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The Impact of Adverse Selection on Stock 
Exchange Specialists’ Price Quotation Strategy*

Kira Muratov-Szabó – Kata Váradi

This paper focuses on the activity of the specialists – one of the key participants in 
stock exchange trading. We attempt to model the price quotations of specialists 
in a modelling framework where some of the parties involved in the transactions 
may be informed, while others are uninformed “liquidity traders”. It is in this 
adverse selection modelling framework that, relying on the technique of Monte 
Carlo simulation, we seek an answer to the following research questions: how 
does adverse selection impact the price quotation of specialists; to what extent 
are prices and logreturns influenced by uncertainty; to what degree of accuracy 
can specialists determine the proportion of informed traders and liquidity traders 
from trading volumes? Our model confirmed that as soon as uncertainty subsided 
in the simulated market, the number of transactions, wealth and the stock portfolio 
started to grow, while price fluctuations began to decline and the standard deviation 
and the distribution of logreturns edged closer and closer to a normal distribution, 
which points to improving market efficiency.
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1. Introduction

In this study, we explore the price quotation strategy of stock exchange specialists. 
Specialists are market makers in stock exchange trading with exclusive rights to 
quote bid and ask prices in a given product. The study is based, on the one hand, 
on a paper by Kornis (2017) that focused on the behaviour and presumed strategies 
of specialists in quote-driven markets, which we supplemented with the inclusion 
of quoted volume. On the other hand, the article by Caglio and Kavajecz (2006) 
also serves as a basis for our study, as the authors demonstrate that specialists 
can use quoted volumes strategically to mitigate the risk of adverse selection. The 
concept of adverse selection is presented in this study as a scenario where some 
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of the market participants placing orders are informed about the expected price 
movement of the product, while others are uninformed and act as liquidity traders. 
However, when posting the prices the specialist has no way of knowing whether the 
actor placing the order is informed or not; consequently, he does not know which 
specific price should be quoted. Overall, our study connects these two research 
papers, and the new model we construct is intended to seek an answer to the 
following research questions:

• ��How does adverse selection impact the specialist’s price quotation?

• ��How do prices and logreturns change at various uncertainty levels?

• ��How precisely can specialists update their belief regarding the proportion of 
informed traders based on transaction volume?

Drawing partly from the work of Caglio and Kavajecz (2006) and partly from Kornis 
(2017), our model includes numerous new assumptions and new methods. The 
former study primarily provided a theoretical background, while the latter inspired 
ideas in the area of practical execution. In order to simulate the model, we created 
a programme1 in Excel in the Visual Basic for Applications programming language.

After the introduction, in the second section of the study we provide an overview 
of the relevant international literature. The third section presents the model 
proposed by Caglio and Kavajecz (2006) supplemented with our own additions 
and methods. We attempt to explore possible ways of introducing the problem 
of adverse selection into the model and examine who exactly acts as informed 
traders, who are liquidity traders, and how can specialists identify them in order 
to maximise their profits. In the fourth section, we briefly describe the simulation 
process as a preparation for the fifth section, which is dedicated to the statistical 
analysis of the results yielded by the simulation as a reward for our practical work. 
In Section 5 we also present our figures and our conclusions. The study is concluded 
with a summary in which we offer concise answers to the questions posed in the 
introduction.

2. Literature review

Although the approaches taken may be different, a substantial part of the research 
on financial markets ultimately seeks an answer to the same question: in what way 
can market prices be predicted in order to serve as a basis for a profitable trading 
strategy? The literature on market microstructure has shed new light on this area 
in recent decades: instead of concentrating on actual price movements to draw 

1 �The codes of the programme’s main components (subroutines and functions) are presented in the 
Appendices.
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conclusions about expected price developments, this field of study attempts to 
determine how specific market mechanisms affect the price discovery process. 
Market microstructure research examines who market participants are, what 
level of information they have and what type of products are being traded (e.g. 
underlying instruments or derivatives); in other words, it tries to investigate market 
efficiency and price formation based on the elements of market microstructure 
(O’Hara 1995).

One central concept in market microstructure is market liquidity. Market liquidity 
is understood as the speed at which a given product can be sold or purchased 
in a given volume with the smallest possible price effect. This issue is generally 
approached both by practitioners and scientific research by way of the bid-ask 
spread, a measure of liquidity’s transaction cost expressing the difference between 
the best bid price and ask price. Based on Foucault et al. (2013), a basic premise 
of market microstructure is that the bid-ask spread is composed of 1) adverse 
selection, 2) inventory control and 3) order-processing costs (Figure 1) as indeed, 
specialists face these costs in trading and pass on these costs to market participants 
when quoting prices.

1. �Adverse selection cost: Since informed traders purchase when the quoted price is 
too low and sell when the quoted price is too high based on market information, 
specialists are exposed to adverse selection costs.

Figure 1
Components of transaction costs
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2. �Inventory control cost: On continuous markets buy and sell orders are not 
received at one and the same time, which leads to a temporary disparity between 
the offers. In such cases, specialists step in committing their own inventory in 
order to restore equilibrium between supply and demand, while their net position 
remains zero over time. This role, however, exposes specialists to inventory 
control risk as the value of their inventory may change at any time, for example 
as a result of new information or intelligence affecting the given asset. For this 
reason, specialists charge inventory control costs.

3. �Order-processing cost: Specialists charge order-processing costs for trading 
commissions, for the clearing and settlement fees, paperwork, time spent on 
the phone and such.

On the whole, these costs are ultimately charged to the rest of the market 
participants in the form of transaction costs, which is the bid-ask spread itself 
(Foucault et al. 2013).

The problem of transaction costs was first formalised by Demsetz (1968). Harold 
Demsetz treated the bid-ask spread as a cost assumed by the trader for immediacy. 
Bagehot (1971) asserted that there are (at least) two kinds of traders who confront 
specialists: informed traders and liquidity-motivated traders. Informed traders 
possess non-public information that allows them to have a better estimate of the 
future price of a security than liquidity traders or specialists themselves. Since 
transactors trading on special information always have the option of not trading 
with the specialists, the specialists will never gain from them; they can only lose. By 
contrast, transactions with liquidity-motivated traders can be profitable, as these 
market participants are willing to pay a “fee” for gaining access to immediacy.

These two thoughts are synthesised by Copeland and Galai (1983) who modelled 
the bid-ask spread as a “trade-off”, which compensates specialists for the expected 
losses to informed traders with the expected gains from liquidity traders. The 
research by Glosten and Milgrom (1985) was founded on this concept. The authors 
used a  formal model to demonstrate that the spread increases in response to 
adverse selection. They assume that specialists are risk-neutral, competitive and 
make zero expected profits. In addition, specialists are assumed to have unlimited 
inventories of both money and securities. From their research Kornis (2017) drew 
the following five key assumptions:

• ��The bid and ask prices straddle the price that would prevail if all traders had the 
exact same information as the specialists.

• ��The prices at which transactions actually occur form a martingale.2

2 �For more detail about martingale processes, see: Doob (1971)
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• ��There is a boundary on the size of the spread that can arise from adverse selection.

• ��The price expectations of the specialists and informed traders tend to converge.

• ��Generally, ask prices increase and bid prices decrease if the insiders’ information 
becomes better, or the insiders become more numerous relative to liquidity 
traders, or when the elasticity of the expected supply and demand of a liquidity 
trader increases.

