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Abstract
Appropriate selection and well-timed measurement of plant developmental, morphological and physiological parameters are 
essential to maximize efficacy and minimize time consumption of experiments. To select for the most sensitive indicators 
of drought or salt stress, three independent pot experiments with diverse setups were analysed with 20–20 measured param-
eters. Parameters of plant growth, phenology and symbiotic interactions, visual stress symptoms, photosynthetic activity, 
nutrient composition and vitality were studied and the result matrices were evaluated with principal component analysis 
(PCA). Stress effects manifested in PC1 of two experiments and in PC2 of the third one. Traits assumed to be adequate for 
stress indication were characterized by high PC1 or PC2 loading values. Beside parameters of biomass production, growth 
and visible stress symptoms, less evident traits e.g. root electrical capacitance, membrane stability index in roots and leaves, 
relative water content of leaves and SPAD units were identified.

Keywords Plant trials · Stress indication · Drought · Salinity

Introduction

Stress is an altered physiological response of living organ-
isms caused by physical, chemical or biotic environmental 
factors that tend to shift their equilibrium away from its opti-
mal thermodynamic state (Gaspar et al. 2002; Strasser 1988). 
Soil or water pollution, climate change or other anthropo-
genic effects can cause severe abiotic or biotic stress for both 
cultivated plants and natural vegetation. Understanding the 
effective plant resilience and adaptation to heterogeneous 
and changing environmental conditions is, therefore, in the 
forefront of agricultural, ecological or conservation research.

An appropriate experimental design with a selection of 
the most sensitive parameters to be measured is a prereq-
uisite for an effective and time efficient study, although 
the right choice of these parameters is not always obvi-
ous. Regarding their relevance, applicability and the ade-
quate number of parameters to be used, there are numer-
ous examples of experimental approaches. Several groups 
of quantitative or qualitative parameters exist which 
have been applied to characterize plant development and 
growth, physiological status, symbiotic interactions, stress 
symptoms, photosysnthesis, etc. during or at the end of 
an experimental growth period (Berger and Ludwig 2014; 
Grümberg et al. 2015; He and Dijkstra 2014; Kalaji et al. 
2016; Latef and Chaoxing 2014; Munns 2002; Roger 2001; 
Salvatori et  al. 2014; Talaat et  al. 2015; Wehner et al. 
2015; Zhang et al. 2015): (1) the simplest and most obvi-
ous parameters are: fresh and dry weight, root and shoot 
biomass production, root to shoot ratio, leaf area, grain 
yield, reproductive index. Most of them can be measured 
in a non-destructive manner, such as using optical imaging 
techniques, e.g., plant height, shoot diameter, leaf number, 
number of nodes, colour of leaves, the state of flowering, 
podding or grain filling, as well as observations of growth 
morphological dynamics, visible impacts of stress-based 
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wilting symptoms, senescence, leaf necrosis, and pheno-
typical variations (Berger et al. 2010; Li et al. 2014; Vol-
lenweider and Günthardt-Georg 2005). (2) Plant responses 
characterized by the nutritional status of plant shoots, roots 
or yield. (3) Water relations of the plant: leaf water poten-
tial, relative water content in leaves, absolute and relative 
transpiration rates (Verslues et al. 2006). (4) Parameters 
related to photosynthesis (Chaves et al. 2009) have been 
previously measured by destructive methods, such as chlo-
rophyll concentration or intracellular  CO2 concentration in 
leaves, whereas they are already determined mostly non-
destructively and can be measured several times during an 
experiment, e.g., chlorophyll fluorescence measurements 
(Krause and Weis 1984), SPAD (Soil Plant Analysis Devel-
opment) units, stomatal conductance or photosynthetic 
water use efficiency. (5) Protein, free amino acid, proline, 
glycin-betaine, soluble sugar and endogenous abscisic acid 
content of plant tissues or metabolic fingerprinting values 
(Schauer and Fernie 2006; Shulaev et al. 2008) describe 
plant biochemical processes, and they are potential stress 
indicators. (6) Measurement of enzyme activities, e.g., 
ATPase, superoxide dismutase, catalase, ascorbate peroxi-
dase, glutathione reductase, or characterization of oxidative 
damage or lipid peroxidation are also sensitive tools on the 
biochemical level. (7) Electrolyte leakage and membrane 
stability indices may provide valuable information about 
the condition and the potential resilience of plant cells. (8) 
The presence or absence and the developmental state of 
symbiotic relationships may indicate plant physiological 
status and sign stress effects indirectly (Füzy et al. 2008a). 
(9) Measurement of electrical capacitance in root–soil sys-
tems is a promising non-destructive method for assessing 
root growth and activity (Cseresnyés et al. 2013). (10) The 
study of the dynamics of plant metabolism and regulatory 
mechanisms under stress often requires a combination of 
the traditional physiological approaches with functional 
genomic characterization using transcriptomic, proteomic, 
metabolomic or ionomic analysis (Chaves et al. 2009).

