A program végrehajtasanak részletei:

Tekintve, hogy a program két jelentds részének publikéalasa idénre varhato, kérem, hogy a
jelentésben foglaltak alapjan sziiletett mindsitést az OTKA kiegészitd eljarasban késobb,
a megjelentetni kivant kozlemények megjelenését figyelembe véve modositsa.

A program soran az aldbb ismertetett f0bb eredményeken tilmenden vizsgélni kivantam,
hogy allatok ultrahanggal torténd helymeghatarozasara milyen hatassal vannak az
esetleges préda allatok altal keltett orvények. Az eldzetes feltevés szerint denevérek és
példaul delfinek messzirél nem elsdsorban a kiszemelt prédat “latjak™ meg ultrahangos
érzékeldik segitségével, hanem az azok altal keltett 6rvényeket, amelyek 1ényegesen
nagyobb kiterjedésiiek lehetnek a prédanal maganal és esetleges magyarazatot adhatna
arra az eddig nem értett jelenségre, hogy miként kapjak el azon kis testli allatokat az
Echolokalizacidval “lato” allatok, melyek mérete az ultrahangos érzékelés felbontasa ala
esnek.

Ezt a vizsgalatot azonban két oknél fogva nem tudtam a rendelkezésre 4116 1d6 alatt
befejezni. Egyrészt a sziikséges ultrahangos eszkdzok ara meghaladta azt a mértéket, amit
a palyézatbol finanszirozni lehetett volna. A tobbi vizsgalt probléméhoz nem volt sziikség
ekkora finanszirozashoz, ezért a pénziigyi beszamoloban feltiintetett, koriilbeliil 1 millio
forint visszautaldsra is keriilt az OTKA felé.

A fenti problémat egy esetleges egylittmiikodéssel még at lehetett volna hidalni. Azonban
az a hallgatd, aki a biologiai részekben segitett volna elment az egyetemrdl, igy ez a rész
nem keriilt megval6sitasra, az erre szant jelentds 0sszeg az OTKA felé visszautalasra is
kertilt.

Annyit érdemes még megjegyezni, hogy idén jelentkezett egy doktorandusz, aki
denevérek vizsgalatabdl irja doktorijat, ¢s témavezetdje egyetértésével és tdmogatasaval
szivesen segit ezen probléma megoldasaban. Igy reményeim szerint —igaz immar OTKA-
m lezarasa utan- de vissza fogok tudni térni ehhez az érdekes problémahoz.

Fobb eredmények ismertetése:

1. A tervezett 0j kisérleti modszer kidolgozasa megtortént. A megoldandoé probléma az
volt, hogy miként lehet egy analitikusan elére nem ismert, kizarolag csak digitalizalt
koordinatai révén ismert gérbe hosszat a lehetd legpontosabban megmérni. Ez ugyanis
tipikus helyzet kisérleti adatok elemzésénél. A mddszer kidolgozasa korokre tortént meg,
de a kor analitikus tulajdonsagainak ismerete csak az eljarés ellendrzése érdekében keriilt
felhasznalasra.

Egy digitalizalt gérbén azt értjiik, hogy a gorbét alkotd, egymassal szomszédsagban levo
képpontok (X,Y) koordinatai az egész szamok halmazan képzddnek. Altalanos tévhit,
hogy amennyiben ezen szomszédos képpontok tavolsagait 6sszeadjuk, akkor a felbontas -
ami megadja, hogy a kép karakterisztikus mérete, mint pl. az atméré mennyi pixelbdl all -
novelésével az eredmény tetszéleges pontossaguva tehetd.



Meérésekkel bemutatasra kertilt, hogy ez nem igy van. Amennyiben a felbontas kicsi, a
relativ hiba oszcillal egy felso €s egy also hatar kozott. A felsd hatar csokkend méodon
konvergal az alsohoz, amely konstans, de nem zérd. Egységnyi pixel méret mellett a kor
atmérdjét novelve €s a fenti “naiv’” modon torténd méréssel a relativ hiba tehat nem
nullahoz, hanem a mérések szerint 5.4 szazalékhoz konvergal, azaz a keriilet mért értéke
hozzavetdleg 1.054-szorosa az adott &tmérohoz tartozd elméleti értéknek és ez az eltérés
nem magyarazhat6 azzal, hogy a kor koordinatai milyen mddon lettek digitalizalva vagy
meghatarozva.

A hiba értéke kis felbontasok mellett akar 17% is lehet, de az oszcillacio azt jelenti, hogy
az atmérdnek vannak olyan “magikus” értékei, ahol a naiv mérés kis atmérdk esetén is a
végtelen felbontasnak megfeleld pontossagot adja. Erre azért érdemes felfigyelni, mert
amennyiben a naiv modszer alkalmazasa torténik, célszerli csak ezen magikus atmérdjii
koroknél méréseket végezni.

Egyszerti megfontolasok alapjan kiszamolhatd, hogy négyzetracson a naiv médon mért
keriilet 8*(SQRT(2)-1) -szerese az elméleti értéknek, ami egyenértékii azzal, mintha a Pi
értékére 3,3137 értéket kapnank, ami megfelel a mérések soran kapott 5.4 szdzalékos
relativ hibanak.

A fenti eltérés oka az, hogy alakzatok pontos méréséhez nem csak a képpontok kozti
tavolsagnak kell egyre kisebb értékhez tartania, de az eltérd egyenes szakaszok
meredekségei kozti kiilonbségnek is. Utdbbi nem biztosithatd, ha a mérés sordn csak az
oldallal illetve sarokkal érintkezé szomszédokat vessziik figyelembe, hiszen ezek
meredekségei kozti kiilonbség csak 45 fokonként valtozik. Ha egy képpont (pixel)
tavolsagat nem a szomszédjdhoz, hanem egy szomszédot atugorva a szomszéd
szomszédjahoz mérjiik, akkor a lehetséges meredekségek szama nd. Altaldban igaz, hogy
N szomszéd atugrasaval a lehetséges meredekségek szama N-vel nd, a meredekség
diszkrét mivoltabol adodo hiba 1/N szerint csokken. Ugyanakkor, ha a vizsgalt vonal
gorbiileti sugara kisebb N-nél, akkor egy masik hiba 1ép be, nevezetesen az, hogy egy
gorbe szakaszt egyenessel helyettesitiink. Ez a hiba pedig N szerint nd.

Ebbdl kovetkezik, hogy adott gorbe esetén a fenti két hiba egyiittes minimalizalasa adja
azt az N értéket, ahol a mérés a lehetd legpontosabb. Ezen optimalis N meghatarozasara
két modszert is megadtunk. Az egyik azt hasznalja ki, hogy az 1/N csokkenés sokkal
gyorsabb, mint a kordbban emlitett oszcillacio, ezért az 1/N hiba altal dominalt
tartomanyban az oszcillacidé nem figyelhetd meg a mért hosszaknél. Amikor azonban
abban a tartomanyban van N értéke, ahol a gorbiiletek kiegyenesitése okozza a dominalo
hibét, akkor az oszcillacidé mar a hossz mérésében is megjelenik (nem csak a relativ
hibéban). Az optimalis N érték tehat ott van, ahol elészor jelenik meg a mérésben
oszcillacid, mert ott van a crossover a két hibajelenség kozott.

A masik modszer szerint N fliggvényében elvégezve a kiilonb6z6 méréseket, a kis N
tartomanyra 1/x jellegili, a nagy N tartomanyara —x jellegli gorbét illesztve a crossover
helye megtaldlhatd. A mérési eredmények azt mutatjadk, hogy kordkre az optimalis N
értéke monoton, de nagyon lassan novekvo fiiggvénye az atméronek.