All of the literature discussed so far focused on the size of the bid-ask spread. As 
Harris (1990a) pointed out, however, the spread is only one dimension of market 
liquidity. Harris (1990a) defined liquidity as follows: “A liquid market is one in which 
every agent can buy and sell at any time a large quantity rapidly at low cost. Liquidity 
is a trader’s willingness to take the opposite side of a trade that is initiated by 
someone else when the cost is low enough.” In other words, in addition to the 
bid-ask spread, turnover can also be a measure of liquidity. A consistent summary 
of liquidity measures was provided, for the first time, by von Wyss (2004).

On the NYSE (New York Stock Exchange) the full offer of a specialist includes both 
the best bid and the best ask prices, as well as the volume of shares available at 
the best price, in other words, the depth. If the specialist perceives an increased 
probability of insider information among certain traders, he can respond by 
widening the bid-ask spread. Alternatively, he can protect himself by offering 
a lower trading volume at each quoted price (Lee et al. 1993).

It was a paper by Kyle (1985) that first defined liquidity by using the concepts 
of tightness, depth, breadth (static dimensions) and market resiliency (dynamic 
dimension). The (also dynamic) dimension of immediacy can be linked to Harris 
(1990b), while diversity was first identified as a new, separate dimension by Kutas 
and Végh (2005). In view of the multidimensional nature of market liquidity, it is 
highly surprising that much of the literature focuses on the spread alone. Numerous 
price quotation models examined in the context of adverse selection disregard 
depth with the proviso that all transactions (and hence the quotes) should be 
conducted in the same volume. Examples include the models presented in Copeland 
and Galai (1983), Glosten and Milgrom (1985) and Easley and O’Hara (1992). The 
models that permit trading in different volumes – such as those proposed by Kyle 
(1985) and Rock (1989) – typically assume that the specialist’s quotes are full 
quotes. In these models information on both the price and the volume is needed 
to support an implicit evaluation of the liquidity of the price quotation.

Lee et al. (1993) demonstrated that specialists can actively manage the risk of 
information asymmetry by adjusting both spreads and depths. Their result 
underscores the importance of the quantity dimension ignored by previous models 
and emphasises the fact that both spread and depth are needed to induce changes 



93

The Impact of Adverse Selection on Stock Exchange Specialists’ Price Quotation Strategy

in liquidity unambiguously. In other words, a widening (narrowing) of the spread, 
combined with a decrease (increase) in depth, is sufficient to induce a decrease 
(increase) in liquidity.

Similarly, Kavajecz (1999) investigated the reduction of adverse selection risk, and 
he did so from the angle of quoted depth. Four important conclusions may be 
drawn from his findings:

• ��If a quote changes, the specialist will (also) change the quoted volume in 90 per 
cent of the cases; in fact, the quote will only change in terms of volume in 50 
per cent of the cases, with no shift in the price whatsoever. Consequently, the 
specialist actively manages his own inventory even if no price change occurs.

• ��If informed traders are in an overwhelming majority on the market, the specialist’s 
quotation is likely to reflect the top of the order book instead of his own inventory. 
This is how he ensures that an incoming limit order will be matched with the best 
limit orders contained in the order book rather than being filled from his own 
inventory.

• ��Quoted volumes are consistent with the size of the specialist’s own stock portfolio; 
consequently, determining the volume also plays a role in his strategy.

• ��In response to the announcement of new information, both the specialist and 
the traders decrease the volume of their orders.

Carrying this thought forward, the stylised theoretical framework in the article 
of Dupont (2000) shows that a  risk-neutral, monopolistic specialist narrows 
quoted depth in proportion to the widening of the spread when he reacts to an 
increase in adverse selection; in other words, equilibrium depth is proportionally 
more sensitive than the spread to changes in the degree of adverse selection. 
The elasticity of substitution between depth and spread – in consideration of the 
quality of information possessed by the better informed trader – depends on market 
conditions which, in turn, are determined by the information asymmetry, the asset’s 
volatility and the strength of demand for liquidity. This elasticity converges to infinity 
if market conditions become either extremely favourable (depth increases to infinity 
while the spread remains positive) or extremely unfavourable (depth approaches 
zero, while the spread remains finite). Whether the informed trader is risk-neutral 
or risk-averse does not essentially affect the results.

Kavajecz and Odders-White (2001) examined how specialists update their price 
schedules in a  simultaneous equations model. They found that changes in the 
best prices and depths on the order book had a significant impact on the posted 
price schedule, while the effects of transactions and order activity were secondary. 
Moreover, they pointed out that specialists revise quoted prices and quoted volumes 
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differently. For example, quoted depths are revised in response to transactions of 
any size, whereas the quoted prices are revised only when transaction sizes exceed 
the quoted depth. However, they found no evidence that specialists revise the price 
schedule in response to changes in their inventory.

Caglio and Kavajecz (2006) were the first to examine whether adjusting liquidity’s 
quantitative dimension, i.e. depth, gives rise to a specification error in the spread 
decomposition model. The aim is to understand whether changes in the bid-ask 
spread alone are capable of defining the size of the adverse selection. In other 
words: is the extent of the change in depth redundant information in decomposition 
procedures?

The authors constructed a simple sequential trade model, which offers a distinct, 
analytical solution to the specialist’s optimisation problem, i.e. how to choose prices 
and depths in order to maximise his profits. The model measures the changes 
induced at various levels of informed trading in the adverse selection component 
of the spread. The authors demonstrated that specialists can use quoted volume 
strategically to address adverse selection risk and the risk of change in the trading 
environment. The result is consistent with the previously mentioned finding 
(Kavajecz 1999) that a change in the quote will prompt the specialist – in roughly 
50 per cent of the cases – to change the quoted volume, but not the price. The 
authors simulated the model based on this theoretical framework, examining two 
scenarios. In one scenario the specialist is not constrained by restrictions in terms of 
price quotation, while in the other scenario quoted volumes are constrained by the 
maximum limit on liquidity trading. Applying a simulated sequence, they compared 
the estimates of three decomposition models for the two scenarios. They found 
that spread decompositions failed to capture the full extent of adverse selection 
risk when the specialist could define depth without constraint. The solution is for 
researchers to use adverse selection measures that account for depth as well as 
spread to mitigate this problem.

3. The model

The basis of the model is the paper written by Caglio and Kavajecz (2006), which 
we supplemented with a number of new elements and methods:

1. �Consistent with the assumption of Caglio and Kavajecz (2006): 

a. �we assume that the distributions, such as the distribution of the return on the 
asset under review, are normal.

b. �we select the parameter values (such as quantitative data).
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2. �Our own, new assumptions for the specialist’s passive quotes are the following:

a. �based on the current size of the bid-ask spread, the specialist needs to improve 
his quote depending on whether he has exceeded a pre-defined limit or not.

3. �We connect the model with Kornis (2017) and run a simulation based on the 
result.

Consistent with Caglio and Kavajecz (2006), the analytical framework is the 
following: Consider a sequential trade model where the return on a risky asset is 
expressed by a stochastic variable of ϴ. As the authors did not define the distribution 
of the asset’s returns, we assume ϴ to have normal distribution, an expected value 
of 100 and a standard deviation of 5. At a probability of µ, the ultimate value of the 
security is ϴ1, and at a probability of 1–µ it is ϴ2, where ϴ1 < ϴ2. We conducted the 
simulation for five different µ values: 0.493; 0.4; 0.3; 0.2 and 0.1.

Traders are uniformly distributed over the [0, 1] interval, with λ part of the traders 
being fully informed about the security’s return and 1–λ part of them not possessing 
any information about the ultimate value of the risky asset, where 0 < λ < 1. We 
took 0.2 to be the value of λ for the simulation.

