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Abstract

Background

Sleep spindles are involved in memory consolidation and other cognitive functions. Numerous
automated methods for detection of spindles have been proposed; most of these rely on
spectral analysis in some form. However, none of these approaches are ideal, and novel
approaches to the problem could provide additional insights.

New Method

Here, we apply delay differential analysis (DDA), a time-domain technique based on non-
linear dynamics to detect sleep spindles in human intracranial sleep data, including laminar
electrode, stereoelectroencephalogram (sEEG), and electrocorticogram (ECoG) recordings.

Results

We show that this approach is computationally fast, generalizable, requires minimal prepro-
cessing, and provides excellent agreement with human scoring.

Comparison with Existing Methods

We compared the method with established methods on a set of intracranial recordings and
this method provided the highest agreement with human expert scoring when evaluated
with F1 score while being the second-fastest to run. We also compared the results on the
DREAMS surface EEG data, where the method produced a higher average F1 score than all
other tested methods except the automated detections published with the DREAMS data.
Further, in addition to being a fast and reliable method for spindle detection, DDA also
provides a novel characterization of spindle activity based on nonlinear dynamical content
of the data.

Conclusions

This additional, non-frequency-based perspective could prove particularly useful for certain
atypical spindles, or identifying spindles of different types.

1. Introduction

1.1. Sleep Spindles

Sleep spindles are discrete events consisting of 11 to 16 Hz oscillations (the precise frequency
range varies across subjects) recorded primarily in stage 2 non-REM sleep, and to a lesser
extent in stage 3 non-REM sleep (Berry et al., 2012). Spindles display a characteristic
waxing and waning pattern in amplitude, and generally last between 0.3 and 3 seconds,
recurring every 5 to 15 seconds (Bonjean et al., 2012; Leresche et al., 1991). Sleep spindles
arise from the activity of thalamocortical circuitry. They have become a subject of study
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for their potential roles in memory consolidation and other cognitive functions (Sejnowski
and Destexhe, 2000; Schabus et al., 2004; Fogel et al., 2007), as well as in psychiatric and
neurological disorders (Ferrarelli et al., 2007; Petit et al., 2004; Ktonas et al., 2007).

Numerous methods for automated spindle detection have been proposed, most of which
rely on spectral analysis in some form (Warby et al., 2014; O’Reilly and Nielsen, 2015).
Here, we propose an alternative approach using a nonlinear time-domain algorithm which is
computationally fast and therefore capable of detecting spindles in real time.

1.2. Delay Differential Analysis

Delay differential analysis (DDA) is a time-domain classification framework based on embed-
ding theory in nonlinear dynamics (Kremliovsky and Kadtke, 1997; Lainscsek et al., 2013).
An embedding reveals the nonlinear invariant properties of an unknown dynamical system
(here the brain) from a single time series (here intracranial recordings). The embedding in
DDA serves then as a sparse nonlinear functional basis onto which the data are mapped.
Since the basis is built on the dynamical structure of the data, preprocessing (such as fil-
tering) is not necessary. DDA yields a small number of features (around 4), far fewer than
traditional spectral techniques, which provide a power at each frequency (often 100-200 fre-
quencies). In either case, the size of the feature set might vary depending on the parameters
used. Also, either set of features can be combined or collapsed to yield a measure that can
be thresholded. However, working with a constrained feature space is often desirable. This
approach greatly reduces the risk of overfitting, and therefore helps to ensure that a model
that was selected using a single EEG channel from one subject can be applied to a wide
range of data from different subjects, channels, and recording systems.

One can also view DDA models as sparse Volterra series (Volterra, 1887, 1959). A general
nonlinear real-valued function can be expressed as a Taylor series expansion of functionals
of increasing complexity around a fixed point. Rather than retain all low-order terms in the
expansion, DDA imposes restricted complexity on the analysis by using a low-dimensional
sparse delay differential equation (DDE) model. In a model of this type, linear and nonlinear
components of the data are analyzed in an interconnected manner. This reduces the com-
putational load, and further, by leaving some of the non-relevant dynamics unmodeled, it is
possible to greatly reduce the effect of artifacts and other signals unrelated to the particular
classification task of interest.

DDEs combine differential with delay embeddings as a functional embedding where (non-)
linear polynomial functions of the delay terms are used (Lainscsek et al., 2017). The general
form of the DDEs is

ẋ(t) =
I∑
i=1

ai

N∏
n=1

xmn,i
τn for τn,mn,i ∈ N0 (1)

where I is the number of monomials in the model, N is the number of delays, mn,i is the
order of the nth term in the ith monomial, and xτn represents x(t− τn). The time derivative
of the data, ẋ(t), is estimated with a weighted center derivative (Miletics and Molnárka,
2005):

ẋ(t) =
1

2M

M∑
m=1

x(t+m)− x(t−m)

m
(2)
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DDA

EEG

Figure 1: Delay Differential Analysis (DDA). For an unknown dynamical system (such
as the brain) from which we can record a single variable over time (such as ECoG data),
embedding theory states that we can recover the nonlinear invariant properties of the
original system. DDA combines delay and differential embeddings in a functional form
which allows time-domain classification of the data. For a given polynomial model form,
we estimate the coefficients and least-squares error, which form a low-dimensional feature
space. This figure is adapted from Lainscsek and Sejnowski (2015).

where M is the number of points used.

