, A()f(), was approximated by an empirical formula with six 

adjustable parameters.  When the model contained more parameters, the evaluation proved to be ill-

conditioned.  Quite different kinetic parameters could provide similar fit qualities in such cases while the 

E() functions exhibited meaningless E values in the vicinity of =1. 

(4) A model with constant E values provided acceptable fit qualities in all tested cases.  Here again 

A()f() was described by an empirical formula with six parameters.  This empirical model allows fast 

numerical solutions that may be helpful in complex multidimensional modellings.  Compared to the one-

step kinetic models of the literature, the presented empirical model with constant E has an advantage: it can 

describe the pyrolysis at a wide range of T(t) functions with a given set of model parameters.  Among others 

it could reasonably approximate the TGA experiments performed with the T(t) programs in Figure 1. 

(5) When the evaluation was restricted to the constant heating rate experiments, the model variants with 

constant E or with first and second order E() polynomials provided good fit qualities.  This subset of the 

experiments could not provide enough experimental information for a meaningful evaluation by third order 

E() polynomials. 

(6) When the obs data were evaluated instead of the -dmobs/dt curves, the model variants with constant 

E and third order E() polynomials provided nearly the same fit qualities.  One should note here that 

the -dmobs/dt curves are known to be more characteristic to the peculiarities of the biomass pyrolysis than 

the integral curves (mobs or obs).  If the investigations are restricted to the integral curves, then the model 

variant with constant E is adequate. 

(7) The results suggest that the kinetic equations with variable E and A are ill-conditioned due to the 

compensation effect between E() and A()f().  The compensation effects between the constant E and A 

values are well-known, and the problems are more serious when E and A are arbitrary functions of . 

(8) Transparent ways are needed to choose reasonable approximations from the infinite number of 

solutions that can give good fit for the experiments.  In the present work the order of the polynomials for 

E() was decreased to third order or below while the corresponding changes in the fit quality were carefully 

checked. 
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NOMENCLATURE 

 = reacted fraction [dimensionless] 

A = pre-exponential factor [s-1] 

Ã() = A()f()/(1-) at <1   [s-1] 

a, ā, b, b̄ = coefficients in the polynomial approximations of E() and ln Ã()   [kJ/mol, ln s-1] 

E = activation energy [kJ/mol] 

f() = empirical function expressing the change of the reactivity as the reactions proceed [dimensionless] 

g() = the integral of 1/f() in eq 16 [dimensionless] 

hj = height of an experimental –dm/dt curve [s-1]  

m = the mass of the sample normalized by the initial dry sample mass [dimensionless] 

of = objective function minimized in the least squares evaluation [dimensionless] 

Nexper = number of the experiments evaluated together by the method of least squares 

Nj = number of the evaluated data on the jth experimental curve 

R = gas constant (8.3143×10-3 kJ mol-1 K-1) 

reldev = the deviation between the observed and calculated data expressed as per cent of the corresponding 

peak height  [%] 

reldev85 = root mean square of the reldev values of 85 experiments  [%] 

t = time [s] 

T = temperature [°C, K] 
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T1(x) … T5(x) = Chebyshev polynomials of the first kind 

x = 2-1   [dimensionless] 

Subscripts: 

i = digitized point on an experimental curve 

j = experiment 
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