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Large intravalley scattering due to pseudo-magnetic fields in
crumpled graphene
Péter Kun 1, Gergő Kukucska 2, Gergely Dobrik1, János Koltai2, Jenő Kürti2, László Péter Biró1, Levente Tapasztó 1 and
Péter Nemes-Incze 1

The pseudo-magnetic field generated by mechanical strain in graphene can have dramatic consequences on the behavior of
electrons and holes. Here we show that pseudo-magnetic field fluctuations present in crumpled graphene can induce significant
intravalley scattering of charge carriers. We detect this by measuring the confocal Raman spectra of crumpled areas, where we
observe an increase of the D′/D peak intensity ratio by up to a factor of 300. We reproduce our observations by numerical
calculation of the double resonant Raman spectra and interpret the results as experimental evidence of the phase shift suffered by
Dirac charge carriers in the presence of a pseudo-magnetic field. This lifts the restriction on complete intravalley backscattering of
Dirac fermions.
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INTRODUCTION
With the discovery of the half integer quantum Hall effect in
graphene1,2 and of topological materials,3,4 Berry phase effects
have taken center stage in condensed matter research. In
graphene and other crystals with a honeycomb structure, charge
carriers have a sublattice and valley degree of freedom, described
in a continuum Dirac model by a pseudospin.5,6 As a consequence
of this spin-like property, electrons or holes belonging to the two
inequivalent valleys (K and K′, see Fig. 1) acquire a Berry phase of π
and −π, respectively during a cyclotron orbit. The importance of
pseudospin and the Berry phase are most striking when
perturbations are smooth on the atomic scale, i.e., sublattice
symmetry still holds. In this case, scattering between the two
valleys is suppressed and the pseudospin is conserved,5 leading to
some important effects that are the hallmark of graphene, such as
weak antilocalization,7 the half integer quantum Hall effect1,2 and
Klein tunneling.5,8 Importantly, complete backscattering from a
state |−q〉 to |q〉 (see Fig. 1) is forbidden, due to pseudospin
conservation5 (q is the crystal momentum measured from the K
point in the Brillouin zone). This was first shown and explained for
metallic carbon nanotubes9,10 and is crucial for the exceptional
mobility of graphene.5,11

Here we show that scattering on strain fluctuations in graphene
can lift the restriction on complete backscattering. This is demon-
strated by confocal Raman spectroscopy measurements of crumpled
graphene, where we measure a giant increase in the D′ peak
intensity. This Raman peak originates from a resonant Raman
process which involves intravalley backscattering of charge carriers.
The intravalley to intervalley scattering peak intensity ratio is found
to be as high as ID′/ID= 30, in contrast to the usual value of ≈0.1.12

Since the strain induced pseudo-magnetic field (Bps) couples to the
pseudospin,13,14 the enhancement of the D′ peak at 1620 cm−1 is
due to the extra phase acquired by charge carriers undergoing

Raman scattering on strain fluctuations. Thus, in contrast to a scalar
potential, backscattering of Dirac particles is no longer forbidden.
We reproduce our measurement results, using numerical calculation
of the double resonant Raman processes.

RESULTS AND DISCUSSION
Mechanical deformations in 2D materials with a honeycomb
atomic structure naturally give rise to a two component
pseudogauge field, which is directly proportional to the strain
tensor components.15–19 These strain induced fields have a scalar
(V(r)) and a vector (A(r)) component,18 being analogous to an
electrostatic potential and a magnetic vector potential. The latter
having opposite sign in the two valleys and giving rise to a
pseudo-magnetic field (Bps).