Eldfordulhat, hogy a crossover nem létezik, mivel példaul az adott felbontas mellett tal
nagy gorbiiletek fordulnak eld. A fent leirt modszer ekkor is fontos iizenetet hordoz: azt,
hogy a crossover hianyaban a kisérletet esetleg célszerli megismételni mas optikai
nagyitas mellett, mert a jelenlegi paraméterekkel nincs lehetdség az optimalis
kiértékelésre.

Egy jellemzd példa, ha homogén turbulens jellegli &ramldsoknal a sebességek abszolut
értekének eloszlasat vizsgaljuk. A fentiek értelmében a kiilonb6z6 abszolut értéki
sebesség vektorok kiilonbozé hibat hordoznak, ami 6nmagéban is befolyasolhatja a hibat
figyelembe nem vevd eloszlasfiiggvényt. A bevezetett modszer segitségével ez a
probléma kikiiszobolhetd, mert a kisérletet tobbszor megismételve mindig csak az
optimalis N mellett mért értékeket vessziik figyelembe, ¢és az ezen értékek mellett kapott
eredményekbdl hatarozzuk meg a sebességek eloszlasat.

Végezetiil érdemes megemliteni, hogy a fenti mdodszert szamitdégépes programok
részeként alkalmazva gazdasagi hasznot is hozhat.

2. Kvéazi kétdimenzios aramlasok soran a nem egyensulyi rendszerek érdekes skalazast
mutatnak Az egyik ilyen jol ismert rendszer az, ahol zajos kornyezetben (pl. pordzus
anyag) aramlik a folyadék Az ilyen rendszereket leiré egyenlet a kontextustol fiiggden
vagy a Kardar-Parisi-Zhang (KPZ) egyenlet, vagy a véletlenszer(i hajtderdt tartalmazéd
Burgers egyenlet. Ezek egymasba 4t is transzformalhatoak.

A probléma kisérleti vizsgalatara rendelkezésre allo lehetdségek viszonylag sziikosek. Az
adott esetben sziirOpapirban terjedd folyadék front és sziir6papir lassu (lang nélkiili)
égésével 1étrejovo front mozgésat vizsgaltuk. Az 1j, 1ényeges vonasa ezeknek a
vizsgalatoknak az volt, hogy a front terjedését perturbacié mellett vizsgaltuk.

Ismert, hogy egy rendszernek valamilyen perturbaciora adott valasza jellemzi a rendszert
¢és hasznos informaciokra derithet fényt. Geoldgiai kutatasok soran példaul (pillanatszerii)
robbantasok okozta 16késhullamok, matematikaban a Green fiiggvények olyan
modszerek, amelyek a rendszernek a pontszerii perturbaciora adott valaszabol nyernek
informaciot. Hasonlé gondolat tiikr6zodott Wolf és Tang munkédjaban is, akik kimutattak,
ha a feliilet feldurvulasa soran egy lokalizalt pontban megvaltoztatjuk a sebességet, akkor
a rendszer valaszabol milyen extra informaciok nyerhetdk ki a nem-linearitasra
vonatkozoan. Az elv 1ényege a KPZ esetben egyszerii: ha ugyanolyan mértékii pozitiv és
negativ perturbaciot alkalmazunk, akkor linearis dinamika esetében a kialakul atlagos
profilok szimmetrikusak a vizszinteshez képest. Ha viszont nem-linearis dinamika
jellemzi a rendszert, akkor a sebesség hasonlé mértékii, de ellentétes eldjelii perturbalasa
a vizszinteshez képest anizotrop atlagos profilokat alakit ki.

A fenti gondolat kisérleti felhasznalasahoz pordzus anyagban (lencse papir) lokalisan
megvaltoztattuk a front terjedési sebességét. Folyadék terjedésénél erre két modszert
alkalmaztunk. Az elsdnél a papir nedvesitési tulajdonsagat valtoztattuk meg a front
terjedésével parhuzamos irdnyban kémiai eljaras Gtjan. A masodik esetben egy, a



papirhoz kozel tartott vékony huzal segitségével extra kapillaris erét biztositottunk
helyileg, s ezzel segitettiik el6 a front terjedését. A masodik esetben a front terjedésének
gatlasat a huzal felmelegitésével lehetett elérni, ugyanis ekkor helyileg a parolgas miatt a
front retardalt lesz.

Hasonlé mddon a lasst égéssel terjedd front sebességét is tudtuk lokalisan perturbalni.
Ekkor kalium nitrattal volt a papir egy csik mentén preparalva. Inverz esetben hasonlo

crer

kivételével. Ez felelt meg az azonos mértéki, de ellentétes eldjell perturbacioknak.

A feliilet profilok atlagat videokameraval felvett szamos kép szamitdgépes
kiértékelésével kaptuk meg. Az atlagot kivonva a képeket kiatlagoltuk. Mivel nagyobb
kalium-nitrat koncentracio eldsegiti a terjedést, a feliilet teljes atlagsebessége is nd, de a
perturbacio természetes modon kiszélesedik, hiszen a kozépso, eldrefuto rész huzza
magaval az elmarad6 széleket. Bar nem varhato, hogy a sebesség fiiggése a KN
koncentraciotol linearis (kiilondsen nem az a pinning atmenet kdzelében), de a vizsgalt
sebesség tartomanyban mégis j6 kozelitéssel szolgalt egy linearis ansatz.

A kovetkezOkben kovetve Wolf és Tang szdmitasat és feltételezve, hogy a feliilet
dinamikaja eleget tesz a KPZ egyenlet nem-linearis verzidjanak, elvégeztiik az egyenlet
szétcsatolasat az atlagos front terjedését és az atlagos front koriili fluktuacidkat leird
tagokra. Az atlagos frontra vonatkoz6 egyenletet illesztettiik a kisérletileg meghatarozott
atlagos profilokra, hogy az egyenletben szerepld ismeretlen konstansok értékeit
meghatarozhassuk. (Itt érdemes megjegyezni, hogy ez az eljaras a linearis esetre is
érvényes, hiszen ebben az esetben a nem-linearis tagok szorzotényezdjére kozel nulla
értéket varhatunk.)