For a given model, we compute a small set of features, which are the estimated coefficients
ai in Eq. (1) as well as the least-squares error. The error is defined as:

ρ =

√√√√ 1

K

K∑
k=1

(
ẋtk −

I∑
i=1

ai

N∏
n=1

x
mn,i

τn,tk

)2

(3)

where K is the number of time points, and xτn,tk represents x(tk − τn).

2. Methods

2.1. Data

DDA was applied to laminar, stereoelectroencephalogram (sEEG), and electrocorticogram
(ECoG) recordings from patients with intractable epilepsy.

The laminar recordings studied here come from five patients, designated L1 to L5. Recordings
and data were obtained under Institutional Review Board (IRB) approval with informed
consent from participants in accordance with the Declaration of Helsinki.
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The additional recordings used for this study consisted of sEEG (depth electrode) recordings
from five patients, designated S1 to S5, and ECoG recordings from two patients, designated
E1 and E2, with long-standing pharmaco-resistant complex partial seizures. These recordings
used a standard clinical recording system (XLTEK, Natus Medical Inc., San Carlos, CA)
with sampling rates of 500, 512, or 1024 Hz. The reference for the sEEG electrodes was an
electrode placed over the C2 spinous process on the posterior neck. For the ECoG (cortical
surface electrode) recordings, the reference channel was a strip of electrodes located outside
the dura mater and facing the skull at a region remote from other grid and strip electrodes.
Placement of the intraparenchymal (sEEG) electrodes and subdural electrode arrays was
chosen to confirm the hypothesized seizure focus and locate epileptogenic tissue in relation
to essential cortical areas, thus directing surgical treatment.

The decision to implant, as well as the electrode targets and the duration of implantation
were entirely clinically based with no input from this research study. All data were handled
following protocols approved by the IRB of the Massachusetts General Hospital according
to National Institutes of Health guidelines.

sEEG data used for this study consist of three channels from subject S1, four channels from
subject S2, one channel each from subjects S3 and S5, and two channels from subject S4.
ECoG data used here consist of three channels from subject E1 and one channel from subject
E2. All data selected for use in this study were exclusively from stage two sleep, during time
periods when no seizures were occurring.

2.2. Spindle Marking

Both the data used for developing the detector and those used for testing were drawn from
human expert-scored intracranial recordings: 23-channel laminar electrodes in five subjects
(L1-L5) and single-channel scored sEEG and ECoG recordings from subjects S1-S5 and E1-
E2. In the laminar data set, the scorer marked a single time point for each identified spindle
based on evaluation of all 23 channels (here designated type I scoring). In the sEEG and
ECoG data, the beginning and end of all spindles were marked on the basis a single channel
(type II scoring). In type II scoring, therefore, the beginnings of spindles are defined as
the point where spindle oscillations become visually apparent to the scorer, and the end is
defined as the point where these oscillations are no longer apparent. Also, in type II scoring,
the scorer marked all potential spindles, regardless of clarity. By including both types of
human scoring as well as a range of spindle quality, we aim to develop a robust detector that
can function even with non-ideal data.

Since only a single time point was marked in type I scoring, a window of one second around
each marker was taken as the spindle (that is, the beginning of each spindle was defined as
0.5 seconds before the mark and the end was defined as 0.5 seconds after the mark), and a
wider window of one to three seconds around each marker was excluded from classification
as non-spindle data (only data at least 1.5 seconds before or after a mark were considered
non-spindle data). Table 1 summarizes the properties of the marked spindles in both data
sets: the recording type (laminar electrodes, sEEG, or ECoG), the scoring type (I or II),
the sampling rate fs, the number of marked spindles, the mean spindle duration, and the
mean peak frequency (between 11 and 17 Hz) for all spindles in each recording. Since type I
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Table 1: Human-marked spindle properties for the fifteen recordings.

Subject Channel** Type Scoring
fs

.[Hz]
Number

Mean
duration

.[s]

Mean
peak

freq. [Hz]

L1 1-23, left frontal Laminar I 2000 144 1* 15.0580

L2 1-23, right frontal Laminar I 2000 48 1* 11.8063

L3 1-23, right frontal Laminar I 2000 137 1* 12.8836

L4 1-23, right frontal Laminar I 2000 50 1* 12.4320

L5 1-23, right temporal Laminar I 2000 72 1* 13.2750

S1 1 (RCIN3) sEEG II 500 57 0.84 12.5395
S1 2 (LCIN4) sEEG II 500 135 0.91 12.8115
S1 3 (LSF6) sEEG II 500 47 0.72 12.6363

S2 1 (LCIN3) sEEG II 500 213 1.79 12.7073
S2 2 (LSF3) sEEG II 500 218 1.42 13.1963
S2 3 (RCIN5) sEEG II 500 146 1.25 12.9723
S2 4 (LFR1) sEEG II 500 227 1.57 12.3713

