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26Flow characteristics of non-Newtonian power-law fluids in a right-angled horizontal T-channel are stud-
27ied in the laminar regime. In particular, the two-dimensional numerical computations are performed
28using Ansys Fluent for the following range of physical parameters: Reynolds number (Re) = 5–200 and
29power-law index (n) = 0.2–1 (covering shear-thinning, n < 1 and Newtonian, n = 1 fluids). The flow fields
30have been explained by streamline contours. The engineering parameters such as wake/recirculation
31length, critical Reynolds number for the onset of flow separation and the variation of viscosity along
32the lower wall of side branch are calculated for the above range of settings by using constant density
33and non-Newtonian power-law viscosity model. The results showed that for a particular n, length of recir-
34culation zone increases in the side branch with increasing Re. Also, it increases with decreasing n for the
35fixed Re. The critical Reynolds number for the onset of flow separation decreases with decreasing n. A sim-
36ple wake-length correlation is also established at different values of Re and n for the range of parameters.
37� 2014 Published by Elsevier Ltd.
38

39

40

41 1. Introduction

42 Pipe networks are widely used for transportation of liquids and
43 gases. These networks vary from a few pipes to complex assembly
44 of very large number of pipes. In addition to pipes, the network
45 also consists of components causing boundary layer separation
46 due to change in the momentum of the flow. In this work, we have
47 concentrated our attention on a very common component of a pipe
48 network: the T-channel. The flow of Newtonian fluids in a T-chan-
49 nel is characterized by two separation zones: one in the branched
50 channel, another along the left wall of the main branch at the junc-
51 tion, and a stagnation point near the downstream corner of the
52 junction (Fig. 1). A separation zone can be defined as the region
53 of recirculating fluid with very low velocities; therefore it has a
54 strong sediment deposition potential. Continuous sediment depo-
55 sition over a period of time reduces the conveyance of the channel.
56 Thus, in engineering practice, it is essential to understand the basic
57 characteristics of flow in separating and reattaching flows. Flow
58 through a T-channel has a variety of engineering applications in
59 irrigation systems, wastewater treatment, flood water driving, bio-
60 mechanical applications, phase separation, oil and gas pipelines,
61 polymer and pharmaceutical industries, and in many other areas.

62Flow in a T-channel for Newtonian fluids has been investigated
63extensively both experimentally and numerically to obtain the
64basic information of flow separation and reattachment phenomena
65in the laminar flow regime. This work aims to study two-
66dimensional (2-D) laminar flow for non-Newtonian power-law
67fluids in a T-channel over a wide range of Reynolds numbers
68(Re). The 2-D simulations are deemed adequate to represent actual
69three-dimensional (3-D) situations when the aspect ratios of the
70ducts forming the T-channel are large, as in the experiments of
71Liepsch et al. [1] and Khodadadi et al. [2]. Before going into a
72detailed presentation and discussion of the problem under
73consideration, it is useful to account briefly the current status of
74the relevant literature focusing on Newtonian and non-Newtonian
75fluids.
76Grace and Priest [3] presented experimental results for the
77division of flow at different width ratios of the branch channel
78orientation to the main channel. They also classified the division
79of flow into two regimes, with and without the appearance of local
80standing waves near the branch. The regime without waves corre-
81sponded to the case where the Froude numbers were relatively
82small, and the regime with the waves corresponded to the free
83overall conditions at sections downstream of the junction. Hayes
84et al. [4] studied the flow characteristics of a Newtonian fluid in
85a 2-D planar T-branch over a range of Reynolds numbers
86(10–800) for two different outlet boundary conditions: (i) constant
87exit pressure and (ii) specified flow split between the branches.
88They found that the fractional flow in the main duct increases with
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89 increasing Reynolds number for the case of constant exit pressures
90 at the outlet of each branch. For the case of specified flow split at
91 the outlet of each branches, the size and strength of the recircula-
92 tion zones increase as more fluid is forced to go into the side
93 branch. Neary and Sotiropoulos [5] presented the numerical solu-
94 tions for the steady 3-D laminar flows through a 90� rectangular
95 cross-section over a range of Reynolds numbers (496–525), dis-
96 charge ratios (0.23–0.64) and duct aspect ratios (1–8). They com-
97 pared solutions with experimental measurements to elucidate
98 the flow topology patterns and showed that both length and width
99 of the separation zone decrease with increasing discharge ratio.