18 For graphene supported on
hexagonal BN, Bps is especially strong near bubbles (hundreds of
Tesla) and has a major influence on transport properties.20

Furthermore, in the highest mobility heterostructure devices it is
very likely that random strain fluctuations are the main factors
limiting mobility through intravalley scattering.21 This type of
scattering is characterized by small changes in the charge carrier
momentum and dominates if the scattering potentials are smooth
on the atomic scale, such as charged impurities,22–24 or strain
fluctuations.21 Such scattering processes are mostly explored in
charge transport experiments through weak (anti)localization
measurements.7,10,25 In supported graphene, Bps appears due to
random strain fluctuations, stemming from non perfect stacking
and interaction with the substrate. For SiO2 supported graphene,
Bps due to corrugation has values of the order of 1 T. The extra
phase aquired by the wave function of the scattered carrier, much
like a real magnetic field, suppresses the weak anti-localization
effect.25
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Confocal Raman spectroscopy is another powerful tool to
investigate strain fluctuations in graphene. Mechanical deforma-
tion induced softening or hardening of the phonon mode energy
is detectable through the shift, splitting and broadening of the G
and 2D peaks.21,26,27 However, until now direct detection of the
scattering on strain fluctuations has been lacking. Both small
(intravalley) and large momentum (intervalley) scattering is
measurable separately via the double resonant D′ and D peaks
at ≈1620 and ≈1350 cm−1. Lattice defects produce both
intravalley as well as intervalley scattering, giving contribution to
both D′ and D peaks, smooth defects which are less efficient at
producing large momentum change, mostly contribute to the D′
peak. Numerical calculations by Venezuela et al.28 show that for
closely packed alkali metals on graphene, acting as smooth
Coulomb scattering centers, the D′ peak should be more intense
than the D peak. However, the peak itself should be undetectably
small. Furthermore, for lattice defects, able to induce both types of
scattering, the measured ratio of intensities is ID′/ID= 0.1.12 This is
much smaller than the expected value of ~0.5 from analytical
theory of the double resonant processes, suggesting that
pseudospin effects could play an important role, particularly in
intravalley processes.29

The double resonant D′ process is sketched in Fig. 1b. After the
creation of the electron/hole pair the largest contribution to the D′
intensity is given by processes involving scattering by both an
electron and a hole.28,30 Backscattering of the electron and/or hole
involve an elastic defect scattering with small momentum change
and a scattering involving an LO phonon along the ΓM
direction.28,31 It has been shown previously that the process
involves a small portion of phonon phase space, as well as
relatively small regions of the Dirac cone.28,30 Since the biggest
contribution to the intensity involves backscattering within a
single valley along ΓM, this process necessarily involves a flip in
pseudospin. Indeed it is suspected by Rodriguez-Nieva et al.29 that
the pseudospin related phases of the excited electron and hole
play a dominant role in suppressing the backscattering necessary
for the D′ peak. Since Coulomb scatterers do not change the
phase of the charge carrier wave functions, the resulting
suppression of backscattering straightforwardly explains the
immeasurably small calculated intensity of the D′ peak.28 The
situation changes drastically if the scattering potential has a vector
component, i.e., there is a sizable pseudo-magnetic field involved
in the defect scattering. If the charge carriers stay within the same
valley, this changes the phase of the electron or hole, similarly to a
real magnetic field, enabling backscattering.

To detect Raman scattering from strain fluctuations with a
sizable Bps, we have measured confocal Raman maps on crumpled
graphene flakes exfoliated onto a SiO2 surface. We have used to
our advantage that during the exfoliation some flakes tend to
crumple (see Fig. 2a). Crumpling enhances Bps caused by the strain
fluctuations by at least a factor of 100 compared to the ~1 T25

resulting from surface roughness of SiO2. Additionally, we found
the same results on samples that were crumpled using mild
annealing and crumpling by a tungsten tip (see Methods). We
have measured a total of ten crumpled graphene samples, among
which six show an anomalously high and dispersive D′ peak (see
Supplementary information S1). Here, we illustrate the effect
through the example of a characteristic sample (Fig. 2), while data
for other samples can be found in the Supplementary information.
AFM measurements show that the graphene layer consists of a

