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Abstract - This paper describes the X-ray crystal structure of a complex of acridino-18-crown-6 

ether (S,S)-2 and sodium perchlorate. The structure shows a π–π bonded homodimer in the 

crystal. The average distance of the two tricyclic units (3.49±0.1 Å) indicates a strong π–π 

interaction. Fluorescence titration was performed in order to determine the stoichiometry and 

stability constant (Ks) of the sodium ion-(S,S)-2 complex. Based on the global fitting of the 

fluorescence spectra we suggest the formation of a complex with 1:1 ligand to metal ion ratio 

and the logK value determined by nonlinear regression analysis was 5.23. 
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Introduction 

Sodium ion is essential to all living organisms. In humans, for example it regulates blood 

volume, blood pressure, and it helps the cells to transit nerve signals. The latter is accomplished 

by an active transporter molecule, Na
+
/K

+
-ATPase, which pumps ions against the ion gradient in 

the sodium/potassium channels [1]. Sensor molecules capable of selective discrimination of 

metal ions are of great significance due to their potential application in pharmaceutical or food 

industries, also in environmental chemistry [2]. During these selective interactions a generally 

occurring natural phenomenon called molecular recognition plays a vital role. The complexes, 

formed by the host and guest molecules, are held together by secondary interactions, such as 

hydrogen bonding, π–π [3-5] and cation–π [6-8] interactions. Receptors based on various 

macrocycles, such as monensin [9], bispyrrolidone [10] and crown ether derivatives [11-20], 

were capable of selective recognition of sodium ions. 

We have studied the complexation ability of chiral dimethyl-substituted crown ether type sensor 

molecules containing an acridine fluorophore unit [(R,R)-1 and (S,S)-2, see Figure 1] toward the 

enantiomers of 1-phenylethylamine hydrogen perchlorate (PEA), 1-(1-naphthyl)ethylamine 

hydrogen perchlorate (1-NEA), phenylglycine methyl ester hydrogen perchlorate (PGME) and 

phenylalanine methyl ester hydrogen perchlorate (PAME) by UV/Vis and fluorescence 

spectroscopies [18]. Recently, we reported the preparation and X-ray analysis of the crystalline 

complexes of the dimethyl-substituted acridino-18-crown-6 ether (R,R)-1 and the enantiomers of 

1-NEA [21]. We found that the heterochiral complex [(R,R)-1–(S)-1-NEA] is more stable than 

the homochiral one [(R,R)-1–(R)-1-NEA]. In the case of (S,S)-2, based on the fluorescence 

spectroscopic studies the macrocycle showed the highest enantiomeric discrimination toward the 

enantiomers of PGME [18]. In continuation of our research in this area we attempted to prepare 

the single crystals of (S,S)-2 and the enantiomers of PGME for X-ray analysis. To our surprise, 

in the cases of both enantiomers of PGME complexes of (S,S)-2 and sodium ions were formed. 

UV/Vis spectroscopic study and fluorescence titration was performed in order to determine the 

stoichiometry and stability constant (Ks) of the sodium ion-(S,S)-2 complex. Also, to further 

study this complex, suitable single crystals for X-ray analysis were prepared from (S,S)-2 and 

sodium perchlorate. 
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Figure 1. Schematics of the acridino-18-crown-6 ether host molecules. 

 

Experimental 

Infrared spectrum was obtained on a Bruker Alpha-T FT-IR spectrometer. 
1
H (500 MHz) and 

13
C 

(125 MHz) NMR spectra were taken on a Bruker DRX-500 Avance spectrometer. Optical 

rotation was taken on a Perkin-Elmer 241 polarimeter that was calibrated by measuring the 

optical rotations of both enantiomers of menthol. Elemental analysis was performed on a Vario 

EL III instrument (Elementanalyze Corporation) in the Microanalytical Laboratory of the 

Department of Organic Chemistry, L. Eötvös University, Budapest, Hungary. Melting point was 

taken on a Boetius micro melting point apparatus and was uncorrected. Reagents were purchased 

from Sigma–Aldrich Corporation. All chemicals were of analytical grade, NaClO4
.
H2O was used 

in the complexation study. UV/Vis spectra were taken on a Multiskan Spectrum Microplate 

Spectrophotometer controlled by SkanIt Software for Multiscan version 2.1. Fluorescence 

spectra were recorded on a BMG Labtech CLARIOstar spectrophotometer. Spectrophotometric 

titrations were carried out according to the literature [22]. The stability constants of the 

complexes were determined by global nonlinear regression analysis using the ReactLab
TM

 

Equilibria spectral analyses suite (Jplus Consulting, www.jplusconsulting.com). The 

concentrations of the solutions of sensor (S,S)-2 were 100 µM for the UV/Vis measurements and 

20 µM for the fluorescence titrations. 