100 Weber et al. [6] performed an extensive experimental study of
101 combining flows in a 90� open channel for Reynolds numbers rang-
102 ing from 500 to 1000. They provided a very broad data set compris-
103 ing three velocity components, turbulence stresses, and water
104 surface mappings.
105 Yanase et al. [7] investigated the laminar flow in a curved rect-
106 angular duct for a range of aspect ratios (1–12) using spectral
107 method and found five branches of steady solutions. They also
108 investigated the linear stability characteristics for all the steady
109 solutions and found that one steady solution is linearly stable for
110 most of the aspect ratio values, but two linearly stable steady solu-
111 tions exist for a region of small aspect ratio and there are several
112 intervals of aspect ratio where there is no linearly stable steady
113 solution. Huang et al. [8] provided a comprehensive numerical

114study of combining flows in open-channel junctions using a 3-D
115turbulence model for varying Reynolds numbers (500–1000) and
116validated the model by using the detailed test data of Weber
117et al. [6]. Ramamurthy et al. [9] studied the open-channel laminar
118and turbulent 3-D flow characteristics of a 90� rectangular channel
119junction of equal width over a parameter range of discharge ratios
120(0.149–0.838). They adopted the k–x turbulence model to investi-
121gate the dividing open channel flow characteristics. They presented
122a data set composed of water surface mappings and 3-D velocity
123distributions in the vicinity of the channel junction region.
124Shamloo and Pirzadeh [10] investigated the characteristics of
125separation zones in a T-channel over a range of discharge ratios
1260.2–0.8 by using Fluent. Numerical simulations in their study were
127performed using the RSM turbulence model.
128In addition to flow characteristics for a Newtonian fluid, Liepsch
129et al. [1] performed measurements and calculations for laminar
130flow in a plane 90� bifurcation for non-Newtonian fluids for a range
131of Reynolds numbers (496–1130) and discharge ratios (0.23–0.64).
132They developed velocity profiles as a function of geometry,
133Reynolds number and flow rate ratio and compared it with LDA
134measurements. Bramley and Dennis [11] studied the 2-D steady
135flow for various Reynolds numbers (100, 500, 1000 and 2000) in
136a branching channel by writing Navier–Stokes equations in terms
137of stream function and vorticity, and solved them by using the
138difference scheme of Dennis and Hudson [12]. They presented
139numerical methods for dealing with the singularity in the vorticity
140at the sharp corners where the channel bifurcates. Ehrlich and
141Friedman [13] investigated the bifurcation flows extended to 2-D
142regions obtained from radiographs of human aortic bifurcations
143mapped onto rectangles with a slit. They developed correlations
144between computed wall vorticities and shear rates from laboratory
145experiments. These two quantities were proportional in the same
146dimensionality, suggesting that useful data can be obtained from
1472-D calculations of 3-D phenomena.
148Miranda et al. [14] looked at steady and periodic flows of
149Newtonian fluids for a range of Reynolds numbers (10–1000) and
150discharge ratios (0.1–0.9) through a bifurcation geometry, and
151obtained computational results for shear stresses in close
152agreement with previous experimental measurements and also
153with the simulations of Liepsch et al. [1], Khodadadi et al. [15]
154and Khodadadi [16]. Moshkin and Yambangwi [17] developed a
155computational method for solving viscous incompressible flow in
156a domain for Reynolds number ranging from 10 to 400. They stud-
157ied the effect of flow rate and curvature ratio of a planar U-bend
158channel and found that the size of the separation zone increases
159with increasing flow rate and decreasing curvature ratio.

Flow

Stagnation zone
Recirculation zone

Recirculation zone

Main branch

Side branch
Separating stream

Fig. 1. Schematic of a separating flow along with recirculation and stagnation zone
in a T-channel.

Nomenclature

D non-dimensionalizing length scale, m
I2 second invariant of the rate of deformation tensor, s�2

Ld side branch length, m
Lr length of recirculation region, m
L1 total length in mainstream direction, m
m power-law consistency index, Pa sn

n power-law index
Ncells total number of cells in the domain
P pressure, Pa
Re Reynolds number
t time, s
U velocity along X-axis, m/s
V velocity along Y-axis, m/s
Vavg average velocity of the fluid at inlet, m s�1

Wb width of side branch, m
Wc width of main branch, m
Xd downstream length of main branch, m
Xu upstream length of main branch, m
X coordinate in side stream direction, m
Y coordinate in mainstream direction, m