network of folds on it’s surface. Measuring the Raman spectra with
a spatial resolution of ~500 nm and excitation wavelength of
532 nm, we map the intensity of the D′ peak (Fig. 2c) within the
crumpled area marked in Fig. 2a. The most striking feature of the
map is that the crumpled regions show increased D′ intensity,
the region with the strongest enhancement marked by a green
circle. To shed more light on the Raman scattering, we plot the
complete Raman spectrum of this region in Fig. 2d. The most
surprising feature of the spectrum is the extremely high D′ peak,
having 20% the intensity of the G peak. This is unprecedented
because the D′ peak is only observed when the sample contains
strong lattice defects, such as vacancies, sp3 type defects of grain
boundaries,12,28,32 and it is always accompanied by the D peak,
with its intensity being mostly ~10% of the D intensity
(ID′/ID= 0.1).12,33 This result has to be considered in the light that
in the area where the spectrum was measured there are no
graphene edges. As expected for defect free graphene, the D peak
intensity is just barely larger than the background (see inset in Fig.
2d). Furthermore, the graphene flake shows the pristine Raman
spectrum of graphene in the uncrumpled areas. Ratios
ID′/ID= 10 have been also found in samples, where the laser spot
contains both crumpled areas and edges (see Supplementary
information S1). The ID′/ID maps of two additional samples can be
seen in Fig. 3.
It is known that overlapping graphene layers can produce a non

dispersive peak ranging from 1540 up to 1630 cm−1.34–36 The non
dispersive nature of this peak is due to the fact that the LO
phonon from around the Γ point taking part in the process is
selected by the mismatch angle of the two graphene layers and
not by the laser energy.35 Therefore, if the mismatch angle
between the overlapping graphene layers is in the 4° to 6° range,

Fig. 1 Pseudospin and intravalley scattering in graphene. a Pseudospin texture around a K point in the first Brillouin zone of graphene. If the
perturbation doesn’t distinguish between the two sublattices, it is unable to flip the pseudospin (σ). Therefore, complete backscattering
involving small changes in momentum from |−q〉 to |q〉 is forbidden by pseudospin conservation. b Intravalley process responsible for the D′
Raman band of graphene
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this so called R′ peak could be mistaken for the D′ peak. To make
sure that the peak around 1620 cm−1 is indeed the D′ peak, we
measured the change in the peak position with changing
excitation wavelength. The data for the presented sample can
be seen in Fig. 2e, with the graph color corresponding to the
excitation laser color. The measured dispersion is 7.8 cm−1/eV and
is similar to the values measured on other samples (see
Supplementary information S2). It is slightly lower than the value
of ~10 cm−1/eV expected for the D′ peak,32,33 see also our
calculation of the strain induced D′ peak dispersion in the same
plot (see Fig. 2f). The reason for the lower dispersion value might
be the fact that the D′ peak is mixed with the non dispersive R′
peak in certain areas. An example where this effect is strong is
shown in Fig. S5 of the Supplementary information. To reduce the
possible interference from the R′ peak in our measurements, we
have prepared an additional set of samples. These graphene
samples had their top and bottom covered in a 5 nm thick poly-
vinyl alcohol (PVA) film. Crumpling was achieved by using a sharp
tungsten needle and a micro-manipulator stage. We found similar
D′ peak intensities in the crumpled areas as in the case of other
samples (see Supplementary Figs. S6 and S7). These experiments
rule out any major effect from the R′ peak, since the PVA layer on

the graphene prevents any atomically clean interface to form
between the overlapping graphene.
Within the literature there have been some observations of a

barely measurable D′ peak on graphene supported on nanosized
pillars37 and nanoparticles,38 exhibiting wrinkling. However, it is
unclear what the D to D′ intensity ratio is in these experiments. In
experiments of graphene wrinkling on a polymer, the D′ peak is
obscured by the presence of the polymer substrate.39

Next, we reproduce our measured D′ peak intensities by
numerical calculations of the double resonant processes.28,40 To
explore the pseudo-magnetic field within crumpled graphene and
to construct a theoretical model for the Raman scattering
potential, we study the wrinkling of graphene, using the LAMMPS
molecular dynamics code41 (for details see Supplementary
information S4). We consider two model geometries that make
up a crumpled graphene sheet.42 One involves a single fold (Fig.
4b), seen all over the crumpled sample (Fig. 2b), the other involves
a double fold (Fig. 4c), constructed by creating a second fold in a
singly folded graphene. The double fold shows a complex strain
pattern, containing both compression and tension and an increase
in the strain by a factor of 10 compared to the single fold, as
evidenced by the color scale on the atoms in Fig. 4b, c.