S3 1 (OF7) sEEG II 500 138 0.87 12.7769

S4 1 (RPF5) sEEG II 512 152 1.15 12.7569
S4 2 (ROF4) sEEG II 512 81 0.98 13.9615

S5 1 (RAF6) sEEG II 512 124 0.96 13.0326

E1 1 (GR28) ECoG II 512 82 1.05 12.4093
E1 2 (GR53) ECoG II 512 13 1.36 11.7415
E1 3 (GR38) ECoG II 512 92 1.18 13.2799

E2 1 (AGR52) ECoG II 1024 47 0.71 12.1440
*The mean duration cannot be determined from Type I scoring because only a single
time point was marked across all channels (1-23). One second of data is designated as
spindle data for structure selection.
**RCIN–right cingulate, LCIN–left cingulate, LSF–left subfrontal, LFR–left frontal , OF–
orbitofrontal, RPF–right posterior frontal, ROF–right orbitofrontal, RAF–right anterior
frontal, GR–grid (subject E1 grid channels 28, 38, and 53 were all located over posterior
frontal cortex with 28 the most inferior and 53 the most superior), AGR–anterior grid
(subject E2 anterior grid channel 52 was located over middle posterior frontal cortex)

scoring involved marking spindles on the basis of multiple channels, the peak frequencies are
computed as the mean of the peak frequency across the five channels in which spindles are
most visually apparent. The peak frequencies for all channels for each subject are plotted
in Fig. 2.

2.3. Supervised Structure Selection

Structure selection of the model ultimately relied on data from one channel from one subject.
Since DDA uses specific time delays, adjustments need to be made for sampling rate, and to
facilitate this, the model (polynomial form and delays) was selected using data with the low-
est sampling rate in the available data set (this allows for easy adjustment to higher sampling
rates). Here, we used an sEEG recordings sampled at 500 Hz. Data from these subjects and
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Figure 2: Spindle frequencies. For each of the five laminar, five sEEG, and two ECoG
subjects, the peak frequency (between 11 and 17 Hz) was computed for all human-marked
spindles and the mean peak frequency across all spindles is plotted as one point for each
channel. For laminar subjects, five of the channels are plotted–spindles were marked based
on evaluation of all channels. For the sEEG and ECoG subjects, spindles were marked
on an individual-channel basis, and all scored channels are plotted. Color indicates the
type of recording. Note that laminar recordings were collected from cortex identified as
probably epileptogenic.

channels were divided into half-second epochs and marked as spindle or non-spindle based
on how each epoch had been marked by a human expert in the manner described above.
Among these 500 Hz recordings, the one for which spindle and non-spindle epochs proved
most separable was used to select a model for use with new data.

In order to select the model from these training data, the set of models to be considered
was first subjected to constraints based on model forms that had proven effective in previous
applications of DDA, ensuring the sparsity of the model. The general form of the model
shown in Eq. (1) was constrained to two delays (N ≤ 2), three terms (I = 3), and up to
third-order nonlinearities (

∑
nmn,i ≤ 3). This resulted in a total of 188 unique DDE model

forms, upon which we performed an exhaustive search. The delays τ1 and τ2 were allowed
to vary between approximately 1 and 80 ms at intervals of 1/fs.

We performed repeated random subsampling cross-validation (Kohavi et al., 1995) to eval-
uate the performance of each model. This method involves repeatedly dividing the data at
random into training and testing sets. (Note that throughout we use the terms “training”
and “testing” to refer to these repeated random splits of the data for cross-validation. New
data, not used in the structure selection of a particular model, are referred to as “validation”
data.) This prevents overfitting of the model and ensures generalizability. Here, the repeated
random splits were carried out for the model selection data, assigning 70% of spindle and
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non-spindle epochs to the training set, and the remaining 30% to the testing set. Using the
model coefficients ak,i and error ρk obtained from each epoch k of the training data, we used
the human expert-scored labels lk (i.e. 0 for non-spindle and 1 for spindle) to obtain a vector
of weights W for the features by finding a least-squares solution to:

1 a1,1 a1,2 a1,3 ρ1
1 a2,1 a2,2 a2,3 ρ2
...

...
...

...
...

1 ak,1 ak,2 ak,3 ρk

W =


l1
l2
...
lk

 . (4)

The additional constant term avoids constraining the separating hyperplane to pass through
the origin in feature space. The weights W can be applied to the features computed from
the testing data which provides a one-dimensional distance D from an optimal hyperplane
of separation between spindle and non-spindle feature sets. We can evaluate how well this
distance corresponds to the human expert-scored labels of the testing data by computing
the area under the receiver operating characteristic (ROC) curve or F1 score. The ROC is
constructed by plotting the hit rate against the false alarm rate for various spindle detection
thresholds for D. The area under the curve defined by the plotted points, A′, should be
equal to 0.5 for random chance detection, and 1 for perfect separation of the groups (Hand
and Till, 2001). A′ can be obtained by taking

A′ =
S0 − n0(n0 + 1)

2n0n1

(5)

where n0 and n1 represent the number of points in each of two classes labeled 0 and 1
(here, non-spindle and spindle epochs), and S0 is obtained by first ranking all points by their
probability of being classified as 0, then summing the ranks of the true class 0 points. In
practice, once a specific model form has been selected, it is often sufficient to use a single
feature for classification.