Greek symbols
q density of fluid, kg m�3

d minimum grid spacing, m
D maximum grid spacing, m
g power-law viscosity, Pa s
s extra stress tensor, Pa
e rate of deformation tensor, s�1
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160 Miranda et al. [14] also examined a single case of non-Newto-
161 nian flow for the blood analogue fluid and left open a route of
162 investigation dealing with the analysis of other fluid characteris-
163 tics, such as the level of shear-thinning, upon the flow patterns
164 around the bifurcation. Recently, Matos and Oliveria [18] studied
165 the steady and unsteady flows of a 2-D planar T-junction for Rey-
166 nolds number range 50–1000 (in the interval of 50) for Newtonian
167 and non-Newtonian fluids (n = 0.1–1) using Carreau–Yasuda equa-
168 tion, one of the most utilized generalized Newtonian fluid models
169 in blood flow simulations. In their study, they choose different flow
170 rate ratios at the outlet boundary of the side branch to examine the
171 flow characteristics in the T-junction. Extensive results on the eddy
172 lengths and intensities and on the shear stress fields are reported.
173 Conversely, the present study is dedicated to analyzing the flow
174 characteristics of Newtonian and non-Newtonian fluids (n = 0.2–
175 1) using power-law model in the lower Reynolds number range
176 (<200) by assuming both of the exits to be at the same pressure
177 (atmospheric pressure), which is consistent with the first case of
178 boundary condition of Hayes et al. [4]. It is also worthwhile to
179 mention that non-Newtonian effects are more prominent at low
180 values of Re and still no information is available for non-Newto-
181 nian fluids at such low Re, especially up to Re = 50. A correlation
182 for the wake length and the determination of the onset of flow sep-
183 aration are the unique aspects of the present investigation.
184 Some studies on the use of power-law model are also worth
185 mentioning at this stage. Hajmohammadi et al. [19] studied the
186 effects of a thin gas layer on the hydrodynamic aspects of power-
187 law fluids (n = 0.15–1.4) in a radial Couette flow between two cyl-
188 inders. They gave an analytical solution to determine the velocity
189 profile in the two-phase flow system. It was shown that the thin
190 (micro) gas layer contributes in reducing torque to set the fluid
191 in motion in the case of Newtonian and shear-thickening fluids,
192 but in the case of shear-thinning fluids a slight increase in the tor-
193 que (about 6%) is observed. In a similar study, Hajmohammadi and
194 Nourazar [20] analyzed the influence of a thin gas layer (into a
195 cylindrical Couette flow assembly) dealing with a power-law liquid
196 (0.1 < n < 1.4) on the torque required for activating the lubrication
197 process, on the maximum temperature of the shaft (inner cylinder)
198 and on Nusselt number of the two-phase flow configuration.
199 Results showed that the thin gas layer contributes to reduce in
200 the torque to set the fluid in motion and to downscale the maxi-
201 mum temperature at the shaft for Newtonian and shear-thickening
202 liquids. However, for shear-thinning liquids, the above-mentioned
203 positive roles break down for a large number of flow configura-
204 tions. Eesa and Barigou [21] studied numerically the effects of a
205 superimposed sinusoidal rotational vibration on the flow of non-
206 Newtonian fluids in a tube. They found that Newtonian flow is
207 unchanged by any superimposed oscillations but the flow of
208 shear-thinning and visco-plastic fluids is enhanced, whilst the flow
209 of shear-thickening fluids is retarded. Turkyilmazoglu [22] studied
210 the magneto-hydrodynamic slip flow of an electrically conducting,
211 non-Newtonian fluid past a shrinking sheet and found that the
212 presence of a magnetic field has substantial effects on velocity
213 and temperature fields. Hu and Kieweg [23] studied the effect of
214 surface tension on the gravity-driven thin film flow of Newtonian
215 and shear-thinning fluids (n = 0.5–1) and showed that capillary
216 ridge height increased with higher surface tension, steeper inclina-
217 tion angle, larger initial thickness and also with decreasing shear-
218 thinning behavior.
219 Unlike [19,20], Hajmohammadi et al. [24] studied laminar, vis-
220 cous and incompressible fluid flow configuration of bend tubes for
221 optimizing the heat and fluid flow for varying Reynolds (500, 1652
222 and 2000) and Prandtl (0.7, 7 and 6780) numbers. They showed
223 that the pressure drop and the entropy generation are considerably
224 reduced when implementing the optimum layout, compared to the
225 case of a fully curved tube section. Csizmadia and H}os [25]

226reported the estimation of loss coefficients for typical pipeline dif-
227fusers and elbows in the case of Bingham and power-law fluids.
228Diffusers with angle range 7.5–40� and elbows of curvature radius
229to diameter ratio range 1–10 were studied. They found that the
230standard k—e model fails to predict the flow field accurately
231whereas the eddy-viscosity SST turbulence model and the BSL Rey-
232nolds-stress model give very close results, and they suggest the use
233of the SST model.
234Thus, based upon the above discussion, it can be summarized
235here that most of the currently available literature on Newtonian
236and non-Newtonian flow through a T-channel is for high Reynolds
237numbers, where the main thrust has been to investigate the wake
238phenomenon. However, in spite of having the many engineering
239applications mentioned above, the non-Newtonian flow through
240a T-channel has not been investigated in the literature at low Rey-
241nolds numbers. Therefore, the main objective of this study is to
242investigate the characteristics of non-Newtonian power-law flow
243for the following range of conditions: Reynolds number (Re) = 5–
244200 and power-law index (n) = 0.2–1 (covering shear-thinning,
245n < 1 and Newtonian, n = 1 fluids). The other important objective
246of this study is to determine the critical Reynolds numbers at
247which the onset of flow separation occurs for Newtonian and
248shear-thinning fluids.