A joint multivariate statistical analysis on many of 
these plant growth or physiological parameters used in 
three independent experiments with different test plants 
and environmental conditions is presented. Our analysis 
aimed to assess the adaptability of these parameters to 
indicate stress responses.

Materials and methods

Pot experiments

Three independent pot experiments (I–III) were accom-
plished. In experiment (I) salt tolerance of two wheat 

(Triticum aestivum L.) cultivars were tested, in experiment 
(II) two soybean (Glycine max L.) varieties were grown 
under drought stress conditions, while in experiment (III) 
sea aster (Tripolium pannonicum L.), a common halophyte 
was grown under drought, salt and combined stress condi-
tions (Tables 1, 2).

Measured parameters

The following parameters were measured during the growth 
period of plants or at the end of the experiments—some of 
them were measured only in 1 or 2 experiments (Table 2).

Plant growth parameters: the oven dried (70 °C, 72 h) 
plant root and shoot biomass (SDM, RDM), root:shoot ratio 
(R/S) and leaf area (LA) were measured and calculated at 
harvest, while, plant height (PH), leaf number (LN), num-
ber of nodes (NN), length of the longest leaf (LL) and the 
presence of flowers (FLW) were monitored during the total 
plant growth period.

Visual assessment of plant condition: colour of leaves 
(COL), wilting symptoms (WS) after drought stress were 
surveyed and categorized in a four grade scale: 0: no vis-
ible symptoms, 1: 1–2 affected leaves, 2: serious wilting 
on some leaves, 3: wilting symptoms on whole plant, some 
leaves die away, 4: plant death. Number of dry leaves (DL) 
was counted regularly, while relative water content of leaves 
(RWC) was measured more times during the experiments 
(Barrs and Weatherley 1962; Gonzalaz and; González-Vilar 
2007).

Functional parameters of the photosynthetic apparatus: 
chlorophyll content (CHL) was determined according to 
Porra et al. (1989). Stomatal conductance (SC) was meas-
ured by a leaf porometer (Decagon Devices Inc., Pullman, 
WA, USA; Model Sc-1). Photochemical activity of pho-
tosystem II characterised by Fv/Fm and Fv/F0 values were 
measured by a Chlorophyll a fluorometer (Opti-Sciences 
OS-30p + Fluorometer, Hudson, New Hampshire, USA, 
Tsimilli-Michael and Strasser 2008). SPAD values were 
monitored by a SPAD-502 meter (Konica Minolta Inc., 
Osaka, Japan).

Electrical capacitance (EC) and phase angle of the 
impedance (F) were measured in the root–soil system. EC 
is determined by the extension and the uptake activity of 
the root system (Cseresnyés et al. 2016), while F primar-
ily depends on the physicochemical properties of root tis-
sues (Cseresnyés et al. 2013). Capacitance response of the 
root–substrate system was detected using a GW-8101G pre-
cision LCR meter (GW Instek Co. Ltd., Taiwan) at 1 kHz 
and 1 V AC. EC and F values for parallel resistor–capacitor 
(RC) circuit were displayed. The ground electrode (a stain-
less steel rod, 15 cm long and 6 mm i.d.) was inserted into 
10 cm depth in the substrate at 5 cm distance from the stem 
base, while the plant electrode was attached to the stem at 
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equal height (1 cm) above substrate level through a 5-mm-
wide aluminium strip. 2 h before electrical measurements, 
pots were watered to field capacity.