While A′ is useful for structure selection of the DDA model, we evaluate final performance
with another measure, the F1 score, which is more widely used for evaluating spindle de-
tection (Dice, 1945; Sørensen, 1948). F1 scores are computed from the confusion matrix
according to:

F1 =
2TP

FN + FP + 2TP
(6)

where TP is the number of true positives, FN is the number of false negatives, and FP is the
number of false positives. For this purpose, the human scoring is considered the “ground
truth”. F1 scores are used in Sec. 3.1 for comparison between the outputs of several
spindle detection methods. As additional measures, we also compute the false discovery rate
(FDR = FP

TP+FP
) and false negative rate (FNR = FN

FN+TP
).

The cross-validation was repeated 100 times and the maximal A′ was used to select the
optimal model form and values of the delays. Using this procedure, for spindle detection in
the laminar, sEEG, and ECoG data at all sampling rates, an effective DDE model is:

ẋ = a1xτ1 + a2xτ2 + a3x
2
τ1

(7)
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with τ1 = 16 δt = 32 ms and τ2 = 25 δt = 50 ms for 500 Hz data. For spindle detection, we
find that the single feature a2 provides sufficient information for good detection performance.
In general, the threshold for spindle detection is set to 1.2 standard deviations above the
mean of a2. This threshold has been empirically determined to provide good agreement with
human scoring and was fixed throughout.

Despite the fact that these data come from subjects with different types of electrodes and
different sampling rates, it is possible to obtain spindle detection which agrees with human
scoring across multiple recordings as well as multiple human scorers would tend to agree with
each other (Basner et al., 2008). Because we use nonlinear models, all terms are connected
and linear as well as nonlinear terms contain both linear and nonlinear information. For this
reason the delays do not correspond to particular frequencies as one might expect (Lainscsek
and Sejnowski, 2015). Adjustments need to be made for data with different sampling rates.
In order to apply a selected DDA model to data with a higher sampling rate, we need
to change the delays and derivatives in the following way: The delays can be just the
approximate multiples (e.g. from 500 Hz to 1000 or 1024 Hz they would be doubled). For
the derivatives we keep the number of total points constant but take for this example every
second data point. For data with lower sampling rates (e.g. the DREAMS data in Sec. 3.1),
results can only be obtained by upsampling the data to the minimum sampling frequency of
500 Hz before applying the model.

2.4. Application to Full-Time Data

Having selected a model form and delay pair according to the above procedures, we com-
pute the corresponding a2 coefficient in sliding time windows across the full length of all
recordings. We use windows of length around 650 ms, shifted by around 200 ms per step.
Since the number of spindle and non-spindle epochs in the training data are not equal, the
optimal threshold for spindle detection may vary slightly between recordings. Nevertheless,
for the sake of testing a fully automated method, we maintained the aforementioned 1.2
standard deviation above mean a2 threshold for all results shown here. The beginning of
each detected spindle is therefore defined as the point at which the normalized a2 value
increases this threshold, and the end is defined as the point at which it subsequently de-
creases below the threshold. (Note that threshold-setting does not affect A′, since this is a
threshold-independent measure, but does determine the F1 scores, which are computed from
the confusion matrix for a particular threshold.) As a final step, any threshold crossings less
than 300 ms in length are excluded and marked as non-spindle. The remaining threshold-
crossings are the identified spindles. We evaluate detector performance by comparing these
time points identified as spindle by the detector with those identified by the human expert.

3. Results

Applying the detector to laminar, sEEG, and ECoG data, we obtain a mean area under the
ROC curve, A′, of 0.82 and a mean F1 score of 0.50. For the laminar data, we take just one
central channel from each electrode array for evaluating all methods. Since these data were
scored based on all channels, but some superior and inferior channels lacked clearly visible
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spindles, one of the channels (channel 11) with apparent spindles was chosen for evaluating
spindle detection performance. All available (individually scored) sEEG and ECoG channels
were used. For comparison, DDA frequency-band detectors (discussed in Appendix A) for
11-14 Hz and 11-17 Hz yield mean A′ values of 0.72 and 0.77 and mean F1 scores of 0.21 and
0.18 respectively. Such a difference in performance indicates that in addition to the frequency
characteristics of spindles, nonlinear information might also be relevant. Fig. 3 shows the
output the data-trained DDA spindle detector. Since the data-trained DDA detector shows
higher agreement with human scoring than the frequency-based DDA detector, it is used
exclusively for the remainder of the manuscript.

The A′ values, F1 scores, false discovery rates, and false negative rates for the DDA spindle
detector on all subjects are listed in Table 2. Note that in Sec. 3.1, F1 scores are used to
compare methods. Where cross-recording averages are reported, two recordings are excluded
since all automated detectors perform poorly, and these were originally selected as recordings
that were difficult to score.

time [s]
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Figure 3: Spindle detection. The lowest row in the plot shows the data with the spindles
in red, as marked by a human expert. In the middle row, a DDA spindle detection
output (trained on one channel from a different subject) is shown. We also show the
spectrograms (in the top row) for reference. The gray-shaded regions indicate the width
of the time windows used for computing both the DDA features and the spectrogram
(650 ms). Since we plot the time points on the x-axis for the start points of the sliding
windows, all points within a shaded region use windows that include some amount of
spindle data.