 

Synthesis of the crystalline (S,S)-2-Na
+
 complex 

Crown ether (S,S)-2 [(8S,16S)-8,16-dimethyl-6,9,12,15,18-pentaoxa-25-

azatetracyclo[21.3.1.0
5,26

.0
19,24

]heptacosa-1(26),2,4,19,21,23(27),24-heptaene] was prepared 
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according to the literature [18]. Crown ether (S,S)-2 (70 mg, 0.18 mmol) was added to the 

solution of NaClO4
.
H2O (22 mg, 0.18 mmol) in ethanol (8 mL). The mixture was refluxed for 10 

mins and filtered hot. Suitable single crystals for X-ray crystallographic studies were obtained 

from the almost saturated solution which was allowed to stand at room temperature in a glass 

ampoule. This way 35 mg (37%) of bright red plates were obtained. 

Mp 139–142°C; [α]D
25

 = +14 (c 0.14, EtOH); IR (KBr) νmax 3427, 3099, 3089, 3029, 2977, 2938, 

2884, 1631, 1594, 1567, 1509, 1492, 1467, 1422, 1413, 1364, 1326, 1292, 1199, 1130, 1095, 

1078, 956, 890, 790, 759, 721, 624 cm
-1

; 
1
H-NMR (CD3CN, 500 MHz) δ 1.37 (broad s, 6H), 

3.55–3.91 (m, 8H, OCH2), 4.15–4.37 (m, 4H, OCH2), 4,43 (d, J = 8Hz, 2H, OCH2), 7.13–7.35 

(m, 1H, Ar-H), 7.41–7.61 (m, 2H, Ar-H), 7.62–7.95 (m, 3H, Ar-H), 8.89 (s, 1H, Ar-H) 
13

C-NMR 

(CD3CN, 125 MHz) δ 15.80, 64.81, 68.90, 70.62, 70.66, 71.37, 73.08, 74.07, 74.41, 109.78, 

121.80, 122.04, 127.46, 128.71, 129.57, 138.00, 140.92, 149.11, 150.01, 153.66; Anal Calcd for 

C23H27ClNNaO9: C 53.14; H 5.23; N 2.69. Found: C 52.85; H 5.51; N 2.62.  

 

Crystal structure determination  

A suitable crystal was selected and the X-ray dataset has been collected at 102 K on a single 

source micro-focus Cu X-ray sealed tube SuperNova diffractometer (Agilent Technologies) with 

monochromated Cu-Kα radiation (λ = 1.5418 Å) and Eos CCD detector. The data reduction was 

performed with program package CrysAlisPro SXRED [23]. The space group determination was 

performed via GRAL module by applying the Laue symmetry. The structures were solved by 

direct methods using Olex2 [24] and refined using fullmatrix least-squares. All calculations were 

performed using Olex2[24] and SHELXL97 [25] programs. The crystal data and refinement 

parameters are presented in Table 1. The data (CCDC 1548555) can be obtained at 

www.ccdc.cam.ac.uk/conts/retrieving.html. 