2492. Problem statement and mathematical formulation

250The laminar flow of non-Newtonian shear-thinning fluids
251through a 2-D T-channel is schematically displayed in Fig. 2. The
252channel inlet of width Wc = D (also the non-dimensionalizing
253length scale) is exposed to a fully developed velocity field with
254an average velocity of Vavg at the channel inlet (also the
255non-dimensionalizing velocity scale). The non-dimensional
256upstream distance between the inlet plane and the junction of
257the channel (Xu/D) is taken as 10, and the downstream distance

X

Y

Wc =D

Ld = 25D

Xd = 30D

Xu = 10D

Wb = D

No-slip boundary
U=0, V=0

No-slip boundary
U=0, V=0

Fig. 2. Schematic diagram of flow in a T-channel.
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258 between the junction and the exit plane (Xd/D) is taken as 30 with
259 the total length of the computational domain being L1/D = 41 in the
260 mainstream direction. The non-dimensional length of side branch
261 (Ld/D) is taken as 25. These length ratios were chosen in the follow-
262 ing manner.
263 In order to explore the influence of the assumed finite domain,
264 especially for the largest Reynolds number, computations were
265 carried out at Re = 200 for both Newtonian and non-Newtonian flu-
266 ids and dimensionless side branch lengths of 20, 25, 30. The influ-
267 ence of the side branch length (Ld/D) on the length of the
268 recirculation zone is presented in Table 1. The relative difference
269 in the reattachment length for length ratios of 25 and 30 was found
270 to be about 3.2%, while for the case of maximum shear-thinning
271 behavior (n = 0.2) studied, the relative difference in the reattach-
272 ment length for the length ratios of 25 and 30 was found to be
273 about 3.7%. This was observed to be small enough to justify the
274 choice of a side branch length ratio of 25 for further simulations.
275 Similarly, the variation in the reattachment length for the down-
276 stream lengths (Xd/D) of 25, 30 and 35 at Re = 200 is presented in
277 Table 2. The relative difference in reattachment length for 30 and
278 35 is found to be about 1.7%, while for the case of maximum
279 shear-thinning behavior, it was found to be about 3.6%. Hence, a
280 dimensionless downstream length of 30 is selected for further sim-
281 ulations. Likewise, the variation in the reattachment length for the
282 dimensionless upstream lengths (Xu/D) of 5, 10 and 15 at Re = 200
283 is presented in Table 3 and the corresponding difference in reat-
284 tachment length for 10 and 15 is found to be less than 0.4%, while
285 for the case of maximum shear-thinning behavior, it was found to
286 be about 1%. Thus, a dimensionless upstream length of 10 has been
287 used in all the subsequent numerical calculations.
288 The following assumptions have been made in this study: the 2-
289 D, incompressible, isothermal and laminar flow of shear-thinning
290 fluids. Also, the gravity, buoyancy and viscous dissipation effects
291 are assumed negligible.
292 Under the above assumptions, the continuity, the X and Y com-
293 ponents of Cauchy’s equations in their dimensional form are
294 known as [26,27].

295Continuity:
296

@U
@X
þ @V
@Y
¼ 0 ð1Þ 298298

299X Momentum:
300

@U
@t
þ U

@U
@X
þ V

@U
@Y
¼ � @P

@X
þ 1

Re
@sXX

@X
þ @sYX

@Y

� �
ð2Þ

302302

303Y Momentum:
304

@V
@t
þ U

@V
@X
þ V

@V
@Y
¼ � @P

@Y
þ 1

Re
@sYX

@X
þ @sYY

@Y

� �
ð3Þ

306306

307For an incompressible fluid, the extra stress tensor (which is sym-
308metric, sij ¼ sji) is related to the components of the rate of deforma-
309tion tensor (eij) as
310

sij ¼ 2geij 312312

313The components of the rate of strain tensor are related to the veloc-
314ity components in Cartesian coordinates as follows:
315

eXX ¼
@U
@X

; eYY ¼
@V
@Y

; eXY ¼ eYX ¼
1
2

@U
@Y
þ @V
@X

� �
317317

318For a power-law fluid, the viscosity (g) is defined as
319

g ¼ m
I2

2

� �n�1
2

321321

322and the second invariant of the rate of deformation tensor (I2) is
323given by
324

I2 ¼
XX

eijeji ¼ 2 e2
XX þ e2

XY þ e2
YX þ e2

YY

� �
326326

327where m is the power-law consistency index which is a measure of
328the viscosity of the fluid and n is the power-law index. Clearly, n = 1
329denotes the standard Newtonian flow behavior; n < 1 corresponds
330to shear-thinning fluid behavior and the values of n as low as
3310.2–0.3 are quite frequent for polymeric systems and particulate
332slurries [27]. Spelt et al. [28] also stated that shear-thinning fluids

Table 3
Influence of upstream length (Xu/D) on recirculation region length (Lr/D) at Re = 200.

Xu/D Ncells n = 1 n = 0.2

Lr/D % Relative difference Lr/D % Relative difference

5 149,625 3.9418 0.9 9.1338 3.0
10 154,875 3.9233 0.4 8.9567 1.0
15 160,125 3.9080 8.8657

Table 1
Influence of side branch length (Ld/D) on recirculation region length (Lr/D) at Re = 200.

Ld/D Ncells n = 1 n = 0.2

Lr/D % Relative difference Lr/D % Relative difference

20 149,625 4.0708 7.1 9.2883 7.6
25 154,875 3.9233 3.2 8.9567 3.7
30 160,125 3.8013 8.6353

Table 2
Influence of downstream length (Xd/D) on recirculation region length (Lr/D) at Re = 200.