3.1. Comparison with Established Methods

Warby et al. (2014) presented a comparison of several automated methods for spindle detec-
tion with scoring by human experts and non-experts. Here, we compare the DDA spindle
detector to two of the automated methods considered there (Mölle et al., 2002; Martin et al.,
2013) and a modified version (Andrillon et al., 2011) of a third (Ferrarelli et al., 2007), as
well as an additional method designed for intracranial data (Hagler et al., 2018). Warby
et al. used two additional detectors (Bódizs et al., 2009; Wendt et al., 2012) which are ex-
cluded here due to their reliance on the comparison of specific channels from a standard
EEG montage, making them unsuitable for use with intracranial recordings from disparate
locations.
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Table 2: DDA spindle detection performance on all recordings

Subject Channel A′ F1
False

discovery rate
False

negative rate

L1 11 0.6023 0.2685 0.5323 0.8117
L2 11 0.6934 0.2991 0.7107 0.6903
L3 11 0.7423 0.2892 0.4701 0.8011
L4 11 0.7784 0.4948 0.5590 0.4365
L5 11 0.7529 0.3679 0.6682 0.5872
Laminar mean 0.7139 0.3439 0.5881 0.6654

S1 1 (RCIN3) 0.8785 0.5404 0.5924 0.1983
S1 2 (LCIN4) 0.9066 0.7685 0.2340 0.2290
S1 3 (LSF6) 0.8716 0.4345 0.6953 0.2428
S2 1 (LCIN3) 0.9120 0.3464 0.0380 0.7887
S2 2 (LSF3) 0.9170 0.5410 0.0265 0.6254
S2 3 (RCIN5) 0.8514 0.5601 0.1723 0.5768
S2 4 (LFR1) 0.9262 0.3970 0.0386 0.7499
S3 1 (OF7) 0.9062 0.8211 0.1718 0.1858
*S4 1 (RPF5) 0.4886 0.0749 0.8372 0.9514
S4 2 (ROF4) 0.8421 0.7201 0.1541 0.3731
S5 1 (RAF6) 0.8186 0.6290 0.3222 0.4133

sEEG mean 0.8830 0.5758 0.2445 0.4383

E1 1 (GR28) 0.8385 0.6081 0.3954 0.3884
*E1 2 (GR53) 0.6254 0.0462 0.9722 0.8636
E1 3 (GR38) 0.7726 0.5128 0.4000 0.5522
E2 1 (AGR52) 0.8112 0.3478 0.7692 0.2941

sEEG mean 0.8074 0.4896 0.5215 0.4116
*These recordings are excluded from the means and further analysis due to poor quality.

It is important to note that for all of these methods, spindle detection performance may be
lower here than with some other data, since no preprocessing or artifact removal steps have
been applied here prior to the core processing steps for spindle detection intrinsic to each
method. Further, these data present a mix of recordings of different quality and spindle
clarity, as evaluated by human expert scoring.

Mölle et al. used a 12-15 Hz bandpass finite impulse response (FIR) filter and subsequently
computed a root mean square (RMS) signal with 50 ms time resolution and a 100 ms time
window from the filtered data. Spindles were then detected using a thresholding procedure,
with beginning and end threshold crossings between 0.4 and 1.3 s required for spindle detec-
tion. This threshold was set automatically by the algorithm for each subject as originally
published, but was always greater than 5 µV (Mölle et al., 2002).

The approach of Martin et al. was similar: data were first bandpass filtered from 11 to
15 Hz using an FIR filter applied both forward and reverse. The RMS of the signal was
then computed using 0.25 s windows. The threshold for spindle detection was set at the
95th percentile and required two consecutive RMS time points (corresponding to 0.5 s) for
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Figure 4: Detection methods comparison. In the left panel, F1 score is plotted for a
set of automated spindle detection methods and DDA for the various Laminar, sEEG,
and ECoG recordings. The means (points) and standard deviations (bars) across all
recordings for each detector are plotted at the far right–these exclude two recordings
(denoted by *) of poor quality for which all methods yield low performance. These
recordings are also omitted from the right panel. At right, the F1 score for all recordings
is plotted against CPU time for each detection method. Each detector was run on twenty
intracranial recordings, the mean across all recordings (except the two noted exclusions)
is plotted with a larger marker, standard deviations across all recordings are plotted as
bars in both CPU time and F1 score. Note that not all recordings are of equal length, so
some variation in the CPU time is to be expected.

a spindle (Martin et al., 2013).

We also use a slightly modified version of the detector of Andrillon et al., itself a modified
version of the method of Ferrarelli et al. (2007). Putative spindles were identified by ap-
plying a zero-phase fourth-order Butterworth bandpass filter for 9 to 16 Hz. Instantaneous
amplitude was computed using a Hilbert transform, and the threshold for detection was set
at three standard deviations from the mean, with a threshold for the beginning and end of
spindles set at one standard deviation. Only events with durations between 0.5 and 2 s were
marked as spindles, and spindles separated by less than 1 s were merged.