fgy a nem-linearis tag szorzotényez6jére azt talaltuk, hogy karakterisztikusan kiilonbozik
z€rotol, értéke 5.6 mm/s. A szokéasosan “effektiv feliileti fesziiltségnek™ nevezett linearis
tag szorzotényezdjére pedig 144 mm?2/s adodott. A fenti mérést elvégeztiik a KN
koncentraci6 kontraszt kiilonbozo értékei mellett. Azt tapasztaltuk, hogy a perturbacio
helyén és a széleken mért atlagos magassagok kiilonbsége hozzavetdleg négyzetesen nd a
KN koncentraci6 kontraszt értékével.
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We report experimental results for the behavior of slow-combustion fronts in the presence of a columnar
defect with enhanced or reduced driving, and compare them with those of mean-field theory. We also compare
them with simulation results for an analogous problem of driven flow of particles with hard-core repulsion
(ASEP and a single defect bond with a different hopping probability. The difference in the shape of the front
profiles for enhanced vs reduced driving in the defect clearly demonstrates the existence of a Kardar-Parisi-
Zhang-type nonlinear term in the effective evolution equation for the slow-combustion fronts. We also find that
slow-combustion fronts display a faceted form for large enough enhanced driving, and that there is a corre-
sponding increase then in the average front speed. This increase in the average front speed disappears at a
nonzero enhanced driving in agreement with the simulated behavior of the ASEP model.
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I. INTRODUCTION ing, e.g., inverse schemes able to infer ¢partia) differen-
tial equation that governs the observed stochastic evolution
Nonequilibrium interfaces that display interesting scalingof interfaceq 9], but there is also a way to produce a directly
properties are quite common in physida@rystal growth, observable effect on the shape of the interface due to this
fluid penetration into porous media, gichemical(reaction  term.
fronts) as well as biologicalgrowing bacterial colonigsys- This method for observing the operation of the nonlinear
tems. The dynamics of these systems have long been thougterm was suggested already some time ago by Wolf and Tang
to be generically described by the Kardar-Parisi-Zhand10]. They considered the effect of columnar defects, colum-
(KPZ) equation[1], or some other equation of motion in the nar in two space dimensions on which case we concentrate
same universality clag®]. In two space dimensions in par- here, and found that there is a clear “asymmetry” between
ticular (one-dimensional interface®/hen exact solutions are the shapes of the fronts that propagate in the presence of a
available, the scaling properties of the KPZ equation are weltlefect with enhanced and correspondingly reduced driving.
understood. The same is not, however, true for the experithis asymmetry is a direct consequence of the nonlinear
mental observations of scaling of interfaces. Typically, oneterm in the KPZ equation. For a positive coefficient in this
has found a roughening exponent clearly higher than that foterm, applicable to slow-combustion fronts, the noise-
the KPZ equatiorj2]. Various explanations have been sug-averaged front should be faceted with a forward-pointing tri-
gested as for why the KPZ scaling has not generally beeangular shape around a defect with enhanced driving, with a
found, and most of the time correlated and/or non-Gaussiaheight proportional asymptotically to the width of the sample
noise have been the prime suspd&s]. in the case of a defect in the middle of the sample, or to the
Recent experiments on slow-combustion fronts propagatbasic period in the case of periodic boundary conditions. In
ing in paper[4,5], and on flux fronts penetrating a high- the case of reduced driving in the defect, the shape of the
thin-film superconductof6], have provided new insight into front should not be faceted, and the magnitude of(trega-
this problem [7]. It indeed appears that short-range-tive) deformation in the profile should be proportional, ac-
correlated noise, quenched and dynamical, with possibly atording to this mean-field theory, to the logarithm of the
the same time a non-Gaussian amplitude distribution fobasic period. Despite its apparent simplicity, this kind of ex-
small time differences induces an additional length and #@eriment has never been performed.
related time scale, beyond which KPZ scaling can only be As is well known, the body-centered solid-on-solid inter-
observed. Despite these recent advances, it would still biace model in which the nearest-neighbor heights are re-
worthwhile to demonstrate the existence of the nonlineastricted to differing only by+1, displays KPZ behavior, and
term, as introduced by Kardar, Parisi, and Zhab@|, and is on the other hand equivalent to a driven flow of particles
essential for the KPZ dynamics, directly from the observedhopping rate p) with hard-core repulsive interactions
fronts. This would in essence prove that KPZ type of dynam{ASEP) [2]. A columnar defect in an interface model corre-
ics, including possibly effects of nontrivial noise, can indeedsponds to a fixed slow or fast boridopping raterp with r
be expected to be generic for nonequilibrium interfaces. One<1 or r>1, respectively in the ASEP model. A faceted
can demonstrate the presence of this term indirectly by usnterface corresponds to a traffic jam of infinite length in the
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thermodynamic limit behind the slow bond. Another relatedamount of potassium nitrate in the samples. This method also
question is the detailed shape of the density/interface profilallows for a relatively easy way to produce enhanced or re-
The mean-field theory of Ref10] predicts an infinite queue duced driving in the columnar defect. By using masks it is
for all r<1 and a logarithmic decay of density forwards the straightforward to produce a narrawertical) stripe with re-
average in the depletion zone behind the fast bondrfor duced or enhanced amount of potassium nitrate. The average
>1, i.e,rc=1. Janowsky and Lebowi{A1] considered the concentration of potassium nitrate determines the average

totally asymmetric ASEP model with a slow bond, but con-gpeed of the fronts, so it serves as the control parameter of
centrated mainly on the shock wave fluctuations far awayne problem.

from the slow bond, and apparently did not consider the

: . " ) i It is, however, quite difficult to accurately regulate the
faceting/queueing transitiofthey had a phase diagram with

amount of potassium nitrate absorbed in the sample. This
¥neans that it is difficult to produce samples with exactly the
same base concentration, and the same concentration differ-
: . ence between the base paper and the columnar defect. There-
Kandel _and_ Mukamel con3|dere_d a somewhat .d'ﬁere.nﬁ‘ore, the statistics we get for any fixed difference in the con-
model, which is supposed to be in the same universalit

. : rsallentration is not quite as good as we would hope. They are
class, and proposdd3] that the facgtlng/queuemg transition adequate for the main features of the fronts but not for such
should take place atige<<1. Their simulation data were not

however. conclusive ' details as, e.g., accurate forms of the front profiles. They are
! T . . also good enough for a quantitative analysis of changes in
The “slow-bond issue” has also been considered in th 9 9 q y 9

&he front speed.
context of the directed polymer problefi4—19. As dis- Th | tvpically 2 idth) x4
cussed above, th@+1)-dimensional ASEP is equivalent to e samples were typically 20 ciiwidth)>40 cm, and

: i . the columnar defecfvertical stripe in the middle of the
(1+1)-dimensional KPZ-type growth, and the latter to a dl'sample was 1.0 cm wide. The defect cannot be too in our

rected polymer in two dimensions subject to a random POtase narrow as fluctuations in the slow-combustion process

[12], but he did not consider the faceting/queueing transitio
either.

with an attractive short-range interaction, and the queuein

Fransition Franslates into whether the polymer becomes Ic’Ca\ividth, which are unwarranted. We also used simulations with
ized to this d(_afect. A ”“Wber O.f argqments sugge_st that thg discretized KPZ equation to check that the ratio 1 cm to 20
ASEP model is at the critical dimension above which local-. .\ «hould not cause additional effef28)]. The length of the
|zat|orr1] takes place ﬁt a_nlo nzecrjo ﬁtrenr?th of th.? deﬁ(‘:tl’ a mples was in most cases adequate for achieving stationary
one thus expects .t atC.— an that the transition likely behavior, and only those results are used here where satura-
involves an essentllal S|ngula}r|[§z4—1q. ' tion of the profile was evident.