Apart from traders, there is one actor on the market: the risk-neutral, profit 
maximiser specialist who posts the quote of the risky asset for his own purposes 
while also observing market rules. His task is to announce a bid price and size and 
an ask price and size set. No transaction takes place at prices and sizes worse than 
the announced set. In addition, the specialist has an expectation about λ, and he 
updates this belief after each trade, which is marked by λs.

3.1. Events of a period
Caglio and Kavajecz (2006) defined a period as follows. First, the two different return 
potentials of the risky asset change. Next, the specialist determines the quoted bid 
and ask prices (marked by b and a, respectively, where b < a in equilibrium) along 
with the corresponding bid and ask volumes (marked by β and α, respectively). While 
doing so, the specialist considers the probability of trading with the different traders, 
the volumes they are willing to purchase of the given financial product, the potential 
returns on the given product and the product’s expected value. Among the population 
of market participants, a randomly selected person decides whether he wants to 
trade or not. If the trader decides to trade, he selects a certain volume, which is 
either smaller than or equal to the relevant depth. After the transaction has been 
completed, the specialist updates his belief about the proportion of informed traders 
and revises its quoted offer. After he has defined his new offer, another trading round 
takes place, and this process is repeated again and again throughout a specific period.

3 �We must use 0.49 instead of 0.5 in order to avoid dividing by 0 later on, such as in the case of Equation 4.



96 Studies

Kira Muratov-Szabó – Kata Váradi

Caglio and Kavajecz (2006) assumed that each trader has only one trading 
opportunity. Since an informed trader has perfect information about the ultimate 
value of the risky asset, theoretically he can have infinite demand if the specialist 
has mispriced the asset. Only the specialist’s quoted volumes can put a limit on 
this demand; therefore, the key assumption of the model is that informed traders 
will choose maximum depth. Consequently, the jth informed trader will place his 
order as follows:

	 qji =
−β , ha b >θ∗

α , ha a <θ∗

⎧
⎨
⎪

⎩⎪
	 (1)

where ϴ* is the real value of the risky asset and q stands for the volume. It should 
be noted that, since the specialist buys (sells) at the bid (ask) prices, the bid depth 
is positive and the ask depth is negative, i.e. βj > 0 and αj < 0.

Since uninformed traders are not driven by information, they can be viewed 
as a  group of people with various, exogenously determined motivations and 
inclinations towards trading. The kth trader is written as a set of (ek, rk), which 
represents the trader’s endowment and his reservation price. The positive (negative) 
values of ek mean that the trader wishes to sell (buy) a certain quantity of the 
risky asset. Moreover, a high (low) value of rk indicates that the trader overvalues 
(undervalues) the asset. Therefore, each uninformed trader places an order in 
accordance with the following strategy:

	 qku =
−min β,ek[ ], if ek > 0 and b > rk
+min α , ek⎡⎣ ⎤⎦ , if ek < 0 and a < rk

0, otherwise

⎧

⎨
⎪

⎩
⎪

	 (2)

Accordingly, an uninformed trader will buy (sell) if his reservation price is higher 
(lower) than the quoted ask (bid) price and the traded volume is the same as the 
ask (bid) depth or lower. For the sake of clarity, the volumes to be bought/sold by 
traders are uniformly distributed over a pre-fixed t1 and t2 set, and the reservation 
prices are also uniformly distributed between ϴ1 and ϴ2; accordingly:

	 ek ∼U t1,t2[ ] rk ∼U θ1,θ2[ ] 	 (3)

Since they were not given, we took the interval of the fixed t1 and t2 set as 
[–100, 100], and the rk-s fall between two possible returns on the risky asset that are 
generated by the model from a normal distribution as described above. Moreover, 
suppose that both the ek-s and the rk-s are independent of each other.
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Taking the two different trading strategies together, Caglio and Kavajecz (2006) 
calculated the way in which the specialist maximises the expected value of his 
profits as follows:

E π b,β,a,α( )⎡⎣ ⎤⎦ = µλβ θ1 −b( )+ 1− µ( )λα θ2 −a( )

+ 1−λ( ) t2 −β
t2 − t1

⎛
⎝⎜

⎞
⎠⎟

b−θ1
θ2 −θ1

⎛
⎝⎜

⎞
⎠⎟
β µ θ1 −b( )+ 1− µ( ) θ2 −b( ){ }

+ 1−λ( ) β
t2 − t1

⎛
⎝⎜

⎞
⎠⎟

b−θ1
θ2 −θ1

⎛
⎝⎜

⎞
⎠⎟

1
2
β⎛

⎝⎜
⎞
⎠⎟ µ θ1 −b( )+ 1− µ( ) θ2 −b( ){ }

+ 1−λ( ) α − t1
t2 − t1

⎛
⎝⎜

⎞
⎠⎟

θ2 −a
θ2 −θ1

⎛
⎝⎜

⎞
⎠⎟
α θ1 −a( )+ 1− µ( ) θ2 −a( ){ }

+ 1−λ( ) −α
t2 − t1

⎛
⎝⎜

⎞
⎠⎟

θ2 −a
θ2 −θ1

⎛
⎝⎜

⎞
⎠⎟

1
2
α⎛

⎝⎜
⎞
⎠⎟ µ θ1 −a( )+ 1− µ( ) θ2 −a( ){ }

	 (4)

The first line of the right-hand side of the equation indicates expected losses 
from transactions with informed traders, while the rest of the lines show the 
expected value of profitable or non-profitable trades with uninformed traders. 
This optimisation makes implicit assumptions about the relationship between the 
variables chosen by the specialist. These assumptions can be summarised in the 
following two constraints:

1) �Quoted depth is equal to or lower than maximum liquidity trading.

	 t1 ≤α < 0 < β ≤ t2 	 (5)

2) �Quoted prices must fall between the two final returns:

	 θ1 <b <a <θ2 	 (6)

3.2. The active quotation method
Caglio and Kavajecz (2006) defined the equilibrium values of the model as follows:

Proposition 1: If µ meets the following conditions:

	
λ −λ t2

t1( )
1−λ t2

t1( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
< µ < 1−λ

1−λ t1
t2( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ 	 (7)

then the unique equilibrium of the single-period model is:
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	 bu* =
1
4
3Eµ θ[ ]+θ1( )− 1

4
1− µ( ) θ2 −θ1( ) 1+ 8

t2

⎛
⎝⎜

⎞
⎠⎟

λ
1−λ

⎛
⎝⎜

⎞
⎠⎟

µ
1− µ

⎛
⎝⎜

⎞
⎠⎟
t2 − t1( ) 	 (8)

	 βu* =
3
2
t2 −

1
2
t2 1+ 8

t2

⎛
⎝⎜

⎞
⎠⎟

λ
1−λ

⎛
⎝⎜

⎞
⎠⎟

µ
1− µ

⎛
⎝⎜

⎞
⎠⎟
t2 − t1( ) 	 (9)

	 au* =
1
4
3Eµ θ[ ]+θ2( )+ 1

4
µ θ2 −θ1( ) 1− 8

t1

⎛
⎝⎜

⎞
⎠⎟

λ
1−λ

⎛
⎝⎜

⎞
⎠⎟

1− µ
µ

⎛
⎝⎜

⎞
⎠⎟
t2 − t1( ) 	 (10)

	 αu
* = 3

2
t1 −

1
2
t1 1− 8

t1

⎛
⎝⎜

⎞
⎠⎟

λ
1−λ

⎛
⎝⎜

⎞
⎠⎟

1− µ
µ

⎛
⎝⎜

⎞
⎠⎟
t2 − t1( ) 	 (11)

The restriction on µ is equivalent to demanding that the specialists keep both sides 
of the market open. Left-hand side inequality provides the ask side of the market 
au

* < ϴ2 and αu
* < 0 and right-hand side inequality the bid side bu

*>ϴ1 and βu
* > 0.