Fig. 2 Intravalley scattering in crumpled graphene. a Optical microscope image of an exfoliated graphene layer on SiO2. b AFM image of
crumpled area. Position within flake shown by red rectangle in a. c Raman spectroscopy map of the D′ peak intensity in a crumpled graphene
area in the position shown by the red rectangle. Scalebars in b, c 1 μm. d Raman spectrum showing a large D′ peak measured at the crumpled
area shown in b, c by green circle, Insets: larger magnification AFM image of the crumpled area and zoom of the D peak region of the
spectrum. Scalebar: 500 nm. e D′ peak of the area shown in d, measured with three different excitation wavelengths. Colors correspond to the
respective laser color (red: 633 nm, green: 532 nm, blue: 488 nm). Black spectrum is measured using 532 nm excitation on the uncrumpled part
of the flake, shown by the black circle in c. f Change in the peak position (Δω) of the 2D, G, and D′ peaks, as a function excitation energy (EL),
for the area marked by the green circle in b–d. Measured dispersions (ΔωD′/ΔEL) of the experimental peaks are shown. Calculated D′ peak
position as a function of laser energy is shown by orange triangles
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Having determined the geometry of the crumpled graphene, it
becomes possible to calculate the the pseudo-magnetic field Bps,
from the atomic positions. It can be understood, as a result of the
local modification of inter-atomic hopping, either through changes
in bond length or bond angles.18 Additionally, Bps can be interpreted
as the consequence of Dirac quasiparticles existing in a curved
space-time.18,43–46 Here, we calculate Bps from the modulation of the
hopping parameter, as described by Guinea et al.47 This model
reproduces the magnitude of Bps measured via scanning tunneling
microscopy.13,48,49 Computing Bps, directly from the modulation of
the atomic positions50 we find a maximum Bps of 20 T in the single
fold, and as expected from the difference in strain, the double fold
shows a Bps in the 200 T range (Fig. 4e, f). This Bps originates from the
modulation of the nearest neighbor hopping energy due to
strain.15,16,47 However, in cases where the curvature of the graphene
sheet is large, there is another sizable component to the pseudo-
magnetic field, due to the hybridization of the σ and π bonds.17 The
total vector potential is the sum of the hopping induced A(r) and the
curvature induced Aσπ(r). The experimentally relevant part of the
vector potential,13 the pseudo-magnetic field, is then formed by the
rotor of the sum of these two contributions: Bps ¼ ∇ ´ ðAþ AσπÞ.
Using the formula for Aσπ from Rainis et al.,51 we calculate the Bps for
our fold. For a radius of curvature R of a fold parallel to the zigzag
direction, we have Aσπ

x ðrÞ ¼ 3εππa2=8RðrÞ2 and Aσπ
y ðrÞ ¼ 0, where

εππ � 3eV17,51 and a= 1.42 Å. In our calculations R is around 3 Å,
corresponding to the 2–3 Å measured by Annett et al.,52 while Rainis
et al.51 calculate 7 Å. As an example, in the case when R= 4 Å the
maximum curvature induced Bps is around 200 T, an order of
magnitude larger than the hopping induced one (see Fig. 4d, e), in
accordance with the finding of Rainis et al.51 Both contributions to
Bps are also dependent on the orientation of the fold within the

graphene lattice, with the maximum Bps present in folds parallel to
the zigzag direction and zero Bps for armchair.51,53 For the double
fold, the hopping induced Bps is in itself in the 200 T range, due to
the larger strains (Fig. 4f). A large collection of double or multiple
folds may be necessary to create the large Bps values needed to
observe the enhanced D′ peak, such as in the region shown by a
green circle in Fig. 2b, c. Using the field theoretical approach in
curved space43–46 to calculate Bps, we find values of similar
magnitude. However, in our experiment we lack the spatial
resolution to be able to distinguish between the two possible
interpretations of Bps.