n SIOW.'CO.mb'“.'S.t'On experiments the detailed shape of the -y analyzing the front profiles, the stripe was removed
front profile is difficult to determine, and thereby also the ¢ 0 the data. as well as about 6 mm from both boundaries
Q|sappearance of faceting. l_:acetmg IS, howeve_r, r.elellted f the samples. As the system is symmetric across the stripe
increased front speed, also in the thermodynamic limit, angh, yhe middle, the observed front profiles were also symme-
this is an easier observable. For possible nonfaceted frontg;, o for better statistics
which would correspond g <r<1, an increased front As already reported befofd,5], fluctuations in the slow-

speed would only be a finite-size effect, as also the decreaseglp,istion fronts in paper are noticeable. For extreme val-

front speed in the case of a defect with reduced driving €ory,oq of the potassium-nitrate concentration there appear prob-

responding ta>1. Notice that the effective nonlinear term |51 with pinning (low concentration or local avalanche

is positivg in the slow-combustion experiments, while it istype of bursts(high concentrationin the fronts. Also, very
”e,g,a“"‘? in the ASEP.modeLf,. Therefore, enhariceduced small values of the concentration difference between the base
driving in the defect in the first case corresponds to a SIOV‘baper and the defect stripe could not be used, as fluctuations
(fash bond in the latter case. then completely masked the effect of the defect. These prob-
lems were noticeable for reduced driving in the defect in
Il. EXPERIMENTAL DETAILS particular. In the data reported here, concentration varied be-
tween 0.265 and 0.61 g™ in the base paper, between 0.1
The equipment we use in slow-combustion experimentgnd 1.05 gm? in the stripe, and the concentration differ-
has been described elsewhfted], so it suffices to say here ence varied between 0.06 and 0.49 g#on the positive
that samples were “burned” in a chamber with controllableside(25 burng, and—0.197 and- 0.478 g ni 2 on the nega-
conditions and that the video signal of propagating frontsjve side(19 burng. Because of the practical restrictions and

was compressed and stored online in a computer. The spatiiictuation effects, the number of successful burns was rela-
resolution of the setup was 120m, and the time resolution tjvely small.

was 0.1 s. For the samples we used the lens-paper grade
(Whatman which we have also used previoudl§]. Lens
paper was now used to speed up the experiments.

As slow-combustion fronts do not propagate in paper
without adding an oxygen source for maintaining the chemi- We will need the dependence on potassium-nitrate con-
cal reaction involved, we added as befd#5|] a small centration of the front velocity below so we consider it first.

IIl. RESULTS

051103-2
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FIG. 1. Velocity distributions for slow-combustion fronts with  FIG. 2. Front velocity as a function of potassium-nitrate concen-

potassium-nitrate concentrations 0.34 g'm (full line) and  tration. Measured points are denoted by stars and the line is a linear
0.536 g 12 (dashed ling Velocities are determined for a time dif- it to these points.

ference of 2 s.

convenient for the subsequent analysis. We find that with a

It is useful to begin with a discussion of the accuracy of thejinear fit to the data, the front velocityis given, on average,
front-velocity determination. by

A. Front velocity v=4.2C+6.2, (1)

Lens paper is thin so that variations in its mass densit)<NhereC is the potassium-nitrate concentration. ands in
and dynamical effects such &gossibly turbulent convec- . 1 P . N '
tion around the combustion front are both expected to mak@mtS mms whenC is expressed in g . L
a contribution to the effective noise. Noise amplitude is con- Befofre sh:)wmg tr(;efmealsured front_dprofl_les '3 the prei-
sequently relatively largg4,5], and therefore also velocity ence of a columnar de ect, let us conS|her, In-order todmfa €
distribution of a propagating front can be expected to béater comparisons more transparent, what is expected from
broad. We show in Fig. 1 the distribution for two different the mean-field solution as reported in REf0]
values of the potassium-nitrate concentration.

It is evident from this figure that even though the average B. Mean-field prediction
velocities in these two cases are relatively well separated and
easily distinguishable, the velocity distributions have a big
overlap. Together with the limited statistics for any fixed T+t 7(x,t), where n(x.t) describes white noise with
value of (the difference inthe potassium-nitrate concentra- 5—func¥ior; éorrelationz ir; space and time, and the driving
tion, these broad distributions mean that some variation ca '

be expected to occur in the measured average velo¢itees E%rrr]n co_nta|:1Ls thze I&?iihlf?zd +dneE$CtFisf¢;%Ct'lﬁ:?t covc(tarll:;us—_
locity differences$ of the fronts. » K= KoT Kasn : plicity

In the presence of a columnar defect, we should, e'g.sume here as in Ref10] periodic boundary conditions. If

determine the change in the average front speed arising fro,\lﬁﬂ(exi\)/ir?ﬁ& ?)\gEYWr;OfIiSn% It?]atthe KPZ equation and denote
the defect. This can be accomplished by analyzing separately*™ "/~ A
the undeformed “flat” part of the fronts, and the part of the IH(x,1)
front profile affected by the presence of the defect. Determi-
nation of the average speed of the flat fronts is done in the
transient(with respect to profile shapeghase in which the
(growing width of the deformed profile is still less than the are H'=H'(x,t) denotes the spatial derivative &f and
width of the sample. In this phase the flat part of the front issh=h(x,t) —H(x,t) describes fluctuations around the noise-
already in the saturated regime with constant average velo@veraged profile. A corresponding equation can be derived
ity. The average speed of the deformed profile is determinetbr oh [10].
in a later phase in which the width of the deformed part of As sh should not dependlocally) on H(x,t) nor on
the profile essentially coincides with the sample width. H’(x,t), and only local interdependence betwe#nand the
We have also determined the average front velocity fomoise-averaged profile can be assumed to appear, one would
122 individual burns for a fairly broad interval in the then expect[10] that in leading order{(Véh)?)=a,
potassium-nitrate concentration, and these data are shown ia,H"(x,t), with a; anda, some constants. This assump-
Fig. 2 together with a linear fit to the measured points. tion will make Eq.(2) closed so that it can be solved without
The dependence on potassium-nitrate concentration of tHeirther reference to the fluctuations. Tlefunction contri-
front velocity is not expected to be linear especially near théution in the driving term will induce cusps iH(x) at x
pinning limit, but, for the concentration range shown here, it=L/2—nL, and the solution of Eq2) is therefore equiva-
is well approximated by a linear behavior, which is also morelent to solving the equation

We assume that the time evolution of the frdrik,t) is
governed by the KPZ equatiofh/dt=vrV?h+ (\/2)(Vh)?

— JH"+ E(H’)2+ E((Vgh)z)ju 2
a2 2 "
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IH(X1) H”+)\ Hy2e 2 40
G vt S (H) ke ®) “
in the interval —L/2<x=<L/2, with boundary conditions 20
H(L/2)=H(—L/2) andH'(*L/2)=*s. Here we have de- ' 10
fined the effective(renormalizedl parameters .= v+ \a,/2 k=)
and k.= kp+\ag/2, and the magnitude of the slope of the A0
front at the defects is=k4/2v,. § -10
Equation (3) is the well-known Burgers equatiof21]

which can be solved in closed form in one space dimension. -20
It is useful to express it first in dimensionless form, which 30
can be achieved with transformationdH=HqH,x 0
=Hox/s, t=2Ht/(As?), with Ho=2v./\ the internal 70 20 40 60 80 100 120 140 160 180
length scale of the system. X [mm]

We look for a stationary solution of this equation in the
form H(X,T)=[ ke+sgn(x;) g2t +In[f(gX)], where sgnf)
is the sign ofz, and we have already used the Hopf transfor-
mation in the spatial part of the ansatz to remove the nonlin- -
earity from the equation fof. We find that[10] that the size ot is now regulated byAC as the widthL of