Finally, we also apply a method developed for and previously applied to intracranial record-
ings of the type we consider here, which was developed by Hagler et al. This technique relies
on an initial detection based on instantaneous power in the spindle band (11-17 Hz) using a
smoothed wavelet convolution. Any initially identified spindles under 0.5 s in duration are
excluded. Further, the ratio of Fourier power in the spindle band relative to power in the 4
to 9 Hz range is used to remove artifacts and weak spindles. (Hagler et al., 2016).

In order to compare these various techniques with differing methodologies, we convert the
raw outputs of each technique to a binary index of spindle or non-spindle for each time
point. These binary detection indices are then compared by computing the F1 score of
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Table 3: Comparison of detection methods for all data

Method

Mean
percentage of
human-scored

spindles

Mean
length [s]

Mean F1

False
discovery

rate

False
negative

rate

CPU*
time [s]

per
recording

Mölle 105.0457 0.4871 0.4871 0.2856 0.5994 30.5645
Martin 141.9600 0.4754 0.4754 0.3427 0.5441 2.5615

Andrillon 46.3362 0.4028 0.4028 0.2078 0.7022 0.3922
Hagler 116.2967 0.4591 0.4591 0.2963 0.6225 1.8177
DDA 89.8979 0.4970 0.4970 0.3861 0.4969 1.6389

*All methods were implemented in MATLAB 9.4 (R2018a) and tested on the same 12-
core (Intel Xeon X5690 @ 3.47 GHz) system. The DDA detector calls an executable
written in C for a key step in the procedure.

each method against the human expert-marked spindles. The mean across subjects of the
number of spindles detected (expressed as a percentage of the number of spindles marked by
the human expert), spindle length, F1 score, and false positive and negative rates (relative
to human expert scoring) for each of these methods are shown in Table 3. The F1 scores
as well as CPU time for all methods and recordings are shown in Fig. 4. DDA provides the
highest average F1 score and the second lowest average CPU time.

Notably, as shown in Fig. 2, one of the recordings (L1) had a higher mean peak spindle
frequency than all others. That recording has a low F1 score (see Fig. 4) for all comparison
methods. DDA, in contrast, detected those spindles relatively well since the goal was to
detect dynamical patterns in the data.

To assess the advantage provided by using DDA features in addition to spectral features,
Fig. 5 and Table 4 show the mean F1 scores for various combinations of the different detection
methods. Of note is the fact that combining the DDA measure of spindle activity with other
measures generally provides a better measure than combining two or more spectral methods,
since it provides different information. Note that the F1 scores for the DDA detector alone
in Fig. 5 and Table 4 do not match exactly the scores in the earlier figures and tables. This is
due to an additional step of averaging the DDA features across the overlapping windows at
each time point. This provides a measure with time resolution equal to original data which
can then be combined with other measures on a point-by-point basis.

Finally, for comparison, DDA and the other detection methods were applied to the DREAMS
dataset, collected and made available by Université de Mons, TCTS Laboratory (Stéphanie
Devuyst, Thierry Dutoit) and Université Libre de Bruxelles, CHU de Charleroi Sleep Labo-
ratory (Myriam Kerkhofs) (Devuyst et al., 2011). The DREAMS data consist of surface EEG
with spindles marked by two human experts. Using these data allow the above detection
methods to be compared on surface EEG data, as well as compared to automated spindle
detections from a method implemented by the original authors and made available with the
data. This technique is based on bandpass filtering and applying a recording-specific thresh-
old. While the DREAMS automated detections provide better agreement with the human
scorers than the intracranial data-trained DDA detector or any of the other tested methods
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Spindle Detection Performance of Combined Measures

Figure 5: Combining features from the various methods. Spindle detection measures
from the various tested methods were combined by taking a mean at each time point,
and the agreement of these averaged measures with human scoring was evaluated via F1

score. Two recordings with poor detector performance for all methods were omitted here.
Colors correspond to the different methods, when methods are combined, concentric cir-
cles corresponding to the combined measures are plotted at one point. For all methods
and combinations of methods, the mean across all recordings is shown. Error bars repre-
sent the standard deviation across recordings. Mean F1 scores for these combinations of
detectors are also shown in Table 4. It is noteworthy that there is a significant boost in
detection performance only when combining DDA with any one of the spectral methods.
No other combination of methods provides such a boost.

(Devuyst et al., 2011). We cannot compare directly with this method since only the data
and automated detections are available, and not the code. We therefore cannot test the
DREAMS method on our dataset. Further, as can been seen in Fig. 6, there is also a large
discrepancy between the two human scorers, with one scorer also only having scored six of
the eight subjects. Issues with the scoring of these data were previously noted by O’Reilly
and Nielsen (2015). Further, it is noteworthy that DDA still provides reasonable spin-
dle detection after structure selection based solely on intracranial data. Most significantly,
however, we also show the combinations of two detectors (as shown in Fig. 5). For these
data, combining our DDA measure with the measure produced by the method of Martin et
al. provides the highest average agreement with the two human scorers among all tested
methods and combinations of methods.
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Table 4: Combining detection measures from the various methods. The highest-performing
combinations of detectors are marked in red.