Xd/D Ncells n = 1 n = 0.2

Lr/D % Relative difference Lr/D % Relative difference

25 149,625 3.8033 4.7 8.5137 8.2
30 154,875 3.9233 1.7 8.9567 3.5
35 160,125 3.9910 9.2782
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333 are much more common than shear-thickening fluids (n > 1), with
334 usually n P 0.2. Thus, the range of values of the power-law index
335 0.2 6 n 6 1 used here is guided by the behavior of industrially
336 important fluids. Furthermore, as one reduces the value of power-
337 law index then it is sometimes difficult to achieve the same level
338 of convergence because of the highly non-linear nature of the gov-
339 erning equations [28–34]. Because of these facts, in the literature it
340 is very rare to use the value of power-law index smaller than 0.2 for
341 power-law fluids and it seems to have become standard to begin at
342 n = 0.2 with power-law fluids.
343 The only dimensionless group appearing in Eqs. (2) and (3) is
344 the Reynolds number, which is defined in this study as follows
345 based on [27–34].
346

Re ¼
qDnV2�n

avg

m348348

349 Needless to say that this form of Re becomes the common Newto-
350 nian form for n = 1. One can obtain the average velocity (Vavg) from
351 the flow rate using continuity.
352 The boundary conditions in their dimensionless form for this
353 flow configuration (see Figs. 1 and 2) may be written as follows:

354 � At the inlet boundary: the fully developed velocity profile for
355 the laminar flow of power-law fluids in a channel is given as
356 [34],

357

U¼0andV ¼ 2nþ1
nþ1

� �
Vavg 1� 1�2X

D

����
����

� �nþ1
n

" #
for ð06X6DÞ

359359

360� At the left and right boundary walls of main branch:
361

U ¼ 0 and V ¼ 0 ðno-slip conditionÞ 363363

364� At the upper and lower walls of side branch:
365

U ¼ 0 and V ¼ 0 ðno-slip conditionÞ 367367

368� At the outlet boundary of main and side branches: the
369default pressure outlet condition (both exits exposed to
370atmosphere) available in Ansys Fluent is used, that is, zero
371gauge pressure at both the exits.
372

3733. Numerical solution procedure

374The computational grid structure adopted for solving the flow
375in a T-channel is depicted in Fig. 3. The grid is generated by using
376Gambit, and shows the non-uniform orthogonal grid structure for
377the whole of the computational domain (Fig. 3a) along with its
378magnified view (Fig. 3b). It consists of both uniform and non-uni-
379form grid distributions with a close clustering of grid points in the
380regions of large gradients and coarser grids in the regions of low
381gradients. The junction of the channel where the flow diversion

Table 4
Grid sensitivity analysis for the flow through a T-channel at different values of Re and n.

Grid details Lr/D

Grid Ncells D/D Re = 50 % Relative difference Re = 100 % Relative difference Re = 200 % Relative difference

n = 1
G1 106,500 0.01 1.8932 0.10 2.6649 0.07 3.9217 0.05
G2 154,875 0.008 1.8951 0.01 2.6665 0.01 3.9233 0.01
G3 254,007 0.006 1.8952 2.6669 3.9237

n = 0.2
G1 106,500 0.01 3.2238 2.20 5.5139 1.92 8.8623 2.35
G2 154,875 0.008 3.2704 0.80 5.5826 0.70 8.9567 1.30
G3 254,007 0.006 3.2964 5.6217 9.0742