_ the samples is held fixed. Despite the achievable valugs of
qL we can expect to clearly see the asymmetry in the heights of
f(z)=coshz), q tan}‘( 7) =1 4 the front profiles for different signs of the concentration dif-
ference. In Fig. 3 we show the averagead symmetrized
for enhanced driving in the defeck{>0), and front profiles forAC= +0.33.
It is indeed evident that there is a clear difference in the
r(qt) heights of the front profiles around defects with enhanced
f(z)=cogz), qta -] = 1 (5) and correspondingly reduced driving. By following the tran-
sient time evolution of the fronts, we could also see a clear
L ~ _ difference there. FoAC>0, when a triangular deformation
for reduced driving in the defeci<0). HereL=sL/HoiS a5 formed after a while around the central stripe, its height
the dimensionless width of the system arwlqx. Asymp-  and base length grew with a more or less constant velocity
totically, for L>1 (and \>0), the profile around a defect until the base length reached the width of the sample, while
with enhanced driving is a forward-pointing triangle with the slopes of the sides of this triangle remained roughly con-
sides that have slopess and with heightAH ,=H(L/2)  stant. ForAC<O0 on the other hand, the height of the defor-
—H(0)=sL/2. The asymptotic profile around a defect with mation saturated much faster even though it also grew more
reduced driving is given by gln|cos@x/L)| so thatAH _ = or less linearly in time in the beginning, and the base length
—HyIn(sl/7H,). The magnitude of , thus grows linearly of the deformation reached the sample width at the same
with L (or s) while that of H_ only grows logarithmically time. This transient behavior will be analyzed in more detail
with L (or s). This asymmetry is a direct consequence of thebelow. The qualitative behavior for thAC>0 case is
nonlinear term that enhances the deformation in the formeglearly visible in Fig. 4 which shows successive fronts with a
case but reduces it in the latter case. time difference of 0.5 s foAC=0.327.

A more gquantitative comparison between the mean-field
solution for the noise-averaged front and the observed slow-
combustion fronts can also be made. For this purpose we

In the above mean-field theorgp =« /L is the differ-  found it convenient to consider instead of the profile heights
ence between the front velocitgriving) inside the defect AH. the average slopes of the left-haficH) sides of the
and outside the defect. In the slow-combustion experimentﬁrofnes(c,f, Fig. 3, k.=2AH_. /L. As we do not expect to

this velocity difference is regulated by the potassium-nitratehe in the strictly asymptotic regime, we have used the full
concentration so that noww =4.2AC, where the numerical transcendental equations forin Egs. (4) and (5) above
factor comes from the linear fit given by E(l), andAC  when fitting the observel. with the mean-field result.

= Cyetect ChaseiS the concentration difference. This means The average slopes, as functions of concentration differ-
that the scaling factos is given bys=4.2L[AC|/ve. With-  ence AC, will now depend on two parameter8=H,/L

out as yet knowing the actual value of needed for evalu- andB=2.1L/v,, which are used to fit the measured slopes.
ating the size of andH,, reasonable estimates, based on therrom the fitted values for these parameters we can then es-
results from the inverse method solution for the effectivetimate the coefficienta and Ve for this system.

equation of motion[9], indicate that the slow-combustion  \We show in Fig. 5 the experimentally determined values
fronts are not necessarily in the strictly asymptotic regimefor k, andk_ together with the fit by the mean-field solution
we expect thal.>1 but not by a very big margin. Notice using Eqs(4) and (5).

FIG. 3. Average front profiles with a columnar defect fh€
= +0.33 (upper and lower profiles, respectively

C. Measured front profiles
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FIG. 5. The absolute value of the average LH slope of the de-
formed front profile around a columnar defect as a function of dif-
ference in the potassium-nitrate concentration. The full line is a fit
by the mean-field solution using Eq¢l) and(5).

h [mm]

i

Le=180 mm, a bit smaller than the width 202 mm of the
actual sample, due to the width of the defect stripe and to
allowing for some boundary effects. By other methods we
have found previously that=4.1-5.1 mms? [9], so that
the value found here is fairly close to these previous esti-
mates.

In view of the unavoidable fluctuations in the measured
averaged slopes, we find the fits to the measured points by
the mean-field solution to be quite reasonable.

100 ¢

NM/
=
%
200 %
=
==
==

B
Ecz D. Defect-induced change in front velocity
% and the queueing transition
ie]
0 ‘ ‘ As alr i ve, the mean-fiel lution pre-
0 0 100 150 200 s already discussed above, the mean-field solution p

dicts a faceting or queueing transition/®€=0. Above this

transition AC>0), the average front velocity is increased
FIG. 4. Successive fronts with a time difference of 0.5 s for thedue to the presence of enhanced driving in the defect, and

concentration differencd C=0.327. Also marked are the stripe below this transition the change in front velocity should van-

with enhanced concentration of potassium nitrate, the fronts beggh for large enougﬁ_. For negativeAC the change in ve-
tween which the average profile is determinghick lines, the locity is negative, and should decrease in magnitude with
height of the final profile, and the average shape of the profile. increasing|AC|. According to Kandel and MukamélL3],

this transition should appear atAC > 0.

Fits to the data were not very sensitive to the actual value As the numerical data of Refl13] are not decisive, and
of parametetA so the correlation coefficient did not change there are other seemingly contradictory res{dt$—19, we
much even ifA was changed in a relatively large interval. If have dong22] simulations on a totally asymmetric ASEP
the AC>0 andAC<O0 data were fitted separately without model with a fixed defect bond with hopping rate in the
any restrictions on the two parameters, these fits had alsoraiddle of the system, while the hopping rate at the other
tendency to produce somewhat different values for the twdonds wag. Open boundary conditions were imposed such
cases. As the signal-to-noise ratio is better for £@>0  that the hopping-in rate at the left boundary wags and the
data, we fixedA such that it was between the two separatelyhopping-out rate at the right boundary wép. In what fol-
fitted values but closer to the one from the unrestricted twotows we only consider the case= 8=p=1/2.
parameter fit to the\C>0 data, and in the interval within This model showd?22] a queueing transition at=r
which the quality of this fit was essentially unchangéd: =0.80+0.02. Forr.<r<1 there is a power-law shaped
=0.3. Thereafter an unrestricted one-parameter fit to thelensity profile around the slow bond, and the profile be-
whole data was used to find the value Rrin this way we  comes flat only at=1. Forr>1, which corresponds to a
found thatB=2.5. fast defect bond, the density profile around the defect also

The fitted values for parametefsand B allow now an  displays a power-law shape, but with a different exponent.
estimation of two physical parameters, the “renormalizedThe density profile thus displays a qualitatively similar dif-
surface tension’v, and the coefficient of the nonlinear term ference between a faceted slow-bond caser() and the
\. We thus find thav,=144 mnfs ! andA=5.6 mms'.  corresponding fast defect-bond case as the mean-field solu-
In the estimate fow, we used an “effective” sample width tion for the KPZ fronts with enhanced and reduced driving in
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FIG. 6. Scaled velocity change of slow-combustion fronts due to
a columnar defect as a function o€¢ Cy)/C, (*), and scaled FIG. 7. AH(2t) as a function oAH(t) averaged over 32 burns.
current change in the totally asymmetric ASEP model due to &Positive values correspond thC>0 and negative values taC
defect bond as a function opGrp)/p=1—r (O). The full line <0. The full line isAH(2t)=2AH(t).