# combined
Mölle
et al.

Martin
et al.

Hagler
et al.

Andrillon
et al.

DDA F1 score

1 0.4871 0.4754 0.4591 0.4028 0.5179
X X 0.4912
X X 0.4709
X X 0.4264
X X 0.5892

2 X X 0.4761
X X 0.4439
X X 0.5704

X X 0.3991
X X 0.5781

X X 0.5280
X X X 0.4813
X X X 0.4701
X X X 0.5119
X X X 0.4674

3 X X X 0.5098
X X X 0.4978

X X X 0.4571
X X X 0.5197
X X X 0.4943

X X X 0.4979
X X X X 0.4653
X X X X 0.5125

4 X X X X 0.5000
X X X X 0.4917

X X X X 0.4954
5 X X X X X 0.4927
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Figure 6: Spindle detection on DREAMS data. F1 score is plotted for a set of automated
spindle detection methods and DDA for the eight surface EEG excerpts included in the
DREAMS data set. For six of the eight excerpts, two human experts scored the data.
For these six recordings, F1 scores based on the first expert’s markings are plotted as
diamonds at left, and the scores based on the second expert’s markings are plotted as
open circles at right. The means (diamonds and open circles) and standard deviations
(bars) across all recordings for each detector’s agreement with both experts are plotted
at the far right with the same markers, and the means of each method’s agreement with
both scorers are plotted as larger filled circles. Combinations of the other measures with
DDA, as shown in Fig. 5 are shown with the colors for each of the methods combined.
In addition to the six methods shown previously, we also show here the F1 scores of the
automated spindle detections included with the DREAMS data with both human experts
in red.
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4. Discussion and Conclusions

DDA is a powerful novel tool for detecting sleep spindles in EEG and intracranial recordings.
DDA requires minimal pre-processing of signals and can be rapidly applied to large datasets.
When compared with several well-established and reliable frequency-based methods, DDA
provides the highest level of agreement with human scoring (evaluated here with F1 score).
Further, DDA is the second fastest of the tested methods, where the only faster method
produces the lowest F1 scores. DDA therefore holds great promise for real-time applica-
tions. We also tested all methods on the publicly available DREAMS data, consisting of
surface EEG recordings scored by two expert scorers. Again, DDA provides the highest F1

score of the previously tested methods when taking the average across both scorers. The
automated detections made available with the DREAMS data however, do provide better
agreement with the human scorers. It should be noted that the DREAMS data is a small and
heterogeneous data set, and therefore somewhat limited for evaluation purposes (O’Reilly
and Nielsen, 2015).

An important caveat for the results from intracranial data presented here is that they are
based on comparison with the spindle markings by a single human expert. Despite this, the
fact that several automated methods produce similar detections indicates that the markings
are reasonable. Further, similar results are achieved using the same approaches on an EEG
data set scored by two experts. It is also important to note the classic bias that our imple-
mentation of other previously published detectors may not be as fully perfected as the novel
method developed for this paper. Other implementations on other data and comparing to
other human scoring might not produce the same relative performance numbers. However,
this is only a concern when looking at each method separately. As shown in Figs. 5 and 6,
combining our nonlinear time-domain method with any of the tested spectral-based meth-
ods, the performance is increased dramatically, beyond the relatively differences between
individual methods. This indicates that spectral and nonlinear methods account for differ-
ent information in the original signal: DDA looks for dynamical differences while spectral
methods look for content in a specific spindle frequency band.

Combining two spectral measures does not provide the same advantage as combining linear
and nonlinear features. Additionally, we have demonstrated that DDA models built on the
data show superior performance to those built to detect specific frequencies, which indicates
that using the nonlinear signature of the spindle provides access to additional information.
Accessing this type of information could prove especially useful in future studies focused on
spindles of different types, or occurring in patients with neuropsychiatric disorders. Finally, it
is worth emphasizing again the robustness of DDA measures in general to noise and artifacts
due to the sparsity of the feature space. This is a significant advantage for many data sets.

A version of the DDA spindle detector for use on Linux systems using MATLAB has been
made available at http://cnl.salk.edu/~asampson/detect_spindles_DDA.zip.
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Appendix A Frequency-Based Spindle Detection

All spindle detection techniques DDA is compared to are based on decomposing the sig-
nal into oscillatory components, and therefore have very different assumptions: while DDA
assumes nonlinearity of the (unknown) underlying dynamical system, spectral methods as-
sume linear superposition of stationary sinusoids. To interpret the differences in detector
performance we need to answer the question of what is gained by using nonlinear instead of
linear analysis.

In Lainscsek and Sejnowski (2015) a connection between DDA and spectral analysis was
made: a one term linear DDE can be used for frequency detection while a one term nonlin-
ear DDE can detect frequency/phase couplings in the time domain. A DDE with linear and
nonlinear terms will have vanishing nonlinear coefficients for purely harmonic signals. For
data that contain nonlinear couplings between frequencies or other nonlinear signal com-
ponents, linear as well as nonlinear terms contain both linear and nonlinear information.
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Superposition does not work due to nonlinearities in the model. Therefore no connection
between frequencies and delays can be made for real-world signals that are generally nonlin-
ear.