Fig. 3. Non-uniform grid structure for the flow in a T-channel: (a) complete and (b) magnified views.
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382 takes place is a critical zone where considerable gradients in veloc-
383 ity components will occur. For handling this situation, a very fine
384 grid is used in this zone. In order to capture the physics of the
385 boundary layer separation in the side branch a very fine grid has
386 been constructed over a distance of 5D. The rest is a non-uniform
387 grid progressively increasing in the direction away from the junc-
388 tion in both upstream and downstream directions, such that the
389 smallest control volumes are in the vicinity of the junction and
390 the largest control volumes are away from the junction.
391 It is important to investigate the effect of grid size on the phys-
392 ical output parameters. A thorough analysis of the sensitivity of the
393 simulation results with regard to the number of elements and the
394 grid fineness for each case was carried out using three different
395 grids with 106,500, 154,875 and 254,007 cells of varying fineness
396 and the results are presented in Table 4. The minimum grid spacing
397 (d) at the junction and in the vicinity of the junction along the side
398 branch for the three grids is 0.01D, 0.008D and 0.006D, respec-
399 tively, and the maximum grid spacing of D = 0.5D at distance far
400 off from the junction is found to be sufficiently fine to resolve
401 the flow characteristics in a T-channel. The first length function
402 has also been used for stretching the cell sizes between these limits
403 of d and D in both X and Y directions.
404 The percentage relative differences in the values of reattach-
405 ment lengths at the extreme values of power-law indices (0.2
406 and 1) for the various values of Re (50, 100 and 200) and the three
407 grids (106,500, 154,875 and 254,007 cells) are also mentioned in
408 Table 4. Briefly, for the case of maximum shear-thinning behavior
409 (n = 0.2) at Re = 50, the relative difference in the value of reattach-
410 ment length is found to be about 0.8% for the grid with 154,875
411 cells as compared to the values at the grid with 254,007 cells. Sim-
412 ilarly, at Re = 200, the corresponding relative difference for the case
413 of n = 0.2 in the value of reattachment length is found to be about
414 1.3% for the grid with 154,875 cells as compared to the values at
415 the grid with 254,007 cells. Hence, because the difference between
416 the values of reattachment lengths at the grids with 154,875 and
417 254,007 cells is reasonably small, the optimized grid size of
418 154,875 cells is used for further computations in order to reduce
419 computational load (CPU time) without losing accuracy.
420 This numerical study has been carried out using the commercial
421 software package Ansys Fluent based on the finite volume method.
422 The two-dimensional, laminar, segregated solver is used to solve
423 the incompressible flow on the collocated grid arrangement. The
424 constant density and the non-Newtonian power-law viscosity
425 model are used for the simulations. The second order upwind
426 scheme is used to discretize convective terms of momentum equa-
427 tions. The semi-implicit method for the pressure linked equations
428 (SIMPLE) scheme is used for solving the pressure–velocity decou-
429 pling. Ansys Fluent solves the system of algebraic equations using
430 the Gauss–Siedel point-by-point iterative method in conjunction
431 with the algebraic multi-grid (AMG) method. The use of AMG
432 scheme can greatly reduce the number of iterations (and thus,
433 CPU time) required to obtain a converged solution, particularly
434 when the model contains a large number of control volumes. The
435 absolute convergence criteria of 10�10 for the continuity, and X-
436 and Y-components of the velocity are prescribed in the steady
437 regime. For detailed investigation of flow characteristics in the T-
438 channel, unsteady simulations have also been run for the extreme
439 values of Re and n (i.e., Re = 200, n = 1 and 0.2) with the absolute
440 convergence criteria of 10�20 each for the continuity, and X- and
441 Y-components of the velocity.

442 4. Results and discussion

443 Inspection of the foregoing analysis indicates that the flow char-
444 acteristics in the present system depend on five parameters. These

445are the Reynolds number (Re), the flow behavior index (n), the
446dimensionless width of the main channel (Wc/D), the dimension-
447less width of the side branch (Wb/D) and the flow split or the dis-
448charge ratio. Since the vast numbers of governing dimensionless
449parameters are required to characterize this flow system, a com-
450prehensive analysis of all combinations of problems is not practi-
451cal. While computations can be performed for any combination
452of these parameters, the objective here is to present a sample of
453results to illustrate the effects of Re and n on the flow characteris-
454tics in a T-channel. In particular, fluid flowing through the channel
455with Wc = Wb = D is considered here. The results are presented for
456Reynolds number up to 200 and for n = 0.2, 0.4, 0.6 and 1, thereby
457covering both shear-thinning and Newtonian behaviors. Physically,
458one can expect the centrifugal forces to induce instabilities in the
4592-D flow beyond a threshold Reynolds number (more precisely
460the Dean number) [35], making the flow structure 3-D, even for a
461planar geometry. This kind of instability is more dominant in
462curved pipes and channels as the centrifugal force is sustained in
463those geometries. Although centrifugal force is not much dominant
464under a 90� branched T-channel, but the fluid experience this force
465at the junction when the fluid is forced to enter the branch. The
466case of n = 0.8 has not been taken up in this study because the
467behavior of fluid for this case is almost the same as that for New-
468tonian fluids. The non-Newtonian behavior is more predominant at
469power-law index (n) values considerably less than unity.

4704.1. Validation of results

471The numerical solution procedure used here has been bench-
472marked with standard results for the incompressible flow of New-
473tonian fluids in a T-channel. The validation of reattachment length
474for Newtonian fluids on varying Reynolds numbers is presented in
475Fig. 4. The minimum percentage deviation of the values obtained in
476this study as compared with those given by Hayes et al. [4] is found
477to be about 0.23%; whereas the maximum deviation is around
4783.24%. While generally the correspondence between the two sets
479of results is seen to be satisfactory, except for higher Reynolds
480number (Re = 200, for instance) where the two results seem to dif-
481fer by about 3.24%. This difference is believed to be due to the dif-
482ferences in the domain and/or grid sizes used in these two studies.
483Hayes et al. [4] used a finite element discretization on a rather
484coarse uniform staggered grid with a non-dimensional spacing of
4850.143, without any clustering of grid points near the junction of
486the channel. Thus, there are fewer control volumes at the junction
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Fig. 4. Comparison of reattachment length (Lr/D) with that of Hayes et al. [4] for
n = 1 at different values of Re.
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Fig. 5. Stream function contours in a T-channel at different values of Re for n = 1.
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487 in their study as opposed to the very fine grid at the junction in the
488 present study with a non-dimensional grid spacing of 0.008. In fact,
489 the differences of this order are not at all uncommon in such
490 numerical studies [36]. Furthermore, the general validity of the
491 code has been checked for the critical Reynolds number at which
492 the onset of flow separation takes place for Newtonian fluids in a
493 T-channel. The flow separation from the bottom wall of the side
494 branch is seen to begin at Re = 17 for the case of Newtonian fluids.
495 A similar experimental study was conducted by Karino et al. [37]
496 and Karino and Goldsmith [38] and their results showed the onset
497 of flow separation in the side branch of a T-channel occurs at
498 Re = 18. Thus, the results obtained in the current study are found
499 to be in excellent agreement with the results available in the
500 literature. This further confirms the accuracy and reliability of
501 the present numerical solution procedure.