connects the latter data poirfa2]. - . . .
poirfe] indicate, however, that there indeed is a facetiqgeueing

the columnar defect, respectively, except that in the ASEfransition at a nonzerd C, (nonzeroAp, i.e.,r#1).
solution for a fast defect bond the density profile has a
power-law shape instead of a logarithmic one. The mean- E. Transient behavior
field solution does not have a phase that would correspond to |y addition to the stationary profiles analyzed above, it is
that of the power-law shaped density profile around a slowa|so possible, as already indicated, to study the transient pro-
bond in the ASEP model. files, i.e., how the defect-induced profiles grow at the initial
Our results thus seem to contradict the directed polymephases of the process. The transient behavior of the profile
results[14—19. One should, however, notice that we find a around a columnar defect with enhanced driving is particu-
more complex structure. The queued ASEP phase represensly simple. The Burgers equatigB) admits in this case a
a strongly localized state, while the power-law shaped profilesolution of exactly the same shape as the stationary solution,
represents a form of weak localization. Earlier directed polywhich grows linearly in time until its baseline reaches the
mer studies may have been insensitive to this distinctionwidth of the sample. Such a “self-similar” transient does not
Support for a weakly localized phase is also reported in ReféXist in the case of negativaC, so analytical results for
[23]. For more details on the ASEP solution and the transiiransient behavior are then difficult to find. In the nonasymp-
tion, see Ref[22]. totic regimeE«l one can, however, show that the situation
As the detailed shapes of the front profiles are difficult tois symmetric,AH_=—AH_ . One would thus expect that,
determine experimentally, we only compare the results fog¢ |east in our case wheb is not particularly large, the
the dependence of the average front velo¥ity(v) (current height|AH_| would also grow initially(at least nearlylin-
J=(j)) on the potassium nitrate concentratiGn(hopping early in time.
ratep). In this comparison dimensionless variables are used, The expected transient behavior faC>0 is already
(V—Vo)/V, for the change in the front velocity, and simi- (qualitatively evident from Fig. 4 above. More quantita-
!arly for the current but for reversed sign as enhanced drivingjyely the transient time evolution of the height of the de-
in the defect corresponds to a slow bordlC/C, for the  formed profile can be analyzed, e.g., by plotting (2t)
potassium-nitrate concentration difference, af@/p=1  againstAH(t). For a linear time evolution the former value
—r for the hopping-rate difference. Differences are all deterys twice the latter. In Fig. 7 we show this plot, averaged over
mined between the value with or at the defect and the valugy individual burns, including both signs afC.
elsewhere or without the defect. In this way no fitting is  The initial transient behavior is approximately linear in
involvgd in the comparison. Obviously the actu_al driving time for both cases. FakC>0 the trend continues nearly
force is not known exactly for the slow-combustion fronts, jinear until saturation sets in when the width of the profile
but the observed linear dependence well above the pinninggyals the width of the sample. FAIC<0 the behavior is
transition between the potassium-nitrate concentration angjite similar except that saturation takes place earlier. There
the front velocity suggests that the dimensionless differencg; 5150 some indication that, in this case, the growti bf
can be reliably used in this kind of comparison. becomes nonlinear in time already before saturation, but the

This comparison of the slow-combustion experiment andyyality of the data does not allow for a decisive conclusion
the totally asymmetric ASEP model results is shown in Fig.qn this.

6. It is evident from this figure that agreement between the
two results is reasonable as there is no fitting involved. There
are still fairly large fluctuations in the experimental data, and
it is not possible to have results for very small value&f The difference in the amplituddeigh?, and perhaps not

as fluctuations tend to wipe out the whole effect, and theso clearly in the shape, of the front in the slow-combustion
system is then not in the “asymptotic regime.” These resultsexperiments caused by a columnar defect with enhanced or

IV. DISCUSSION AND CONCLUSIONS
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reduced driving was clearly demonstrated. The behavior ofments. We did not take this variation into account, as it can
the height of the deformed profile and the qualitative shapde assumed to give a small effect in comparison with the
of the profile in the case of enhanced driving were also reaether experimental uncertainties, so that the present estimate
sonably well explained by the mean-field solution of Ref.represents an “average” value.
[10]. The asymptotic shape of the profile in the case of nega- The effective surface tension, contains, in addition to
tive velocity difference could not be unequivocally deter-the “bare” surface tension of the original KPZ equation, an
mined as fluctuations are more important because of relainknown renormalization factor due to noise-induced fluc-
tively small amplitude of the profile in this case. The tuations around the average front profile. We cannot thus get
reduced, in comparison with the case of enhanced drivingan estimate for the bare surface tensianwhich can be
height of the profile was very evident. In the case of positiveestimated by other mearf9]. However, we can conclude
velocity difference, the transient behavior of the profile, i.e..,that the noise-induced renormalization af appears to be
the growth of the defect induced deformation in the profilesizable.
shape, could as well be explained by the mean-field solution. The position and nature of the facetitgueueing transi-
For negative velocity difference a nearly linear behavior intion in interfaces affected by a columnar defénotthe ASEP
time was observed initially, followed perhaps by a regime ofmodel by a defect bonchas been a long-standing problem.
nonlinear time evolution before saturation. The agreement found here between slow-combustion experi-
Fitting the average heighor, equivalently, the average ments with a columnar defect and the related ASEP model
slopes of the sidewf the profile with the mean-field solu- results indicates that this transition is indeed at a nonzero
tions provided us with estimates for the effective surfacevalue of the respective control parameter. No scaling proper-
tensionv, and the coefficient of the nonlinear tenm The ties of the transition could be analyzed at this stage, but the
latter parameter can also be determined from the slope d&SEP model results also indicate that this transition is con-
pendence of the local front velocif$,9], or by applying an tinuous. It remains an experimental and theoretical challenge
inverse method on the observed frof@3. The value found to analyze this transition in more detail.
here for\ is fairly close to these previous estimates, and we

find this level of ag.reem.ent very reasonable in view of the ACKNOWLEDGMENTS
rather large fluctuations in the present data.
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that sample, and that the average potassium-nitrate conceand fruitful discussions with David Mukamel, Joachim Krug,
trations were not the same in the samples used in the expeand Mehran Kardar.

[1] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. L&.889 33, 193(2003.
(1986. [10] D.E. Wolf and L.-H. Tang, Phys. Rev. Le#5, 1591(1990.
[2] For areview, see, e.g., T. Halpin-Healy and Y.-C. Zhang, Phys[11] S.A. Janowsky and J.L. Lebowitz, Phys. Rev.4&, 618
Rep.254, 215(1995. (1992; J. Stat. Phys77, 35(1994).
[3] V.K. Horvath, F. Family, and T. Vicsek, Phys. Rev. Le87, [12] A.B. Kolomeisky, J. Phys. /81, 1153(1998.
3207(1992). [13] D. Kandel and D. Mukamel, Europhys. LeR0, 325(1992.
[4] J. Maunuksela, M. Myllys, O.-P. K&onen, J. Timonen, N. [14] L.-H. Tang and |.F. Lyuksyutov, Phys. Rev. Leftl, 2745
Provatas, M.J. Alava, and T. Ala-Nissila, Phys. Rev. Lég. (1993.
1515(1997; M. Myllys, J. Maunuksela, M.J. Alava, T. Ala- [15] L. Balents and M. Kardar, Phys. Rev.48, 13030(1994.
Nissila, and J. Timoneribid. 84, 1946 (2000. [16] H. Kinzelbach and M. Lassig, J. Phys.28, 6535(1995.
[5] M. Myllys, J. Maunuksela, M. Alava, T. Ala-Nissila, J. Meri- [17] T. Hwa and Th. Nattermann, Phys. Rev5R, 455 (1995.
koski, and J. Timonen, Phys. Rev.6&, 036101(2001. [18] E.B. Kolomeisky and J.P. Straley, Phys. Rev.58, 8030

[6] R. Surdeanu, R.J. Wijngaarden, E. Visser, J.M. Huijbregtse, J.  (1995.
Rector, B. Dam, and R. Griessen, Phys. Rev. L&B.2054 [19] M. Lassig, J. Phys.: Codens Matt&d, 9905(1998.