The restrictions on variables (µ, λ, t1, t2) can be interpreted in two ways:

1) �In the first interpretation, the restriction ensures sufficient uncertainty about 
the final return on the asset; in other words, µ should not be too close either to 
zero or 1 in order to prevent the specialist from giving up the profits expected 
from one side of the market by closing off that side. 

2) �The second interpretation asserts that the restriction ensures the presence of 
a sufficient number of uninformed traders in the population in order for the 
specialist’s expected position to be profitable; in other words, λ must be close 
to zero.

In the special case where there are no informed traders (i.e. λ = 0), the square roots 
disappear, and the quote simplifies to (0 < µ < 1):

	 bu* =
1
2

Eµ θ[ ]+θ1( ) 	 (12)

	 βu* = t2 	 (13)

	 au* =
1
2

Eµ θ[ ]+θ2( ) 	 (14)

	 αu
* = t1 	 (15)

Consequently, the prices are merely mean values between the expected value and 
the ultimate values, while depths allow traders to trade with the desired volumes.
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3.3. The passive quotation method
If µ fails to fulfil Proposition (1), meaning that there is no sufficient uncertainty 
around the payoff of the financial product and/or the specialist believes that there 
are too many informed traders, the equilibrium method of Caglio and Kavajecz 
(2006) will not work. Therefore – in view of the fact that the specialist’s quote is 
likely to reflect the top of the order book if he thinks that there is a relatively large 
presence of informed traders on the market (Kavajecz 1999) – we assumed that the 
quote would evolve as follows: in such cases the specialist is concerned that he is 
likely to be confronted with a trader to whom he can only lose. Presumably then, 
he will try to move together with the market and refrain from announcing offers 
that deviate too much from the best prices.

Our assumptions for modelling are the following:

1) �If the bid-ask spread is not greater than the pre-defined maximum spread (a 
parameter that can be set during the exercise), then the specialist will once 
again quote the best bid price and size and the best ask price and size sets listed 
in the order book.

2) �If the bid-ask spread is greater than the prescribed maximum, the specialist is 
required to improve his quote. In such cases he will quote the next best price for 
an order of 150 shares on both sides, which will be entered into the order book, 
but only a part of it will actually remain in the book; namely, the quantity that 
was not matched during the transaction concluded with the trader that arrived 
at the given time.

3.4. Revision of the expectation about λ
In this sequential model, the specialist revises his λ expectations at the end of each 
trading round and announces a new quote for the next round. To understand the 
specialist’s learning process it is important to see that when an incoming order is 
smaller than the quoted ask or bid depth (α or β), the specialist knows that the 
investor placing the order is uninformed because a liquidity trader would definitely 
want to buy less than the depth not knowing which way should he shift the price 
as he has no information about what the correct price should be. By contrast, if the 
incoming order is α or β, the specialist has no way of knowing whether the person 
placing the order is a large liquidity trader or an informed trader. An informed trader 
may take the full volume because he knows that he can shift the price towards the 
correct price. However, if an investor takes the depth in full, that is no guarantee 
in itself that he is uninformed.

Therefore, according to Caglio and Kavajecz (2006), the specialist interprets orders 
that are equal to the depth in accordance with the Bayes rule. The authors assumed 
that the proportion of informed traders follows a binomial distribution in the trader 
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population, with a λ parameter over the [0, 1] interval. In fact, the specialist has 
a preliminary expectation about λ, which was assumed to be uniformly distributed. 
Then, when the specialist observes an order with a volume of α or β, the ex-post 
probability of λ is the following:

	 P λ α( )= 1− µ( ) λ( )
1− µ( ) λ( )+ α−t1

t2−t1( ) θ2−a
θ2−θ1
( ) 1−λ( ) 	 (16)

	 P λ β( )= µ( ) λ( )
µ( ) λ( )+ t2−β

t2−t1( ) b−θ1

θ2−θ1
( ) 1−λ( ) 	 (17)

Each individual trade carries information; it is an indication of the composition of 
the population. The aggregation of these signals defines the specialist’s belief about 
the distribution of informed traders on the market. Based on Caglio and Kavajecz 
(2006), as more and more trading periods follow one another, the specialist’s 
belief about the probability of being confronted by an informed trader should 
exponentially converge to the real value of λ.

Proposition 2: If a trader’s arrival at the market is a binomial stochastic variable 
with an unknown λ parameter and the ex-ante distribution is uniform over the  
[0, 1] interval, then with k full depth trades out of N trades the ex-post expected  
λ value will be:

	 E λ k full trades out of N trades( ) = k +1
N+2

	 (18)

4. The simulation

The programme embodying the model was developed in Excel VBA and we ran 
the test with the Monte Carlo simulation. The programme consists of numerous 
components. On the one hand, it is composed of various functions, which react 
promptly to any changes in the input parameters and adjust the value of the 
functions; on the other hand, it comprises numerous subroutines that re-run the 
calculations only on repeated command. The sequence of calls plays an important 
role in this exercise. The programme is extremely flexible: parameters can be set 
easily, and accordingly numerous different cases can be simulated at the click of 
a button or two.

4.1. The quotation
Connecting the two kinds of quotation methods discussed in Sections 3.2 and 3.3, 
the function named “Specialist”4 plays a key role in the simulation. Its outputs 
are quoted bid price and size and quoted ask price and size (Table 1). If µ fulfils 

4 �See Appendix 1
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Proposition (1), the specialist will use the “active” method to quote based on the 
equilibrium values of Caglio and Kavajecz (2006). If, however, µ does not meet 
the criteria, the quotation will be done with the “passive method” depending on 
the value of the spread at the given moment. During the simulation, these two 
quotation styles change continuously in response to the specialist’s revisions of his 
beliefs as the only variable parameters are the λs, values included in the condition 
and the µ values linked to the different cases.

Table 1
The specialist’s quotation

The specialist’s quotation

Buy Sell

Volume Price Volume Price

12 99 –7 100

4.2. The management of orders
The second most important component is the “Order” subroutine.5 The entire 
programme is built on running the subroutine n times. One of the basic assumptions 
of the simulation is that the specialist’s quotes make up the limit orders that will 
be included in the order book, whereas traders’ offers are market orders which, 
matched with the limit orders continuously knock the latter out of the book.

It is important, however, to understand the process of how orders are added to 
the book. If the specialist applies the active quotation method, the quoted orders 
will be included in the order book. If he needs to resort to the passive method, 
orders will only be added if they improve the quote; in other words, if the spread 
was higher than that permitted by the parameter we set. Otherwise, he will only 
announce the best orders from the book once again, in which case the orders will 
not be repeatedly added to the book, because this would set off a duplicating chain 
reaction and the order volumes would soar to infinity.

For the sake of transparency, instead of bid and ask prices we used a common price 
column with values ranging between 79 and 121. Upon generating the initial order 
book, the expected value of ask prices is 105 with a standard deviation of 7, the 
expected value of bid prices is 95 with a standard deviation of 5, and the volumes 
of the orders themselves are taken from a normal distribution with an expected 
value of 50 and a standard deviation of 15. (Table 2 shows an excerpt from the 
initial limit order book).