Applying the same three-term, nonlinear DDE used for the spindle data to simulated data
(noise-diluted sinusoids) can serve as a test of what can be gained by adding nonlinear
information, and as a bridge between this technique and traditional wavelet or other spectral
methods. The effectiveness of the frequency detector at detecting spindles is also informative
as to how much of the relevant dynamical information is related to the dominant frequencies,
which is of interest since many spindle detection techniques rely on spectral analysis (Warby
et al., 2014).

The DDA frequency detector relies on the same structure selection framework as the data-
trained spindle detector, but the DDE model form is fixed to match the model selected using
the real data, and only the values of the delays are selected based on the simulated data. For
the purposes of comparison with the data-trained detector, we select for frequency bands
in the simulated data that correspond to sleep spindles in the EEG sigma band, defined
alternately as 11-14 Hz or 11-17 Hz. By comparing the delays which are most successful at
detecting these frequencies with those that are selected for the task of sleep spindle detection,
we can gain insight into the information added by nonlinear analysis.

The simulated data is generated according to:

Si = Ai cos (ωit+ ϕi) + ε (8)

with ωi = 2πfi for 9991 equally-spaced frequencies fi between 0.1 and 100 Hz, equal ampli-
tudes Ai = 1, random phases 0 < ϕi ≤ 2π, and added white noise ε with a signal-to-noise
ratio of 5 dB. Starting from the full set of frequencies, we divide into nearly-equal groups for
training and testing, with training data consisting of frequencies fi from 0.1 to to 100 Hz,
and the testing data consisting of frequencies fi from 0.11 to 99.99 Hz, both sets with 0.02 Hz
frequency intervals. This ensures that we validate on slightly different frequencies from the
training data, still in the desired range. For our simulated training data, we select data with
frequencies fi in the sigma band. As was the case for the data-driven detector, we train
separately for each sampling rate, generating simulated data to match each of the sampling
rates in the laminar, sEEG, and ECoG data. We then choose delays for each sampling rate
fs.

Selecting a model to provide sensitivity to specific frequency bands requires an additional
step, in that we first select “high-pass delays” which are sensitive to frequencies above the
lower bound we wish to set (here, 11 Hz), and then additional “low-pass delays” which are
sensitive to frequencies below the upper bound (here, 14 or 17 Hz).

The delays chosen for each sampling rate for each definition of the sigma band (11-14 Hz or
11-17 Hz) are shown in Table 5. Note that in some cases, the same delays can be used in
both the “high-pass DDE” and “low-pass DDE”, since different weights can be applied to
the features to select for different frequency ranges.

As with the data-driven detector, we apply a vector of weights to the features for both the
lower and upper bounds, in this case obtaining two values of D, which we call D1 and D2.
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Table 5: Selected delays (τ1, τ2) for specified bands, units of δt = 1/fs

fs

delays [δt]
11-14 Hz 11- 17 Hz

> 11 Hz < 14 Hz > 11 Hz < 17 Hz

2000 (8,105) (8,105) (8,69) (7,39)
1024 (1,44) (19,4) (4,37) (4,20)
512 (23,43) (8,2) (17,19) (10,2)
500 (39,18) (10,2) (2,17) (2,9)

We combine them by summing their absolute values and applying the sign of the lesser of
d1 and d2:

D =
min(D1, D2)

|min(D1, D2)|
(|D1|+ |D2|) . (9)

We will therefore obtain positive values only in the region where both are positive, which
should correspond to the “DDA pass band”.

Fig. 7 shows the frequency response of the detector on simulated data. Given its strong
selectivity for frequencies in the desired range, it was applied to the sleep spindle data as a
means of detecting frequency content in the spindle band which uses the same methodology
as the data-based DDA spindle detector. This allows for direct comparison between the
frequency-based and data-based DDA approaches.
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Figure 7: Frequency band detection. Applying the DDE model with two different delay
pairs, one sensitive to frequencies above 11 Hz and one sensitive to frequencies below 17 Hz,
we can obtain an output which is positive only in the desired band. In the top panel, the
distance from the hyperplane values computed from both DDEs (d1 and d2) are plotted for
test frequencies ranging from 0.1 to 100 Hz. The frequency of the test data is color-coded
according to the color bar at left, from 0.1 (red) to 100 Hz (blue). Points falling into the
upper right quadrant (shaded yellow) have positive values for both d1 and d2, and we select
delays such that only frequencies in the desired range (11-17 Hz) fall into this area. In the
lower plot, d1 and d2 are combined according to Eq. (9) to obtain a one-dimensional index
that is positive only for frequencies in the desired range. This procedure was also used to
obtain delays and corresponding weights for frequency ranges 11-14 Hz and 12-15 Hz.
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Delay Differential Analysis (DDA) is a powerful non-linear tool for EEG data 
analysis

DDA features can be used to detect sleep spindles quickly and reliably

DDA provides a novel and unique time-domain measure of spindle activity

DDA is the best and one of the fastest of the tested sleep spindle detectors