(1999. [20] M. Myllys, J. Maunuksela, J. Merikoski, and J. Timon@m-
[7] For an early similar observation, see V.K. HattvaF. Family, published.

and T. Vicsek, J. Phys. 84, 125 (1991). [21] J.M. Burgers,The Nonlinear Diffusion EquatiofRiedel, Bos-
[8] See also D. Forster, D.R. Nelson, and M.J. Stephen, Phys. Rev. ton, 1974.

A 16, 732(1977. [22) M. Ha, J. Timonen, and M. den Nijs, e-print
[9] J. Maunuksela, M. Myllys, J. Merikoski, J. Timonen, T.Ka cond-mat/03074083.

kainen, M.S. Welling, and R.J. Wijngaarden, Eur. Phys. J. B[23] F. Slanina and M. Kotrla, Physica 266, 1 (1999.

051103-7



Circling the Square
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“The symbol 7 [1] denotes the ratio of the circumference of a circle to its diameter. The ratio is
approximately 3.14159265.” (Encyclopedia Britannica, 1938)

I. INTRODUCTION

The history of 7 is a very interesting one and embraces
almost the entire written human history. In the following
some important results will be mentioned withouth the
hope to provide a complete overview. Such an account
was recently given for instance by Beckmann in his very
interesting book on the history of 7 [2].

A good numerical approximation of 7 was already
known by the people of ancient Egypt nearly 40 century
ago. They used a numerical value of 256/81 (~ 3.16) as
a ratio of the circumference to the diameter [3], but we
have no indication that they were aware that this value
was only approximate rather than exact. Archimedes
was the first who put scientific effort to compute the
value of m [4]. Inscribing and circumscribing regular
polygons he found that the value of # must be in the
regime [(3 + 10/71),(3 + 1/7)]. We have learned from
Lambert [5] and Lindemann [6] that the 7 is an irra-
tional [7] number with transcendental [8] nature. Early
in the 20th century the Indian mathematical genius Ra-
manujan developed several ways of calculating 7. His
series is so efficient that it has been incorporated into
computer algorithms, permitting expressions of 7 in mil-
lions of digits. Ramanujan himself used the following
numerical value as “sufficient” for practical applications:
63(17 + 15v/5)/25(7 + 15v/5)=3.141592654....

The ghost of the “squaring the circle” arises in our
computerized world in a new form. While people in the
past used compass and rules to create their circles, the
drawing tools of our modern life are the monitors of com-
puters, the CCD sensors of video cameras, etc. These
generally used devices have something in common, their
‘paper’ is a grid (or raster), i.e. a square lattice that is
made of small squares (called pixels). In our computer
age it is an everyday task to draw circles using squares
(pixels) only and performing measurements on raster im-
ages. This article focuses on the later task in the most
simple form, i.e. measuring the circumference of a digi-
tized circle.

II. THE VALUE OF 7 ON A SQUARE LATTICE

Measuring some function along a circle (for instance
a line integral, circulation of a velocity field, etc.) is a

very common job in everyday scientific life. If the func-
tion is a constant identical to unity, then the result is the
circumference of the circle. Therefore, it is fundamental
issue to be able to precisely measure the circumference
of a circle drawn on a lattice. This problem is identical
to measuring m, i.e. the ratio of the circumference to the
diameter.
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FIG. 1. Three circles drawn by gray and black pixels. The
diameters (D=44,46, and 48) are measured in the units of pix-
els. Pixels for circles were assigned by calculating the position
Y=\/R? — Xf for each X;, and choosing the coordinate Y;
that is closest to Y. Here {X;, Y;} are the integer coordinates
of pixel centers.

At first, one may assume that when walking along the
continuous chain of pixels (i.e. the perimeter) one only
needs to sum 1.0’s and v/2’s depending on if we step on
nearest or second nearest neighbor pixel [10]. If we apply
this simple counting method, we find that the circumfer-
ence (i.e. the length of this particular pixel chain) is not
precisely equal to wD. One can easily check in Figure 1
that for the circles with diameter 44,46, and 48 the mea-
sured circumference is 145.6 (8%[9%1.0+6.5%1.41]), 153.6
(8#[10%1.0+6.5%1.41]), and 159.2 (8 [10% 1.0+ 7x1.41])
respectively. This compares to the expected (7D) values
of 138.3, 144.5, and 150.8.

A typical misconception is to attribute the observed
errors only to the small radius-to-pixel size ratio by im-
plicitly assuming that increasing this ratio (by either in-
creasing the diameter or decreasing the pixel size) will
lead to a better approximation of the circumference. Fig-
ure 2 clearly demonstrates that the idea that the error in
measuring 7 vanishes as the pixel size approaches zero is
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simply wrong. The difference between the measured cir-
cumference C), and the theoretically expected Ci=nD
increases with the diameter D. Using standard fitting
procedure one finds that

Chn ~ 1.0548 - (m)D. (1)
4x10°T
b eqv
8 Qe :/
2 3x10 [ //
o i Cm —, 2~
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FIG. 2. The measured and the theoretical circumference
versus the diameter D.

This result does not depend on the way we draw the
circle. Although different circle drawing algorithms (mid-
point, Breshenham’s, etc.) may relocate some of the pix-
els, this will represent only a negligible difference, and
won’t change the value of C,, in large diameter limit.
This can be perhaps best visualized in the following im-
plicit manner. The linearly increasing difference between
Cr, and C} (see Fig. 2) suggests that for a given circle of
diameter D one can find another circle with an equivalent
diameter Degy(D) (Degy < D) that lead to a measured
circumference equal to 7D (i.e. Cp(Degy)=Ci(D)).
For a circle of diameter D;=10000 the theoretically ex-
pected circumference is Cy(D;)=31415.9. From Eq. 1
one finds that D.q,=D/1.0548, therefore (D1)eq,~9480
(see Fig. 2). Obviously, 520 pixel difference between D
and Dgg, cannot be accounted for by the (max.) =2
pixel uncertainty in the diameter caused by different cir-
cle drawing programs. This effect can be observed at
small diameters too. In Fig. 1 the measured circumfer-
ence (Cy,(D=44)=145.6) of a circle of diameter 44 was
closer to the theoretical circumference of the circle of di-
ameter 48 (Cy(D=48)=150.8) than the measured value
for the same circle (C), (D=48)=159).
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FIG. 3. Relative error versus the diameter of the circle.
The diameter is measured in the unit of pixels.

The relative error of the measured circumference
AC=|C,, — Ct]/C; is shown in Figure 3. The upper
envelope of this graph reveals the typical intuition, i.e.
that the relative “error” decreases with increasing radius.
However, one can see that AC asymptotically approaches
to ~5.4%, not zero.

Next, we look for the origin of this error. According
to the introduction above, we only need to consider the
first octant of the circle (see Fig. 1.). The circle starts
right above the center and continues to the right. The
first pixel is located above the center of the circle. (For
simplicity we restrict the R values to integers only.)
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FIG. 4. Pixels with gray shadow represent the best ap-
proximation to the true arch shown by dotted line. Pixels
that represent a badly approximated circle are connected by
continuous line.

In this octant the slope of the perimeter changes from
zero to -45°, therefore the minimal possible arch is made
by using only -45° line segments (red line in Fig. 4). The
length of this (red) perimeter segment is R/v/2. How-
ever, this object is far from being part of a circle since
along the diagonal (dashed line) the distance from the
center to the red line is only R/v/2 (and not R).

To better approximate a circle, one needs to shift the
perimeter point along the diagonal further from the cen-
ter. If this shift is only 1 pixel (as seen in Fig. 5), we
change the circumference by dC'=2-v/2.
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FIG. 5.