5 �See Appendix 2
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Table 2
Consolidated order book

Order book

Buy Price Sell

105 63

104 55

103 58

102 174

72 101

91 100

78 99

123 98

4.3. The logs
We used two different logs for recording the observations. One of them is the order 
log.6 The relevant subroutine copies all new incoming orders other than 0 into this 
log; i.e. this log collects all cases where the arriving trader accepted the specialist’s 
quotation. The log contains the volume of all orders that have a meaningful sign, 
prices, the buy or sell direction and the fact whether the programme classified the 
given trader as informed or uninformed. Another subroutine is at work in the last 
column, which displays the specialist’s belief about whether the given trader was 
informed or not (Table 3).

Table 3
Order log

Diary of orders

Sequence 
number

Volume Price Direction Trader Spec’s belief

1 –84 98 Sell Uninf

2 –48 96 Sell Uninf 1

3 –51 98 Sell Inf 1

4 7 100 Buy Uninf 1

For understandable reasons, the specialist is not always correct in guessing the 
trader’s type (as shown by Table 3) as indeed, the specialist can only see whether 
the given person traded the full depth or not. If yes, the specialist will deem the 
trader informed (signalled by 1) even though it is also possible that the trader was 

6 �See Appendix 4



103

The Impact of Adverse Selection on Stock Exchange Specialists’ Price Quotation Strategy

uninformed but by chance, his demanded volume coincided with the quoted depth. 
The sum of the numbers contained in this “Spec’s belief” column gives the k value 
for Proposition (2); i.e. the number of full-depth trades, while the last sequence 
number of the log at a given moment gives the N value, which denotes the number 
of all trades completed that far.

The second log is the transaction log,7 the first five columns of which are generated 
by another subroutine integrated into the “Order” subroutine. The next four 
columns are computed by Excel as shown in Table 4.

The transaction log is used for the purposes of inspecting the results.

1. �The commission fee column simply contains the order value (volume •price) 
multiplied by 1.5 per cent; the value of the latter parameter can be set as 
required. Wealth is received as the product of current money and price.

2. �For the calculation of money and stock, the direction of the transaction should 
be taken into account. In the case of a sell order, after the tth transaction money 
is computed as follows:

	 moneyt =moneyt−1 + pricet ⋅ volumet + commission feet 	 (19)

In the case of a buy order, the calculation will be:

	 moneyt =moneyt−1 − pricet ⋅ volumet + commission feet 	 (20)

3. �For stocks, the calculation is the opposite: if it was a sell order, the stock portfolio 
decreases after the tth transaction: 

	 stockt = stockt−1 − volumet 	 (21)

Conversely, in the case of a buy order, the portfolio increases:

	 stockt = stockt−1 + volumet 	 (22)

Table 4
Transaction log

Sequence 
number

Type Volume Price Spread Commission 
fee

Money Stock Wealth

1 Buy 84 98 3 123.5 501,699 993 599,013

2 Buy 48 96 4 69.1 497,161 1,041 597,097

3 Buy 51 98 4 75.0 492,238 1,092 599,254

4 Sell 7 100 2 10.5 492,948 1,085 601,448

7 �See Appendix 5
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5. Evaluation of the results

5.1. Comprehensive statistics
Firstly, we would like to present a  statistical table designed to evaluate the 
simulation as a  whole and containing the mean values received for selected 
µ values. We computed these values with the Monte Carlo method, using the 
transaction log described in Section 4.3.

Table 5
Statistics

Averages / µ 0.49 0.4 0.3 0.2 0.1

Wealth growth 1,350 9,067 15,414 43,669 81,741

Δ Stocks 27 3,631 6,448 9,741 26,998

Commission fee 793 7,924 12,473 18,532 43,591

Transactions 10 34 39 45 48

Minimum price 95 94 93 94 95

Maximum price 104 105 104 103 103

λi
s,v 0.30 0.25 0.20 0.15 0.11

Revaluation 556 1,144 2,940 25,137 38,150

For each individual case, we ran 20 rounds of the programme where one round 
means 100 periods, i.e. 100 arriving traders. During the simulation a round takes 
place as follows:

1) �The contents of the order and transaction logs are deleted.

2) �The programme generates a new initial order book.

3) �The “Order” subroutine runs 100 times (the parameter can be set as needed). 
The subroutine calls a trader in each period. The new order is added to the order 
log, the subroutine books the transaction in the transaction log, and the order 
book is updated. Obviously, not all traders say yes to the specialist’s offer as it is 
quite possible that their reservation price is lower/higher than the quoted ask/
bid price. In such cases no transaction takes place; the programme continues to 
run and the next participant arrives. Meanwhile, the specialist’s quote and the 
possible final returns on the risky asset change continuously.

4) �The results are calculated based on the transaction log.

After having run 20 rounds, the programme computes the mean of the results 
received at the end of each round, which is included in Table 5.
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The means of minimum and maximum prices do not show a significant difference; 
apparently, changes in µ did not influence these values unambiguously. Price 
fluctuations, however, had a greater impact, as will be discussed in Section 5.2.

Table 5 also shows the average number of transactions of the 100 periods; in other 
words, the number of traders who accepted the quote of the specialist. Figure 2 
shows an impressive growth rate in line with a declining µ.

The smaller the µ, the smaller the uncertainty about the final payoff of the risky 
asset and simultaneously, the specialist's expectations about the percentage of 
informed traders also decrease exponentially (λi

s,v indicates the mean value of the 
specialist’s beliefs calculated from the values at the end of the simulation rounds), 
even though λ was set to 0.2 throughout the exercise. Table 5 shows that the model 
behaved best when µ=0.3; that is when it deduced the real value of the specialist’s 
lambda most accurately on average.

Accordingly, the number of transactions grows in line with the decline in uncertainty 
for the following reason: the specialist is more likely to know the possible price of 
the financial product as orders are more likely to come from informed traders, and 
thus the market price can converge to the fair price with more accuracy during the 
course of the transactions.

At the beginning of the simulation, the initial earnings of the specialist comprised 
500,000 units of money, 1,000 shares, and the commission fee was set at 1.5 per 
cent. The greater number of transactions combined with the greater certainty about 
the product’s return may account for the exponential increase in wealth, stocks 
and commission fees. Revaluation shows how wealth changed once the amount of 
commission fees was deducted. Table 3 indicates this increment clearly.

Figure 2
Changes in the number of transactions
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5.2. Changes in prices
In order to examine the changes in prices and based on the results, changes in 
logreturns, we ran the code for each µ as many times as to receive nearly 400 
observations for all five cases. We calculated their maximum and minimum values 
and, from the difference of these two, the range and the standard deviation.

Table 6
Minimum and maximum values and range and standard deviation of prices

Price 0.49 0.4 0.3 0.2 0.1

min 81 87 92 91 93

max 111 106 113 109 101

range 30 19 21 18 8

standard deviation 3.95 2.85 2.09 2.20 1.86

Although Table 5 shows that for each µ, the average minimum price is between 93 
and 95 and the average maximum price is between 103 and 105 calculated from 
the values received at the end of the individual rounds, and µ did not appear to 
exert a clear impact on the prices, Table 6 reveals that µ did have an influence on 
the prices. This is best demonstrated by the standard deviations of the individual 
cases. The smaller the uncertainty, the smaller the standard deviation of the prices 
(with a larger sample size this would be illustrated even more precisely, and the 
result of 0.3 would fit between 0.4 and 0.2 even better), which is consistent with 
the findings presented in Section 5.1.