Macro- and micronutrient concentrations in plant tis-
sues were also investigated. P, K, Zn and Fe concentrations 
were assessed after wet digestion of the air-dried plant 
samples with cc.  HNO3 + cc.  H2O2. Shoot nutrient contents 
were measured by an ICP-AES instrument (Jobin–Yvon, 
ULTIMA2). Nitrogen content of the leaves was determined 
by the Kjeldahl method (1883) after digestion of the samples 
in sulfuric acid (cc.  H2SO4).

Root nodulation rate (NOD) of soybean plants were 
scored from 0 to 8. 0: no nodules, 1: 1–10 nodules, 2: several 
nodules, but low density, 3: nodules are in medium density, 
4: very dense nodulation. The assessments were made for 
the main root and the lateral roots separately, then the scores 
were summarized. Arbuscular mycorrhizal fungal (AMF) 
colonization of roots were determined after clearing and 
staining (Phillips and Hayman 1970). Fungal colonization 
intensity (M) and arbuscule richness of roots (A) were cal-
culated according to Trouvelot et al. (1989).

Vitality and biochemical parameters were measured as 
well: the membrane stability index in roots (MSIR) and/or 
shoots (MSIS) (Sairam et al. 1997), root vitality test by the 

triphenyl-tetrazolium chloride (TTC) method (Clemensson-
Lindell and Persson 1995) and the root ethylene production 
(ET) by GC (Bassi and Spencer 1989; Cristescu et al. 2012).

Statistical analyses

Principal component analyses (PCA) were made by 20 
selected variables from each experiment to designate the 
main factors that indicate stress situations effectively. The 
statistical analyses were carried out by the Statistica soft-
ware package (Dell Inc. 2015. version 13).

Results

As a result of the PCA, the projections of the cases on a 
factor-plane with the two principal components (PC) were 
imaged (Figs. 1, 2, 3a), and the efficiency of separation 
in case of the main factors were checked. A very clear 
separation of salt treatments was shown by PC1 in experi-
ment I, which accounted for 45.7% of the total variation. 
Control and salt treatments were separated with minimal 
overlapping (Fig. 1a). Statistical analysis of experiment 

Table 1  The term, conditions and measured parameters of the three pot experiments

G Funneliformis geosporum strain (BEG47), A soil with indigenous AM fungi from artemisia steppe, L soil with indigenous AM fungi from 
short grass pasture, the soils were collected from a salt effected soil (Hungary, Apaj), EC root electrical capacitance, F phase angle, SDM shoot 
dry mass, RDM root dry mass, PH plant height, LA leaf area, R/S root/shoot ratio, LL leaf length, DL number of dry leaves, NN nodes number, 
LN number of leaves, COL leaf colour, WS wilting symptoms, FLW flowering stage, RWC  relative water content of leaves, MSIL membrane 
stability index of leaves, MSIR membrane stability index of roots, TTC  root vitality test, CHL chlorophyll content, SPAD SPAD units, Fv/Fm 
calculated chlorophyll fluorescence data, SC stoma conductance, ET ethylene production of roots, M intensity of AMF colonization, A arbuscule 
richness in roots, NOD root nodulation rate, N, P, K, Fe, Mn, Zn macro- and micro-element content of shoots, 1–9 after the letters weeks after 
stress treatment started

Experiment I Experiment II Experiment III

Plant Wheat (Triticum aestivum L.) Soybean (Glycine max L.) Sea aster (Tripolium pannonicum L.)
Cultivars 1 tolerant

1 sensitive
2 Hungarian variety
Emese, Alíz

–

Other treatments – – Inoculation with AM fungi: G, A, L
Parallels 10 10 3
Substrate Rhyolite-vermiculite mixture Calcic chernozem soil Pumice
Volume per pot 700 mL 700 mL 150 mL
Duration 40 days 65 days 140 days
Stress factors Salt—Na2CO3

Three doses: 0.1, 0.2, 0.3 m/m % in 
substrate—added before seeding

Drought—reduced watering until wilt-
ing point, 2 × 2 week period

Salt—Na2CO3 (0.1%)
Drought—PEG (2.5%)
Salt and drought
(watering weekly)