It is worth emphasizing that the value of dC' does not
depend on the actual path of the pixels. Pushing the
perimeter along the diagonal by n instead of 1, the mea-
sured total circumference C,, is



Cm =8(R/V2+n-(2-V2)), (2)

and the measured radius along the diagonal is
Riiag = R/V2 +nV2. (3)
Concerning the results in Figure 1, the relevant ques-
tion is how much will the circumference increase if

Rgiag=R. This condition determines a specific value of
n in Eq. 3

V2-1

*:R‘
" 2

(4)
Inserting n* into Eq. 2 it follows that

Cp =7moD, where mp=8(V2—1). (5)
The numerical value of 7o (“square 7”) is ~ 3.31371,
therefore if we write Eq. 5 in the form Cy,=(ma/7) * 7D,
it is transparent that the ratio 7o /7 (~ 1.05478) is in a
perfect agreement with the pre-factor in Eq. 1.

III. HOW TO MEASURE THE
CIRCUMFERENCE OF A CIRCLE?

The relative difference (7g — 7)/m (approx. 5.4%) is
in good agreement with the measurement result shown
in Figure 3. This is a surprisingly large discrepancy. For
example, measuring the length of the Equator on a map
with this 5.4% inaccuracy is equivalent to erasing the
Danube river (the longest river in Central-Eastern Eu-
rope) from the map. Is there any way to minimize this
error (and keep the river Danube on the map)? Fortu-
nately the answer is yes.

The error in the previous measurements did not ap-
proach zero with decreasing mesh size. This is due to the
fact that the “fine” mesh is not characterized only by the
mesh size, but also by the number of possible angles of
the line segments used to draw a circle. In the previous
measurement there were only three different slopes avail-
able (0°, 45°, and 90°) for line segments. This limited
set of angles is not changed by decreasing the mesh size.
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FIG. 6. The effect of increasing coarse grain number. Note
that pictures with higher coarse grain number are shown with
smaller magnification factor.

However, if we do not measure the distance between
every subsequent pixel, but use only every odd pixel
(omitting every even ones in the measurement), we can
increase the number of possible angles between the two
measurement points by one. Jumping over more than
one pixel increases the variety of angles even further (see
Fig. 6). The number of pixels omitted between two mea-
surement points will be called the coarse grain number
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FIG. 7. The optimal coarse grain number versus the radius.

For a given circle of diameter D one can determine the
optimal coarse grain number (N7, ), i.e. the one that min-
imizes the difference between the measurement results
and the calculated 7D. In measurements one finds that
N, depends on the diameter as N, ~ 0.28 x VD (right
axis Figure 7). In contrast to the previous measurements
one finds that making measurements at N;, (D) the er-
ror approaches to zero at large diameter limit (left axis

in Figure 7).

IV. THE OPTIMAL COARSE GRAIN NUMBER
IN GENERAL

There are plenty of applications where line integrals
are measured along an arbitrary line and not a circle. In
general, one would like to measure the length using no a
priori knowledge on the shape of the pixel chain. Is there
any way to determine the optimal coarse grain number
(and hence make precise measurements of the length)
without using no extra information on the geometry?

A possible numerical solution is to measure the length
(circumference for the circle) for several values of the
coarse grain number, and take the N.; > 0 value that
provides the first local maxima, for the relative error. This
method was tested on 3 circles with different diameter.
The results are shown in Fig. 9). One can see that start-
ing with small V., the error rapidly decreases due to the
increasing number of the possible different slopes. Then
it stays close to zero for a certain range of the coarse
grain number. This range depends on the radius.
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FIG. 8. The relative error versus coarse grain number for
three circles with diameter D=20, 200, and 1000 respectively.

On the other side, if N, is too large then we begin to
increase the error by approximating an arch by a straight
line. An extreme example is when we jump over so many
pixels that only four of them are left. In this case the
measured circumference will be 4  v/2R. This is clearly
an underestimation of the true circumference.
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FIG. 9. Testing the corse grain method on arbitrary curve.

In general the optimal N7, is determined by the first
local maxima (shown by arrow in Fig. 9). In all cases
N7, determind by this method was in good agreement
with the previous results seen in Fig. 7. In this test

the diameter of the circles was kept constant and only
N, was changed, therefore C; remains the same. As a
consequence, the measurement on C), will show inflec-
tion point at values of N., where |AC| presents local
maxima. If one cannot observe a characteristic inflection
point in Cy,(N¢y) then making an accurate measurement
of length is hopeless.

Finally it is worth mentioning that this coarse grain
method can also be useful in numerically solving any dif-
ferential equation that contains spatial derivatives.

V. CONCLUSION

In order to be able to measure the circumference of a
circle (or length of any pixel chain) with arbitrary pre-
cision, one needs to fulfill two conditions: First, the dis-
tance between two subsequent measurement points must
be infinitely small. Second, the number of pixels be-
tween every two measurement points must be infinite.
Only in this dual limit case will the true value of the
circumference be revealed. In practice, measuring the
circumference by stepping through all neighboring pixels
only involves the first condition. To realize the important
second condition, coarse graining must be implemented
always. To determine the best coarse grain length for the
most accurate measurement one needs to preform mea-
surements at several values of the coarse grain number.
Then the optimal value is either determined by observing
an extended inflection point in the measurement or it is
impossible to perform reliable measurement. Therefore,
a good solver algorithm must require good resolution in
the possible set of slopes too, and the above described
coarse grained method provides a chance to accomplish
this requirement.
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[1] The symbol 7 was first used in 1706 by the English math-
ematician William Jones; but it became popular only af-
ter its adoption by the Swiss mathematician Leonhard
Euler in 1737.

[2] Petr Beckmann, A History of 7, 3rd ed., St. Martin’s
Press, New York, ISBN-0-312-38185-9 (1971).

[3] Rhind (or Ahmes) Papyrus, British Museum. In the
“problem 50” the scribe recognized that the area of a
circle is proportional to the square of the diameter and



assumed for the constant of proportionality (that is, 7/4)
the value 64/81. This extensive document from ancient
Egypt has been the source of much information about
Egyptian mathematics. The papyrus was copied at about
1650 BC (by Ahmes), and we know that it used a that
time already 2 century old source. The papyrus earned its
name from a Scottish antiquary, Alexander Henry Rhind,
who discovered it in 1858.

Around 200 BC, Archimedes of Syracuse reached a figure
equivalent to about 3.14.

Johann Heinrich Lambert (1728-1777), Sechs Versuche
einer Zeichenkunst in der Vernunftlehre (“Six Attempts
at a Symbolic Method in the Theory of Reason”) (1777).
Carl Louis Ferdinand von Lindemann (1852-1939), Uber
die Zahl w (11Concerning the Number 7”) (1882).

[7] By definition an irrational number cannot be expressed

as a ratio of two whole numbers or as a decimal with a
repeating pattern of digits.

A transcendental number by definition cannot be the root
of any algebraic or constructible equation with a finite
number of terms.

Among many algorithms that perform this simple task,
perhaps Beshenham’s algorithm is the best known. This
very nice algorithm guarantees that 1, there are no holes
along the perimeter; 2, every pixel is drawn only once;
and 3, only linear operations are utilized (i.e. one avoids
computing sin, cos, square or square-root). One can
hardly expect more from an ideal circle algorithm.

By definition “nearest neighbor” pixels share a side in
contrast to “second nearest neighbors” that share only a
corner (node).