502 4.2. Flow patterns

503 Figs. 5–8 present the representative flow patterns by way of
504 streamlines in the vicinity of the junction of the T-channel for
505 Re = 5, 30, 50, 100, 150 and 200, respectively. To ensure a compar-
506 ative study of the effect of the power-law index (n) on the flow
507 characteristics, four cases (n = 1, 0.6, 0.4 and 0.2) are presented
508 over the entire range of Reynolds number considered. It is worth-
509 while to mention here that the flow remains steady for the range of
510 settings discussed in this work. Fig. 5 shows the flow patterns of
511 Newtonian fluids in a T-channel. For the case of Newtonian fluids,
512 no recirculation zone is seen to occur in the side branch till Re = 16.
513 The fluid while travelling from main branch to side branch main-
514 tains contact with the wall of the side branch. As the Reynolds
515 number is increased, beyond a critical point the fluid gets sepa-
516 rated from the lower wall of the side branch and a closed recircu-
517 lation region is developed. The discussion on the onset of flow
518 separation in the side branch at different values of n is given in Sec-
519 tion 4.4. Further downstream of the reattachment points, the flow
520 regains its fully developed flow behavior. With a gradual increase
521 in the value of the Reynolds number (Re > 16), the size of recircu-
522 lation region increases. The flow patterns for the case of Newtonian
523 fluids in a T-channel are found to be in close agreement with those
524 of Hayes et al. [4] and Neary and Sotiropoulos [5].
525 For the case of shear-thinning fluids, no recirculation zone is
526 seen to occur in the side branch till Re = 13, 11 and 8 for the cases
527 of n = 0.6, 0.4, 0.2, respectively. Therefore, the flow separation
528 delayed with decreasing shear-thinning tendency (or with increas-
529 ing values of the power-law indices). Similarly to the case with
530 Newtonian fluids, the recirculation regions begin to occur beyond
531 a critical limit. Figs. 6–8 show that the size of the recirculation zone
532 also increases with a decrease in power-law index from 0.6 to 0.2.
533 This is due to the fact that as shear-thinning behavior increases the
534 viscous forces decrease. Overall, from Figs. 5–8 it is notable that for
535 the same Reynolds number the recirculation zones penetrate far
536 much deeper into the side branch as the power-law index
537 decreases. This is in good agreement with the flow patterns for
538 Newtonian/non-Newtonian fluids as represented by Matos and
539 Oliveira [18].
540 On the other hand, a secondary recirculation zone is also
541 observed near the junction in the main branch as the fluid gets
542 diverted into the side branch at different values of Re and n. This
543 is because of the centrifugal force experienced by the fluid near
544 the branch region where the fluid is forced to turn into the side
545 branch. To represent it in a somewhat better way, the magnified
546 views of streamline contours near the junction can also be seen
547 in Figs. 5–8. For the range of conditions studied, the appearance
548 of the secondary zone is observed for n = 1 (at Re P 150), n = 0.6
549 (at Re P 100) and n = 0.4 (at Re = 200). The intensity of the second-

550ary recirculation zone is weak here, but can be dominant in coiled
551ducts as centrifugal force is sustained in such geometries.

5524.3. Recirculation length

553The variation of the non-dimensional recirculation length (Lr/D)
554in the side branch (defined as the distance from the junction of T-
555channel to the point of attachment of the fluid with the bottom
556wall) as a function of Reynolds number and power-law index is
557shown in Fig. 9. The length of the recirculation zone is seen to
558increase in a non-linear fashion with an increase in Reynolds num-
559ber for a particular power-law index. The recirculation length is
560also seen to increase with decreasing power-law index for a fixed
561Reynolds number. Thus, the dimensional considerations suggest
562that the recirculation length is a function of Reynolds number
563and power-law index. To correlate the dimensionless recirculation
564length with Reynolds number and power-law index, the data
565obtained is modelled to an exponential equation of the following
566form:
567

Lr=D ¼ a Reb þ c ð4Þ 569569

570where a, b and c are fitting coefficients and are given in Table 5. The
571maximum percentage deviation in the value of wake length from
572Eq. (4) with the present computed results is also indicated in
573Table 5.