54 For further discussion see Section S6 of the
Supplementary information.
We mention that here we assume Bps is not homogeneous on

the scale of the magnetic length, thus Landau quantization48 due
to strain is not expected. As an example, the magnetic length at
200 T is lB= 1.7 nm. This length scale is more than a factor of 3
larger than the size of areas with high magnetic field, see Fig. 4f,
making the formation of Landau levels impossible. Even though
Landau levels are not expected to form, it has been shown that
folded graphene areas with rapidly changing Bps can host bound
states of Dirac fermions, as shown experimentally55 and
theoretically.56,57

Having quantified the Bps magnitude in folded, crumpled
graphene, we turn our attention to numerically calculating the
double resonant Raman processes in the presence of strain.
Calculations are performed similarly to Venezuela et al.28 and Kürti
et al.40 For this we need to find the electron/hole—defect
Hamiltonian: Hdef. We model the Bps seen in crumpled graphene
by a simple model, using a Gaussian deformation of the form:

h � exp � x2 þ y2

b2

� �
, where h is the height and b is the width of the

Gaussian. For a Gaussian, the analytical form of the vector

Fig. 3 ID′/ID intensity maps of crumpled graphene. a, b Optical microscope images of two different crumpled graphene layers on SiO2. c Map
of the ID′/ID ratio of the sample shown in a. d Map of the ID′/ID ratio of the sample shown in b. Maps are measured using 532 nm excitation.
Additional data regarding the samples and further samples can be found in the Supplementary information S1. Black scalebars: 10 μm
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potential jAj / h2=b2 is well known.58 By choosing the height h
and width b of the bump to be 5 and 20 Å respectively, the Bps
within the bump area reaches a maximum of 200 T, switching sign
on the nanometer scale (see Fig. 5a). Both the magnitude and the
length scale is similar to the values found within the LAMMPS
calculations. In atomic units, the Hamiltonian describing the defect
is Hdef ¼ AðrÞ � ∇þ VðrÞ, where A is the vector potential and we
also include V, the scalar potential generated by the mechanical
deformation.18 In order to calculate the scattering matrix element
hkjHdef jk ± qi between two states with wave vectors k and k ± q
we need to calculate A( ± q) and V( ± q):28

Vð± qÞ ¼ P
l
e± iqrl VðrlÞ

Að± qÞ ¼ P
l
e± iqrlAðrlÞ

(1)

Figure 5b shows |A(k)|2 in the first Brillouin zone of graphene for
varying sizes of the deformation. While varying the width, the
height to width ratio (h/b) was kept constant at 0.25, in order to
keep the maximum value of |A(k)| constant.58

The calculated D, D′, and 2D peaks for a Gaussian with h= 5 Å
and b= 20 Å is shown in Fig. 5c. We reproduce ID′/ID= 32 in
accordance with the experimental spectrum of Fig. 2d. As a
crosscheck to our calculations we also compute the D and D′
intensity for a “hopping” defect, as implemented by Venezuela
et al.,28 modeling a lattice defect in graphene. For the hopping
defect, the D′ peak intensity is 11% of the D intensity, as expected
for lattice defects, such as vacancies.12 Comparing the relative
intensity with respect to the 2D peak, it is clear that the D′ peak is
showing a measurable intensity, as opposed to the D′ peak
generated by Coulomb scatterers.28 The D′ intensity is generated
almost completely by the vector potential A, with the scalar
potential giving only a slight (less then 10−4) contribution (see
Supplementary information S5). This can be easily explained if we
consider the scattering matrix element between states
jhkjHdef jk ± qij2 ¼ jHdefðqÞj2cos2ðθk;k ± q=2Þ, where θk,k ± q is the

angle between the the initial and the scattered state.9 For
backscattering (θk,k ± q= π), if Hdef is of purely scalar character, the
matrix element is zero. However, if Hdef has a vector potential
component it can be nonzero. This is because A acts on the
pseudospin of graphene, as evidenced by the pseudo-Zeeman
effect.13 Thus, it is able to change the phase of the charge carriers.
The vector potential A has a slight contribution to the D peak as