 

Results and Discussion 

The enantiomeric discrimination ability of the dimethyl-substituted acridino-18-crown-6 ether 

(S,S)-2 toward the enantiomers of the perchlorate salts of primary aralkylamines and α-amino 

acid esters was studied by Kertész et al. The fluorescence spectroscopic studies demonstrated 

that in the case of (S,S)-2, the highest enantiomeric discrimination was observed for the 

enantiomers of PGME [18]. In order to better understand the secondary interactions governing 

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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the enantiomeric recognition of crown ether based sensor and selector molecules containing an 

acridine moiety our aim was to prepare suitable single crystals for X-ray analysis from (S,S)-2 

and the enantiomers of PGME. However, instead of the diastereomeric complexes, the 

complexes of macrocycle (S,S)-2 and sodium ions were obtained in both cases. The presence of 

sodium ions can be explained by the fact that the last step of the preparation of (S,S)-2 [18] is a 

Bouveault–Blanc reduction [26], which employs sodium metal as a reducing agent, and during 

the reduction the oxidation of the metal takes place and sodium ions are formed. Presumably, 

crown ether (S,S)-2 formed strong secondary interactions with sodium ions, and this complex 

withstood the purification of the crude product. It can also be assumed that crown ether (S,S)-2 

forms a complex with sodium ions with a higher stability constant (Ks) than with the enantiomers 

of PGME. In order to prove this assumption and to determine the stoichiometry and stability 

constant (Ks) of the sodium ion-(S,S)-2 complex, UV/Vis spectroscopic study and fluorescence 

titration were performed. Also, the single crystals of (S,S)-2 and sodium perchlorate were 

prepared and studied by X-ray analysis.  

 

UV/Vis and fluorescence spectroscopic studies 

The complexation ability of (S,S)-2 was first studied by UV/Vis spectroscopy in acetonitrile. 

Figure 2. shows that no changes could be observed in the absorbance spectra even upon addition 

of a twenty-five-fold excess of sodium ions. However, the binding of sodium ions by (S,S)-2 was 

associated with significant fluorescence enhancement upon addition of these ions (Figure 3), thus 

fluorescence titration was performed. The fluorescence spectra were measured at 15 different 

cation to (S,S)-2 ratios (Figure 3). The latter fluorescence changes were used to determine the 

stability constant and stoichiometry of the complex. Upon being treated with sodium ions the 

fluorescence enhancement of the sensor molecule (S,S)-2 followed the Benesi-Hildebrand 

equation [22, 27], therefore we could assume the formation of a complex with 1:1 ligand to metal 

ion ratio. The changes in the spectra were further analyzed using nonlinear regression analysis 

and global fitting of the fluorescence spectra, which also suggested the 1:1 stoichiometry. The 

logK value determined by ReactLab
TM

 Equilibria program suite was 5.23. Kertész et al. 

determined the logK values for the complexation of (S,S)-2 with the enantiomers of PGME, in 

the same solvent (MeCN) [18]. Macrocycle (S,S)-2 formed a more stable complex with (S)-
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PGME (logK 4.87) than with (R)-PGME (logK 4.61). It means that ligand (S,S)-2 is 2.3-fold 

more selective toward sodium ions than toward the (S) enantiomer of PGME. 

 

Figure 2. UV/Vis spectra of (S,S)-2 (100 µM) in the presence of 0, 1, 5, 10, and 25 equiv. of 

sodium ions. 

 

Figure 3. Fluorescence emission series of spectra upon titration of (S,S)-2 (20 µM) with sodium 

ions (0–20 equiv.) in MeCN, λex = 380 nm.  
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Crystal structure of the sodium-crown ether complex 

In the crystal, the complex is found as a homodimer (Figure 4) consisting of two acridino-crown 

ethers and two sodium ions. The complex crystallized in the orthorhombic crystal system (Table 

1). The distances of the two acridine rings of the monomers (3.41–3.59 Å) indicates a strong π–π 

interaction. The X-ray studies also suggest the existence of cation–π interaction, at a distance of 

3.96–4.85 Å, between the sodium ions and the electron rich acridine moieties (Table 2). 

The complexation environment of both sodium ions is well defined: among the six coordination 

partners, one nitrogen and five oxygen atoms are provided from the acridine unit and the 

macroring of the appropriate crown ethers, additionally two perchlorate ions are also present 

(Figures 4 and 5, Table 3). The strength of the π–π and cation–π interactions overcompensated 

the electrostatic repulsion between the sodium ions, thus the ions are drawn together (Figure 4).  