Figure 3
Changes in wealth, stocks and the commission fee
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Figure 4 clearly shows that the smaller the µ value, the smaller the price fluctuation.

5.3. Changes in logreturns
According to the Efficient Market Hypothesis (EMH), market prices fully reflect 
public information; in other words, all available information is already incorporated 
into prices and therefore, prices are reliable (Fama 1970). Consequently, prices are 
shaped only by new information, from which it follows that the daily logreturns are 
independent and normally distributed (Száz 2009). Therefore, in the next section 
of our study we examine the extent to which this consequence holds true for the 
distribution of the logreturns received after the simulation.

We received logreturns from the prices by taking the natural logarithm of the chain 
indices. Their minimum and maximum values, means and standard deviations are 
summarised in Table 7.

Table 7
Minimum and maximum values and mean and standard deviation of logreturns

Logreturn 0.49 0.4 0.3 0.2 0.1

min –22.07% –14.92% –11.23% –10.32% –6.19%

max 18.03% 15.91% 10.24% 13.75% 6.19%

mean 0.00% –0.01% –0.01% 0.01% 0.01%

standard deviation 5.38% 3.81% 2.58% 2.14% 1.70%

Figure 4
Changes in prices
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We used these values for drawing up the frequency table, taking each individual 
case separately. Firstly, by using the minimum and maximum values, we prepared 
an absolute frequency table with 16 class intervals. From this, we calculated actual 
relative frequencies and then, actual cumulated relative frequencies. After this, we 
used a built-in Excel function to calculate the values that should be received from 
a normal distribution with this mean and standard deviation. The numbers received 
were the values of the cumulative distribution function of the normal distribution, 
which correspond to the theoretical cumulated relative frequency. Working our way 
backwards, from this we received the theoretical relative frequencies, and after 
multiplying these values by the number of observations we received the theoretical 
absolute frequencies.

The best result was received when µ=0.4 (Figure 5): this is when the distribution of 
logreturns most closely approximated the normal distribution, although even then, 
the probability density function was far more peaked than the normal bell curve. 
The cumulative distribution functions are fit to the primary axis and the probability 
density functions to the secondary.

In Figure 6, we show the distribution of the logreturns received for each of the five 
µ-s together. This pattern meets our expectations as it shows that the smaller the 
µ – i.e. the smaller the uncertainty about the ultimate value of the risky product – 
the more biased the probability density function of the actual logreturns relative 
to that of the normal return. Accordingly, the more information the specialist has 
about the asset’s payoff, the more impaired the EMH; namely, that all information 

Figure 5
Distribution of logreturns if µ=0.4
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available is incorporated into prices and thus, the distribution of the logreturns fits 
the normal curve less and less. A larger sample size would probably result in an 
even more spectacular demonstration of the continuous upward bias.

The case where µ=0.49 is apparently more biased compared to the case featuring 
the 0.4 value. This is probably because in that case µ seldom meets the criteria 
defined with the inequality included in Proposition (1) and therefore, the 
programme applies the passive quotation type instead of the active equilibrium 
model proposed by Caglio − Kavajecz.

6. Summary

The purpose of our study was to write a simulation programme that may allow us 
to examine the impact of adverse selection on the specialist’s price quotation, the 
extent to which various levels of uncertainty influence prices and logreturns, and 
the accuracy to which the specialist can determine the proportion of informed 
traders on the market based on the transactions.

Based on the simulation, the specialist’s belief about the ratio of informed traders 
was the most accurate where µ=0.3 on average.

The results showed unambiguously that the number of transactions grows in line 
with the decline in uncertainty, as the specialist becomes more likely to predict the 
potential price of the financial product. Parallel to this, both the specialist’s earnings 
and stock portfolio increase progressively.

Figure 6
Distribution of logreturns for each µ value under review
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At the same time, price fluctuation and the standard deviation of logreturns decline 
continuously, and the consequence of the efficient market theory, namely, that the 
standard deviation of logreturns follows a normal distribution, becomes more and 
more biased as the condition that prices reflect public information becomes impaired.

Table 8 sums up these results. Analogously, when the process is reversed: an 
increase in uncertainty will trigger an opposite change in the other areas.

Table 8
Impact of changes in uncertainty

Uncertainty (µ) decreases

Number of transactions increases

Wealth increases

Stocks increases

Price fluctuation decreases

Standard deviation of logreturns decreases

Fit of logreturns to normal distribution decreases

The results were consistent with our expectations and of course, their precision 
and clarity would probably improve further with a bigger sample size and repeated 
runs of the programme.
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Appendices

The appendices of our paper present the most important subroutines and functions 
written for the simulation.

Appendix 1: Function of the specialist’s quotation I

As mentioned before, the function combines two methods. If µ fulfils condition 
(1) – which consists of two inequalities – then the equilibrium values will be 
consistent with Caglio and Kavajecz (2006). If the inequality is not fulfilled, then 
the programme jumps to the next commands. The same command is run even when 
it is not only the second half of the inequality that is unfulfilled, but also the first 
part of it. At the end of the function, a built-in function rounds up the generated 
bid and ask prices and volumes to the nearest whole number.

Function specialist(mu, v1, v2, lambdaS, t1, t2, spmax, spmost)

Dim Ev, v21, t21
ReDim assumption(1 To 2)
ReDim bidask(1 To 4)

Ev = mu * v1 + (1 - mu) * v2 ‘expected value of the asset
v21 = v2 - v1
t21 = t2 - t1
assumption(1) = (lambdaS - lambdaS * t2 / t1) / (1 - lambdaS * t2 / t1)
assumption(2) = (1 - lambdaS) / (1 - lambdaS * t2 / t1)

If assumption(1) < mu Then ‘condition (1) is fulfilled
    If mu < assumption(2) Then ‘condition (2) is also fulfilled
        ‘bid size
        beta = 3 / 2 * t2 - 1 / 2 * t2 * (1 + (8 / t2) * (lambdaS / (1 - lambdaS)) * (mu / 
(1 - mu)) * t21) ^ 0.5
        ‘bid price
        b = 1 / 4 * (3 * Ev + v1) - 1 / 4 * (1 - mu) * v21 * (1 + (8 / t2) * (lambdaS / (1 - 
lambdaS)) * (mu / (1 - mu)) * t21) ^ 0.5
        ‘ask size
        alpha = 3 / 2 * t1 - 1 / 2 * t1 * (1 - (8 / t1) * (lambdaS / (1 - lambdaS)) * ((1 - 
mu) / mu) * t21) ^ 0.5
        ‘ask price
        a = 1 / 4 * (3 * Ev + v2) + 1 / 4 * mu * v21 * (1 - (8 / t1) * (lambdaS / (1 - 
lambdaS)) * ((1 - mu) / mu) * t21) ^ 0.5
    Else ‘but condition 2 is not fulfilled
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        If spmost <= spmax Then
        ‘if the spread is good
            For i = 3 To 45
                If Cells(i, 12) > 0 Then
                    beta = Cells(i, 12)
                    b = Cells(i, 13)
                    GoTo 51
                End If
            Next i
51
            For i = 45 To 3 Step -1
                If Cells(i, 14) > 0 Then
                    alpha = -Cells(i, 14)
                    a = Cells(i, 13)
                    GoTo 53
                End If
            Next i
        Else
        ‘if the spread is higher than permitted
            For i = 3 To 45
                If Cells(i, 12) > 0 Then
                    beta = 150
                    b = Cells(i, 13) + 1
                    GoTo 52
                End If
            Next i
52
            For i = 45 To 3 Step -1
                If Cells(i, 14) > 0 Then
                    alpha = -150
                    a = Cells(i, 13) - 1
                    GoTo 53
                End If
            Next i
53
        End If
    End If
Else ‘even condition 1 is unfulfilled
    If spmost <= spmax Then
    ‘if the spread is good
        For i = 3 To 45
            If Cells(i, 12) > 0 Then
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                beta = Cells(i, 12)
                b = Cells(i, 13)
                GoTo 54
            End If
        Next i
54
        For i = 45 To 3 Step -1
            If Cells(i, 14) > 0 Then
                alpha = -Cells(i, 14)
                a = Cells(i, 13)
                GoTo 56
            End If
        Next i
    Else
    ‘if the spread is higher than permitted
        For i = 3 To 45
            If Cells(i, 12) > 0 Then
                beta = 150
                b = Cells(i, 13) + 1
                GoTo 55
            End If
        Next i
55
        For i = 45 To 3 Step -1
            If Cells(i, 14) > 0 Then
                alpha = -150
                a = Cells(i, 13) - 1
                GoTo 56
            End If
        Next i
56
    End If
End If