Nutrient addition Hoagland solution
weekly

– Hoagland solution
weekly

Conditions 16/8 h photoperiod (400–500 μmol/m2/s), 26/18 °C, respectively
Measured parameters EC1, EC2, EC3, EC4, SDM, RDM, 

F1, F2, F3, F4, PH6, PH12, R/S, LA, 
MSIL, TTC, Fv/Fm, Fv/F0, SPAD, 
SC

EC, SDM, RDM, PH, LA, R/S, NN, 
WS, RWC, Fv/Fm, CHL, M, A, 
NOD, N, P, K, Fe, Mn, Zn

SDM, RDM, LL, R/S, LN2, LN4, COL, 
DL, RWC, FLW, ET, MSIL, MSIR, 
TTC, M, A, Fv/Fm, SPAD3, SPAD6, 
SPAD9
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Table 2  Abbreviation, time of measurement and measurement characteristics of the plant parameters examined

Parameters Abbr. Experi-
ment

Unit Instrument Reference Measurement specification

I II III

Shoot dry mass SDM H H H g  plant− 1

Root dry mass RDM H H H g  plant− 1

Plant height PH G H – cm
Leaf area LA H H – cm2 Canon, LIDE120
Root: shoot ratio R/S H H H
Leaf number LN – – G pcs
Leaf length LL – – G cm Length of the longest leaf
Node number NN – G – pcs Main- and lateral-stem 

nodes
Wilting symptoms WS – G – Visual assessment (0–4 

scale)
Dry leaf number DL – – G pcs
Leaf colour COL – – G Visual assessment (1–3 

scale)
Relative water content RWC – G H % Barrs and Weatherley 

(1962)
G: measured at the end of 

the first drought period
Flowering stage FLW – – G Presence or absence of 

flowers or flowering stem
Maximal quantum effi-

ciency
Fv/Fm H – H Opti-Sciences, OS-30p 

fluorometer
Tsimilli-Michael and 

Strasser (2008)
Chlorophyll fluorescence Fv/F0 H – H Opti-Sciences, OS-30p 

fluorometer
Tsimilli-Michael and 

Strasser (2008)
Chlorophyll content CHL – H – µg  g− 1 Helios β, spectrofoto-

meter
Arnon (1949)
Porra (1989)

Chlorophyll a + b

SPAD value SPAD H – G Konica Minolta, SPAD-
502

Stomatal conductance SC G – – mmol
m− 2  s− 1

Decagon Devices, Sc-1

Membrane stability index 
of roots

MSIR H – H % Sariam et al. (1997)

Membrane stability index 
of leaves

MSIL – – H % Sariam et al. (1997)

Root vitality TTC H – H abs  g− 1 Helios β, spectrofoto-
meter

Clemensson-Lindell and 
Persson (1995)

Ethylene production ET – – H nmol  g− 1  h− 1 GC 8000, Fisions instru-
ments

Bassi and Spencer (1989)

Nitrogen N – H – % Kjeldahl (1883) Digestion in cc.H2SO4

Phosphorus P – H – mg  kg− 1 ICP-AES, ULTIMA2 Digestion in cc.HNO3 + cc.
H2O2

Potassium K – H – mg  kg− 1 ICP-AES, ULTIMA2 Digestion in cc.HNO3 + cc.
H2O2

Iron Fe – H – mg  kg− 1 ICP-AES, ULTIMA2 Digestion in cc.HNO3 + cc.
H2O2

Manganese Mn – H – mg  kg− 1 ICP-AES, ULTIMA2 Digestion in cc.HNO3 + cc.
H2O2

Zinc Zn – H – mg  kg− 1 ICP-AES, ULTIMA2 Digestion in cc.HNO3 + cc.
H2O2

Electrical capacitance EC G H – nF GW-8101G, LCR meter Cseresnyés et al. (2016) 1 V, 1 kHz (AC)
Phase angel F G – – Degree GW-8101G, LCR meter Cseresnyés et al. (2013) 1 V, 1 kHz (AC)
AMF—M% M – H H % Olympus BX51 micro-