well, as can be seen in Fig. 5c. This is due to the non zero
scattering potential at large k values, around the K points. Due to
the Fourier transformation in Eq. (1), the contribution at large k
increases as we make the Gaussian narrower. By decreasing b, but
keeping the aspect ratio the same, we can see a marked increase
in the scattering potential |A(k)|2 at the K points, increasing the D
peak intensity. This can be observed in Fig. 5d, where we plot the
ID′/ID ratio on a log scale, as a function of b and excitation energy.
Although it is clear that the parameter b is a tuning knob for the ID
′/ID ratio, it is not possible to attribute a certain b value to the
measured ratio, because the crumpling patterns can have a more
complex Bps pattern than what is assumed in the Gaussian model.
Additionally, the calculated model does not include lattice defects,
which could be present in the experiment, such as edges. For the
map seen in Fig. 2b, the D peak intensity is too low to prepare a
meaningful ID′/ID map. For other samples, the map of this ratio can
be found in the Supplementary information.
Our experiments show a first example of resonant Raman

scattering on potentials that are smooth on the atomic scale. In
the lack of intervalley scattering, the pseudo-magnetic field
created by the strain induced vector potential shifts the phase
of the electron or hole wave function, in addition to the Berry
phase. This lifts the restriction on backscattering, enabling an
enhancement in the intravalley backscattering rate by orders of
magnitude, evidenced by the enhancement of the D′ peak in the
Raman spectrum. The drastic increase in intravalley scattering, as a
consequence of strain fluctuations, may be an important factor in
lowering the mobility of certain CVD grown graphene samples,
especially if wrinkles and folds are introduced during the transfer

Fig. 4 Strain within graphene folds, deformations. a 10 × 10 nm graphene piece used in the molecular dynamics calculations.41 b Single
graphene fold along the zigzag direction. c Doubly folded graphene. Color scale on atoms shows the local strain, calculated by taking the
average of the relative nearest neighbor distance changes. Positive values (yellow) correspond to tensile strain. d–f Pseudo-magnetic field
magnitude in the structures shown in b, c. d Pseudo-magnetic field generated by the σ-π overlap17 within the fold seen in b. e Bps magnitude
due to the hopping modulation within the fold seen in (b). f Bps magnitude due to hopping modulation within the double fold seen in c
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process. Furthermore, it is well known that defects such as grain
boundaries, vacancies, etc. can have a specific ID′/ID fingerprint.12

Such defects also distort the graphene lattice around them59 and
this local strain field can be specific to the type of defect. Our
results show that if we want to understand the origin of this
Raman fingerprint, scattering on the defect induced local strain
fields has to be taken into account. If experimentally, a more
controlled folding of graphene can be achieved, the Bps present in
these folds could be used to steer and guide55 valley polarized60,61

Dirac fermions.

METHODS
Graphene samples were prepared by micromechanical exfoliation from
natural graphite, purchased from NGS Trading & Consulting GmbH. Raman
measurements were carried out using a Witec 300rsa+ confocal Raman
system, using 488, 532, and 633 nm excitation lasers. Laser power was kept
at 0.5 mW for all lasers.
Crumpling of the graphene layers has been induced either in the

exfoliation stage, as with the sample in the main text and the sample
shown in Fig. S4 of the Supplementary information. However, this method
has a low yield. It is known that annealing can induce folding of
graphene.52 Therefore, to increase the yield of the crumpled graphene
within our samples, we have used annealing to induce wrinkling and
crumpling. Samples 1–4 have been prepared by placing them onto a
hotplate, preheated to 160 °C for 15min, after which the samples are
removed and placed onto a metal surface to allow quick cooling.
Additionally, the crumpling can be also induced by the tip of a tungsten
needle.
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b2

� �
, where h is the height and
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and h= 0.5 nm. b Plot of |A(k)|2 in the first Brillouin zone (white hexagon). c Calculated D and D′ peak intensity for a Gaussian deformation
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order to keep the magnitude of the mechanical strain within the Gaussian constant, only changing the spatial extent of the deformation.
Color scale is logarithmic
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