In accordance with the XRD measurements the fluorescence titration suggested the formation of 

a complex with 1:1 ligand to metal ion ratio, which was also confirmed by elemental analysis 

(see Experimental Section). Due to the coordination the more flexible parts of the macroring 

(O3, O7, O11 or O17, O29, O34 of the appropriate monomer) are drawn toward the complexed 

sodium ions (Figure 5, Table 3). 

 

NMR spectra 

The 
1
H-NMR and 

13
C-NMR spectra were recorded in CD3CN due to the poor solubility of the 

complex in CD3OD. The signals doubled in the 
13

C spectrum of the complex comparing to the 

spectrum of free ligand (S,S)-2 [18], which also suggests the complexation of sodium ions. 

 

Table 1.: Crystallographic data for (S,S)-2-sodium complex 

Compound (S,S)-2-sodium complex 

Empirical formula C46H54Cl2N2Na2O18 

Formula weight 1039.79 

Crystal system orthorhombic 

Space group P 212121 

Unit cell dimensions a, Å 13.77(19) 

              b, Å 15.90(2) 

              c, Å 22.33(3) 
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             α,° 90 

             β,° 90 

             γ,° 90 

Volume, Å
3
 4886.41(11) 

Z 4 

Density (calculated), g/cm
3
 1.413 

T, K 102 

F(000) 2176.0 

max for data collection. ° 70.998 

Index ranges (h,k,l max) h ≤ 16, k ≤ 19, l ≤ 27 

Reflections collected 9454 

Goodness-of-fit on F
2
 0.999 

Final R indices [I>2 (I)] 0.0569 

wR
2
 indices (all data) 0.1638 

 

 

Table 2.: Distances of the appropriate atoms that may indicate the presence of π–π and cation–π 

interactions. 

π–π interaction cation–π interaction 

C· · ·C C· · ·C Na· · ·C/N Na· · ·C/N 

 (Å)  (Å) 

C33 · · ·C38 3.49 Na8 · · ·N18 4.05 

C23 · · ·C51 3.59 Na8 · · ·C15 4.76 

C14 · · ·C19 3.48 Na8 · · ·C19 4.85 

C15 · · ·C22 3.41 Na8 · · ·C26 4.76 

C21 · · ·C43 3.43 Na8 · · ·C27 4.54 

C19 · · ·C28 3.54 Na3 · · ·C2 4.37 

  Na3 · · ·N12 3.96 

  Na3 · · ·C6 4.43 

  Na3 · · ·C25 4.65 

  Na3 · · ·C5 4.70 
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Figure 4. Structure of the dimer containing two monomers. Other species (two perchlorate ions) 

are also shown. Atomic coloring is as follows: C: grey, O: red, N: blue, Cl: green, Na: lilac, H: 

white. 

 
Figure 5. Separate representation of the two monomers. Note the differences in the lower parts 

of the macrorings of the appropriate crown ethers. Atomic coloring is as follows: C: grey, O: red, 

N: blue, Na: lilac, H: white.  
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Table 3.: Geometry of the complexed sodium ions. 

Monomer O/N· · ·Na O/N· · ·Na O/N· · ·Na3· · ·O34 

  (Å) (°) 

Monomer 1 O3 · · ·Na8 3.0  

 O11 · · ·Na8 3.0  

 O10 · · ·Na8 3.0  

 O1 · · ·Na8 3.0  

 O7 · · ·Na8 2.9  

 N12 · · ·Na8 2.9  

Monomer 2 O4 · · ·Na3 2.6 101.2 

 O17 · · ·Na3 2.5 66.8 

 O34 · · ·Na3 2.5 - 

 O29 · · ·Na3 2.7 66.1 

 O9 · · ·Na3 2.5 107.3 

 N18 · · ·Na3 2.5 107.3 

Monomer 1 and 2 Na8 · · ·Na3 2.4  

 

 

Conclusions and further aims 

We succeeded in preparing suitable crystals for X-ray analysis from the sodium complex of 

acridino-18-crown-6 ligand (S,S)-2. Macrocycle (S,S)-2 forms a π–π bonded dimer in the crystal. 

Fluorescence titration was also performed in order to determine the stoichiometry and stability 

constant (Ks) of the sodium ion-(S,S)-2 complex: global fitting of the fluorescence spectra and 

elemental analysis indicated 1:1 stoichiometry. 
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