scope
Trouvelot et al. (1989) Root colonization intenzity
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II with drought stress resulted in a very similar pattern: 
control and drought stressed plants were separated accord-
ing to PC1 without any overlap, where PC1 accounted 
for 39.4% of the total variation (Fig. 2a). Though with a 
strong overlap, there is a clear bias between the two wheat 
varieties along PC2 in experiment I, while no separation 
between soybean varieties were detected in experiment II. 
In experiment III with sea aster plants, drought, salt and 
combined stress effects seemed to show a limited separa-
tion along PC2—control cases tended to appear towards 
the higher values (Fig. 3a). PC1 of experiment III sepa-
rated the plants according to the origin of the microbiota 
of the inoculum used, i.e., one of the two halophyte com-
munities or a pure culture (Table 1). Microbial inocula-
tion, therefore, caused higher variation in the measured 
parameters, than stress treatments, which accounted only 
for 16.5% of the total variation along PC2.

The traits adequate for stress indication can be chosen 
according to their higher loading values on PC1 of experi-
ment (I) and (II) and PC2 of experiment (III) (Figs. 1, 2, 
3b). Among the 20 measured traits in PC1 of experiment I, 
electrical capacitance values of the root-soil system, shoot 
and root dry weights and plant height measured at 6 weeks 
old plants were responsible for the maximum variation. The 
maximum variation of PC1 in experiment II originated from 
values of shoot dry weight, relative water content of leaves, 
electrical capacitance, wilting symptoms, leaf area and plant 
height at harvest. At experiment III the distribution of varia-
tion among traits was analysed in PC2 (Fig. 3b). The maxi-
mum variation along PC2 of experiment III was explained 
by leaf numbers of plants measured 2 and 4 weeks after 
stress treatment started, SPAD value, membrane stability 
index in leaves and roots and number of dry leaves 7 weeks 
after stress treatment started.

G the parameter was measured one or more times during the growth period, H the parameter was measured only at harvest

Table 2  (continued)

Parameters Abbr. Experi-
ment

Unit Instrument Reference Measurement specification

I II III

AMF—A% A – H H % Olympus BX51 micro-
scope

Trouvelot et al. (1989) Arbuscule richness

Bradirhizobial nodula-
tion

NOD – H – Visual assessment (0–4 
scale on main and lateral 
roots)

Fa
ct

or
 2

: 1
3.

4%

Factor 1: 45.7%

T0

S0

T1

S1

T2

S2

T3

S3

A

0.03%
0.05%
0.25%

0.86%
1.19%
1.36%

3.49%
4.29%
4.40%
4.66%

6.47%
6.75%
7.01%
7.03%

8.27%
8.40%
8.52%
8.82%
8.98%
9.17%

0% 2% 4% 6% 8% 10% 12%

TTC
SC

SPAD
R/S

Fv/F0
Fv/Fm

F4
F1
F3

MSIR
F2

PH12
LA

EC1
PH6
EC2

RDM
EC4
SDM
EC3B

Fig. 1  The result of PCA in experiment I. a Projection of the cases on factor-plane (T/S: wheat varieties—tolerant/sensitive, 0–3: salt doses), b 
the PC1 loading values of the 20 measured parameters (abbreviations of the traits are in Table 1)
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Discussion

Drought and salinity stresses generally reduce plant growth 
and productivity by decreasing e.g.,  CO2 assimilation rates 
and stomatal conductance, reducing leaf area, stem exten-
sion and root growth, or disturbing plant osmotic relations 
and water-use efficiency (Farooq et al. 2009; James et al. 
2008; Munns 2002; Ohashi et al. 2006; Ueda et al. 2003). To 
manage multiparametric data matrices and select treatments 
responsible for the maximal variety, PCA is a useful tool, 
which can be a guidance among trials (Dresler et al. 2014; 
Maruyama et al. 2014; Chen et al. 2014; Sutka et al. 2011).