bidask(1) = Application.Round(beta, 0)
bidask(2) = Application.Round(b, 0)
bidask(3) = Application.Round(alpha, 0)
bidask(4) = Application.Round(a, 0)
specialist = bidask 

End Function
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Appendix 2: The order subroutine

This subroutine is the most complex of all. It calls numerous other routines which 
update the specialist’s beliefs, change the value of the risky asset, book the orders, 
or are required simply for technical reasons.

2.1 Beginning of the subroutine
Sub order()

updating_belief ‘the specialist’s belief about lambda changes as a result of the 
previous order
risky_asset ‘the value of the risky asset changes

‘Parameter selection
mu = Cells(5, 1)
v1 = Cells(3, 1)
v2 = Cells(3, 2)
vi = Cells(3, 3)
t1 = Cells(3, 6)
t2 = Cells(3, 7)
beta = Cells(10, 1)
b = Cells(10, 2)
alpha = Cells(10, 3)
a = Cells(10, 4)
lambdaS = Cells(10, 6)

Dim e, r, Ev, v21, t21
Ev = mu * v1 + (1 - mu) * v2 ‘expected value of the asset
v21 = v2 - v1
t21 = t2 - t1

2.2 Inclusion of the specialist’s orders in the order book
‘SPECIALIST:
‘HYPOTHESIS: the specialist’s orders are limit orders
ReDim assumption(1 To 2)
assumption(1) = (lambdaS - lambdaS * t2 / t1) / (1 - lambdaS * t2 / t1)
assumption(2) = (1 - lambdaS) / (1 - lambdaS * t2 / t1)
Cells(4, 3) = assumption(1)
Cells(5, 3) = assumption(2)
spmax = Cells(3, 10)
spmost = Cells(3, 11)
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If assumption(1) < mu Then ‘condition (1) is fulfilled
    If mu < assumption(2) Then ‘condition (2) is also fulfilled
    ‘new quote, which is added to the book
        For i = 3 To 45
            If Cells(i, 13) = Cells(10, 2) Then
                Cells(i, 12) = Cells(i, 12) + Cells(10, 1) ‘the specialist’s bid volume
            End If
            If Cells(i, 13) = Cells(10, 4) Then
                Cells(i, 14) = Cells(i, 14) + Abs(Cells(10, 3)) ‘the specialist’s ask volume
            End If
        Next i
    Else
        If spmost > spmax Then
        ‘if the spread is higher than permitted, then
        ‘the new order improves the quote and is also added to the book
            For i = 3 To 45
                If Cells(i, 13) = Cells(10, 2) Then
                    Cells(i, 12) = Cells(i, 12) + Cells(10, 1) ‘the specialist’s bid volume
                End If
                If Cells(i, 13) = Cells(10, 4) Then
                    Cells(i, 14) = Cells(i, 14) + Abs(Cells(10, 3)) ‘the specialist’s ask volume
                End If
            Next i
        End If
    End If
Else
    If spmost > spmax Then
    ‘if the spread is higher than permitted, then
    ‘the new order improves the quote and is also added to the book
        For i = 3 To 45
            If Cells(i, 13) = Cells(10, 2) Then
                Cells(i, 12) = Cells(i, 12) + Cells(10, 1) ‘the specialist’s bid volume
            End If
            If Cells(i, 13) = Cells(10, 4) Then
                Cells(i, 14) = Cells(i, 14) + Abs(Cells(10, 3)) ‘the specialist’s ask volume
            End If
        Next i
    End If
End If
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2.3 Generation of informed traders
‘TRADERS:
‘trader generation
p = Rnd()
If p > 0.8 Then
    Cells(14, 4) = "Inf" ‘informed
Else
    Cells(14, 4) = "Uninf" ‘uninformed
End If

‘informed trader
If Cells(14, 4) = "Inf" Then
    If b > vi Then
        Cells(14, 1) = -beta ‘volume
        Cells(14, 2) = b ‘price
    Else
        If a < vi Then
            Cells(14, 1) = Abs(alpha)
            Cells(14, 2) = a
        End If
    End If
End If

2.4 Generation of liquidity traders
‘uninformed trader
If Cells(14, 4) = "Uninf" Then

    e = Application.WorksheetFunction.RandBetween(t1, t2)
    r = Application.WorksheetFunction.RandBetween(v1, v2)
    Cells(3, 8) = e
    Cells(3, 9) = r
    
    If e > 0 Then ‘he wants to sell
        If b > r Then ‘his min ask price is higher than the spec’s bid price
            Cells(14, 1) = -Application.WorksheetFunction.Min(beta, e)
            Cells(14, 2) = b
        Else
            Cells(14, 1) = 0
        End If
    End If
    If e < 0 Then ‘he wants to buy
        If a < r Then ‘his max bid price is higher than the spec’s ask price
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            Cells(14, 1) = Application.WorksheetFunction.Min(Abs(alpha), Abs(e))
            Cells(14, 2) = a
        Else
            Cells(14, 1) = 0
        End If
    End If
    
End If

2.5 Ask order
diary_of_orders ‘orders are added to a log

‘parameters of the new order are saved in new variables
ordervol = Abs(Cells(14, 1)) ‘abs value is needed because if ask order, vol. is negative
orderprice = Cells(14, 2)
ordertype = Cells(14, 3)