In our study, stress treatments were clearly separated both 
in experiment I and II, as salinity and drought caused a much 
higher variance in parameters, than the plant cultivar or any 
other circumstances. AMF inoculation contributed to the 
highest variance in experiment III (sea aster, drought and 
salt stress), while control and stressed plants were separated 
along the y axis in a limited degree (Fig. 3a). A slight shift 
in the microbial community can cause substantial changes in 
plant anatomical and physiological parameters (Barea et al. 
2002; Högberg and Read 2006), while the effects of stress 
treatments for a well-adapted halophyte plant such as sea 
aster may be less pronounced compared to cultivated varie-
ties. Sea aster is a specialist of saline or sodic grasslands and 
able to tolerate extreme water regimes (Shennan et al. 1987; 
Gray 1974). Stress effects may also be masked by genotypic 
and phenotypic heterogeneity of natural plant populations.

Plant growth parameters were, not surprisingly, good 
indicators of stress conditions, although the different trials 
revealed stress effects with differing sensitivity. Shoot dry 
weight (SDM), root dry weight (RDM), leaf area (LA) and 
plant height (PH) showed the highest variances in PC1 of 
experiment (I) and (II) However, neither SDM, RDM, nor 
longest leaf length (LL) were good indicators of stress in 
experiment (III) In case of a stress tolerant plant species 
such as sea aster, a well-timed measurement of phenotypical 
changes can indicate the stress effect more sensitive, than 
biomass data. Indeed number of leaves (LN) seems to be the 
most sensitive indicator for sea aster, provided the timing 
of measurement is appropriate. Stress conditions changed 
the number of leaves in a few days after the onset of stress. 
Similar phenotypical changes in leaves were detected in 
drought tolerant soybean plants by Ku et al. (2013), who 
found that plants responded to stress effects by leaf area 
changes without biomass loss. Hence these parameters may 
be sensitive indicators in certain species, although not gener-
ally applicable and should be optimised to each species and 
stress situation.

Suitability of drought or salinity stress symptoms charac-
teristics, e.g., relative water content (RWC), wilting symp-
toms (WS), colour of leaves or dry leaf number (DL) were 
confirmed in the three experiments. It is of principal interest 
to find parameters that indicate stress conditions before the 
symptoms appear or biomass reduction is detectable.

Macro- and microelement concentrations of leaves were 
poor stress indicators in experiment II, only phosphorus 

Fa
ct

or
 2

: 1
7.

3%

Factor 1: 39.4%

AC EC

AD ED

A

0.01%
0.05%
0.41%
0.74%
0.90%
1.38%

2.38%
3.17%

3.93%
5.31%
5.32%

5.96%
7.08%

7.91%
8.32%
8.43%
8.62%

9.44%
9.99%

10.64%

0% 2% 4% 6% 8% 10% 12% 14%

Fv/Fm
N

Zn
K

CHL
NOD

Fe
R/S

A
M

Mn
P

RDM
NN
PH
LA

WS
EC

RWC
SDMB

Fig. 2  The result of PCA in experiment II. a Projection of the cases on factor-plane (A/E: soybean varieties—Alíz/Emese, C/D: control/drought 
stressed plants), b the PC1 loading values of the 20 measured parameters (abbreviations of the traits are in Table 1)
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and manganese concentration had a limited impact in PC1. 
Drought and salinity have a complex effect on plants: they 
can decrease transpiration rate, modify metabolic processes 
or the uptake of water and nutrients (Ahanger et al. 2014; 
Farooq et al. 2009; Hu and Schmidhalter 2005), while appro-
priate water supply can result in a dilution effect (James 
et al. 2005) with lower nutrient concentrations in control 
plants. These adverse effects can interfere, mitigate or extin-
guish the concentration changes.

The functioning of the photosynthetic apparatus can 
respond sensitively to environmental disturbances. Moder-
ate drought typically impacts stomata, while metabolic and 
structural changes are provoked by severe or long-lasting 
drought (Jedmowski et al. 2013). Salt stress may also reduce 
the performance of the photosynthetic apparatus, mostly by 
the disorder of the electron transport system (Kalaji et al. 
2016). Although chlorophyll content of plant leaves has been 
indicated as a good stress indicator (Li et al. 2006; Mehta 
et al. 2010; Ueda et al. 2003; Chaves et al. 2009), it could 
be only confirmed in experiment III (Fig. 3). Chlorophyll 
content may be diluted by a higher plant biomass similarly 
to macro- and micro-element concentrations of the shoot. 
A stress-induced decrease of biomass may, therefore, miti-
gate the parallel decline of chlorophyll content. Absence 
of growth retardation in experiment III hence may have 
contributed to expose the temporal decline in chlorophyll 
concentration during the duration of the experiment. No dif-
ference compared to the SPAD values of control plants was 
observed 3 weeks after the stress treatment started (SPAD3) 

which gradually had a higher impact after 6 and 9 weeks 
with 7% and 16% PC2 loading values, respectively (Fig. 3b).