‘HYPOTHESIS: traders’ orders are market orders
If ordertype = “Sell” Then ‘market price ask
a1 = ordervol
k = 0
    For i = 3 To 45
        k = i + 1
        If Cells(i, 13) = orderprice Then
            If Cells(i, 12) >= a1 Then
            ‘if there are more in the book than the order (remainder)
                Cells(i, 12) = Cells(i, 12) - a1 ‘TRANSACTION
                Cells(14, 6) = a1 ‘volume of last transaction
                Cells(14, 7) = Cells(i, 13) ‘price of last transaction
                diary
                a1 = 0
            Else
            ‘if there is less in the book, the order is divided further
                a1 = a1 - Cells(i, 12)
                Cells(14, 6) = Cells(i, 12) ‘volume of last transaction
                Cells(14, 7) = Cells(i, 13) ‘price of last transaction
                diary
                Cells(i, 12) = 0 ‘TRANSACTION
                GoTo 21
            End If
        End If
        Cells(6, 10) = a1
    Next i
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    21  Do Until a1 = 0
    For j = k To 45
        If Cells(j, 12) > 0 Then
            If Cells(j, 12) >= a1 Then
            ‘if there are more in the book than the order (remainder)
                Cells(j, 12) = Cells(j, 12) - a1 ‘TRANSACTION
                Cells(14, 6) = a1 ‘volume of last transaction
                Cells(14, 7) = Cells(j, 13) ‘price of last transaction
                diary
                a1 = 0
                GoTo 22
            Else
            ‘if there is less in the book, the order is divided further
                a1 = a1 - Cells(j, 12)
                Cells(14, 6) = Cells(j, 12) ‘volume of last transaction
                Cells(14, 7) = Cells(j, 13) ‘price of last transaction
                diary
                Cells(j, 12) = 0 ‘TRANSACTION
            End If
        End If
    Next j
22  Loop
End If

2.6 Bid order
If ordertype = "Buy" Then ‘market price bid
a2 = ordervol
h = 0
    For i = 45 To 3 Step -1
        h = i - 1
        If Cells(i, 13) = orderprice Then
            If Cells(i, 14) >= a2 Then
            ‘if there are more in the book than the order (remainder)
                Cells(i, 14) = Cells(i, 14) - a2 ‘TRANSACTION
                Cells(14, 6) = a2 ‘volume of last transaction
                Cells(14, 7) = Cells(i, 13) ‘price of last transaction
                diary
                a2 = 0
            Else
            ‘if there is less in the book, the order is divided further
                a2 = a2 - Cells(i, 14)
                Cells(14, 6) = Cells(i, 14) ‘volume of last transaction
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                Cells(14, 7) = Cells(i, 13) ‘price of last transaction
                diary
                Cells(i, 14) = 0 ‘TRANSACTION
                GoTo 23
            End If
        End If
        Cells(6, 11) = a2
    Next i
    
23  Do Until a2 = 0
    For j = h To 3 Step -1
        If Cells(j, 14) > 0 Then
            If Cells(j, 14) >= a2 Then
            ‘if there are more in the book than the order (remainder)
                Cells(j, 14) = Cells(j, 14) - a2 ‘TRANSACTION
                Cells(14, 6) = a2 ‘volume of last transaction
                Cells(14, 7) = Cells(j, 13) ‘price of last transaction
                diary
                a2 = 0
                GoTo 24
            Else
            ‘if there is less in the book, the order is divided further
                a2 = a2 - Cells(j, 14)
                Cells(14, 6) = Cells(j, 14) ‘volume of last transaction
                Cells(14, 7) = Cells(j, 13) ‘price of last transaction
                diary
                Cells(j, 14) = 0 ‘TRANSACTION
            End If
        End If
    Next j
24  Loop
End If

netting ‘netting in the order book

End Sub
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Appendix 3: Updating the specialist’s belief

First, the “Order” sub calls the “updating belief” subroutine. It computes the k and 
N values from the order log, then it computes the specialist’s belief about the ratio 
of informed traders on the basis of the formula of Proposition (2).

Sub updating_belief()

beta = Cells(10, 1)
alpha = Cells(10, 3)
k = Cells(10, 7)
i = 23
Do Until Cells(i, 1) = 0
    i = i + 1
Loop

N = Cells(i - 1, 1) ‘last sequence number
j = 22 + N
If Cells(j, 2) = alpha * (-1) Then
    Cells(j, 6) = 1
End If
If Cells(j, 2) = beta * (-1) Then
    Cells(j, 6) = 1
End If

lambdaS = (k + 1) / (N + 2)
Cells(10, 6) = lambdaS

Cells(10, 8) = N

End Sub
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Appendix 4: Order log

The order log works as described in Section 4.3.

Sub diary_of_orders()
i = 23
Do Until Cells(i, 1) = 0
    i = i + 1
Loop
If Cells(14, 1) <> 0 Then
Cells(i, 1) = i - 22
Cells(i, 2) = Cells(14, 1)
Cells(i, 3) = Cells(14, 2)
Cells(i, 4) = Cells(14, 3)
Cells(i, 5) = Cells(14, 4)
End If
End Sub

Appendix 5: Transaction log

The transaction log works as described in Section 4.3.

Sub diary()

i = 2
Do Until Cells(i, 17) = 0 ‘check in which row should it enter the next transaction
i = i + 1
Loop ‘transaction is entered in the new i row
    
Cells(i, 17) = i - 1 ‘sequence number of last transaction
Cells(i, 19) = Cells(14, 6) ‘volume
Cells(i, 20) = Cells(14, 7) ‘price
Cells(i, 21) = Abs(Cells(10, 4) - Cells(10, 2)) ‘spread

‘the specialist stands on one side of each transaction
If Cells(14, 3) = "Buy" Then ‘if the incoming order was a bid order
    Cells(i, 18) = "Sell" ‘the specialist sold
End If
If Cells(14, 3) = "Sell" Then ‘if the incoming order was an ask order
    Cells(i, 18) = "Buy" ‘the specialist bought
End If

End Sub
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Appendix 6: Changes in the value of the risky asset

It takes the two possible outcomes of the risky asset’s ultimate value from the 
N~(100,5) distribution. In the code, v1 corresponds to the variable denoted by ϴ1 
in the model (the first possible outcome at a probability of µ), while v2 denotes ϴ2 
(the second possible outcome at a probability of 1-µ), and w denotes ϴ* (the real 
ultimate return).

Sub risky_asset()

u1 = 5 * Application.NormSInv(Rnd()) + 100 ‘the first outcome
    v1 = Application.Round(u1, 0)
u2 = 5 * Application.NormSInv(Rnd()) + 100 ‘the second outcome
    v2 = Application.Round(u2, 0)
If v1 < v2 Then
    Cells(3, 1) = v1
    Cells(3, 2) = v2
Else
    Cells(3, 1) = v2
    Cells(3, 2) = v1
End If

w = Rnd()
mu = Cells(5, 1)
If w <= mu Then
    vi = v1
Else
    vi = v2
End If
Cells(3, 3) = vi ‘real value

End Sub



124 Studies

Kira Muratov-Szabó – Kata Váradi

Appendix 7: Calculation of the results

The “Results” subroutine works with the data contained in the transaction log 
at the end of each round. Table 5 shows the results at the end of each round, as 
discussed in Section 5.1.

Sub results()
‘check how long the series is
a = 2
Do Until Cells(a, 17) = 0
    a = a + 1
Loop
‘Earnings increment
Cells(2, 28) = Cells(a - 1, 25) - Cells(2, 25)
‘Change in stock portfolio
Cells(3, 28) = Cells(a - 1, 24) - Cells(2, 24)
‘Commission amount
commission = 0
    For i = 2 To a - 1
        commission = commission + Cells(i, 22)
    Next i
Cells(4, 28) = commission
‘Number of transactions
Cells(5, 28) = Cells(a - 1, 17)
‘Minimum and maximum price
minprice = Cells(2, 20)
maxprice = Cells(2, 21)
For i = 2 To a - 1
If Cells(i, 20) < minprice Then minprice = Cells(i, 20)
If Cells(i, 20) > maxprice Then maxprice = Cells(i, 20)
Next i
Cells(6, 28) = minprice
Cells(7, 28) = maxprice
‘Belief about lambda at the end of the period
Cells(8, 28) = Cells(10, 9)
End Sub