Fv/Fm values were measured in all three experiment, but 
uniformly this parameter was not among the good stress 
indicators, in accordance with other studies with the same 
and other plant species (Andersone et al. 2012; Nakayama 
et al. 2007; Ohashi et al. 2006).

Physiological state of plants is well reflected by their 
relationship with their microsymbiont partners. A functional 
symbiosis requires a sensitive balance between the plant and 
mycorrhizal fungi or nodulating rhizobium bacteria thereby 
any changes in the plant will affect the symbionts and vice 
versa (Füzy et al. 2008a).  N2 fixation has been reported to 
decrease early in a drying soil (Serraj et al. 1990). Besides, 
drought may decrease nodule number and nodule biomass 
as well (Sinclair et al. 1988; Smith et al. 1988). Mycorrhizal 
colonization could be diminished (Al-Karaki et al. 2004) 
but also enhanced (Füzy et al. 2008a, b) by drought stress. 
Salinity stress may also influence the symbiotic relation-
ship (Al-Karaki 2000; Kaya et al. 2009; Wu et al. 2010). 
Both soybean and sea aster are highly mycorrhiza depend-
ent plants (Carvalho 2001; Howeler et al. 1987) which may 
have caused that mycorrhizal colonization parameters are 
only moderately strong stress indicators in experiment II and 
stress treatments had almost no effect on colonization rates 
in experiment III. Plants with weaker mycorrhiza depend-
ency may respond to stress more sensitively through their 
symbiotic parameters.

Fa
ct

or
 2

: 1
6.

5 
%

Factor 1: 30.3 %

GD GS

GDS GC
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ADS AC
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0.07%
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Root capacitance measurement (EC) is a promising 
method in plant stress research, which is adequate for assess-
ing root growth, length and surface area, as well as activity 
(Cseresnyés et al. 2013). Although an excellent monitor-
ing tool, it is hardly adaptable for species with basal rosette 
leaves. The simple and non-intrusive record of both struc-
tural and functional characteristics makes EC measurement 
an excellent method for stress indication as it was shown in 
experiment (I) and (II) Likewise, membrane stability index 
(MSI) seemed to be a relevant stress indicator (Figs. 1a, 
3a), which proved to be one of the key factors of variations 
especially when other obvious parameters did not show dif-
ferences or could not be measured, as in experiment (III) 
Although not the most sensitive parameter, MSI is widely 
used to indicate stress conditions for several species and 
circumstances (Blum and Ebercon 1981; Bajji et al. 2002; 
Tripathy et  al. 2000; Bouslama 1984). In contrast with 
numerous literature (Brini et al. 2009; Rahnama et al. 2010) 
the stomatal conductance measured in experiment I was not 
the most sensitive physological parameter either.

Time, cost of materials and especially the allocation of 
human resources are fundamental factors in the feasibility 
of experiments. It is, therefore, crucial to investigate plant 
parameters which are sensitive enough to minimize costs 
and labour with the highest benefits in meaningful data. 
Nonetheless, it is equally important not to underestimate 
the number of parameters which will properly characterize 
the often very slight or even highly complex phenological 
or functional changes a stress situation may cause. Stress 
responses may often lead to biomass differences and dilution 
of certain metabolites or nutrients in non-stressed individu-
als which can disturb the assessment of their parallel stress-
related decrease in treated plants.

Consequently, it seems that chlorophyll content or func-
tional parameters of the photosynthetic system are useful 
stress indicators preferably when plant biomass is constant 
among treatments. MSI and EC proved to be the most highly 
sensitive parameters that reliably detected even minute dif-
ferences in plants as a consequence of stress conditions.
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