5744.4. Onset of flow separation in the side branch

575The critical value of the Reynolds number at which the onset of
576recirculation zone begins to appear in the side branch is of great
577importance. This critical value of Reynolds number is determined
578for a range of values of the power-law indices studied here. This
579was accomplished by gradually increasing the Reynolds number
580in fixed increments for a particular power-law index while for each

Table 5
Coefficients of exponential fit (in Eq. (4)) for the variation of dimensionless
recirculation length with Reynolds number and power-law index.

n a b c % Maximum deviation

1 0.0949 0.6744 0.6120 4.2
0.6 0.1374 0.7041 0.3623 1.9
0.4 0.1830 0.6926 0.1612 3.8
0.2 0.2044 0.7142 0.0148 4.0

n=0.6
n=0.4
n=0.2
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Fig. 9. Variation of dimensionless recirculation length (Lr/D) with Reynolds number
at different values of power-law index.
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581 run the sign change in X-velocity on the lower wall of the side
582 branch was monitored. A sign change indicates the existence of a
583 recirculation zone in that region. The search was further refined

584by starting with the lower Reynolds number and repeating the
585search in smaller increments of Reynolds number. The critical Rey-
586nolds number was thus resolved to be within ±1. Fig. 10(a)–(d)
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Fig. 10. Flow patterns for critical Reynolds number at which onset of flow separation takes place: (a) n = 1, (b) n = 0.6, (c) n = 0.4 and (d) n = 0.2.
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587 shows the flow patterns in a T-channel for the critical Reynolds
588 number at which the onset of flow separation occurs for the cases
589 of n = 1, 0.6, 0.4 and 0.2, respectively. For the case of Newtonian
590 fluid, no recirculation region appears in the side wall up to
591 Re = 16, but as the Reynolds number is further increased to
592 Re = 17, wakes begin to appear in the side branch. This indicates
593 the critical value of Reynolds number for the case of Newtonian

594fluid to be Re = 17. The critical Reynolds number for the case of
595Newtonian fluids is found to be in good agreement with the exper-
596imental results presented by Karino et al. [37] and Karino and
597Goldsmith [38]. Similar computations were performed on shear-
598thinning fluids for examining the onset of flow separation at differ-
599ent values of n. For n = 0.6, the fluid maintains its contact with the
600lower wall of side branch and no wakes are observed till Re = 13,
601but as we further carried our computations on Re = 14 a recircula-
602tion region begin to appear in the side branch. Similarly, for n = 0.4
603and 0.2, no recirculation regions exist till Re = 11 and Re = 8 but
604begin to appear at Re = 12 and Re = 9, respectively. Fig. 11 shows
605the variation of the critical Reynolds number with power-law
606index. The Reynolds number at which the onset of flow separation
607takes place in the side branch decreases with the decrease in the
608power-law index, implying early recirculation zones with greater
609shear-thinning behavior.

6104.5. Variation of viscosity along the side branch

611The variation of viscosity along the bottom wall of a side branch
612of the T-junction for Re = 5, 50, 100 and 200 for three different val-
613ues of n (0.2, 0.4 and 0.6) is shown in Fig. 12. These viscosity values
614are plotted for the first cells of the mesh away from the bottom
615wall. For the case of Re = 5, no recirculation (i.e., the wake length
616is zero here) exists in the flow patterns for any value of the
617power-law index, as seen from Figs. 5–8. However, a peak in the
618value of the power-law viscosity near the entrance of the side
619branch for Re = 5 is seen in Fig. 12, which is due to the small cen-
620trifugal force experienced by the fluid in this region. For the cases
621of Re = 50, 100 and 200, the recirculation zones exist in the flow
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Fig. 11. Critical Reynolds number for the onset of flow separation at different
values of power-law index.
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Fig. 12. Variation of power-law viscosity along the lower wall of side branch for Re = 5, 50, 100 and 200 at different values of n.
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622 patterns of the side branch (Figs. 5–8). A maximum is observed in
623 the values of power-law viscosities in the bottom wall of the side
624 branch, which then decreases to a constant value further along
625 the side branch. As expected, the maximum/peak viscosity
626 decreases with increasing power-law index at a fixed value of Rey-
627 nolds number. The maximum values of viscosities at the bottom
628 wall of the side branch appear at their wake lengths (or at the right
629 end of the wake region) for different values of Reynolds numbers
630 and power-law indices. For the case of Newtonian fluids, the
631 viscosity of the fluid remains constant throughout its span in the
632 T-junction.

633 5. Conclusions

634 In the present work, the effects of Reynolds number and power-
635 law index on the flow of power-law fluids through a T-channel
636 have been investigated. The flow is found to be steady for the
637 entire range of settings investigated here. The numerical method-
638 ology has been extensively validated against previous numerical
639 and experimental studies. The grid and computational domain
640 were chosen after extensive testing by varying various grid and
641 domain sizes. Detailed observations of flow pattern, recirculation
642 length, critical Reynolds number for the onset of flow separation
643 and viscosity variation along the bottom wall of the side branch
644 have been presented. The results show that the length of the
645 recirculation zone increases on increasing Reynolds number for a
646 particular power-law index. It also increases on decreasing the
647 power-law index for a fixed Reynolds number. The critical Rey-
648 nolds number at which the onset of flow separation takes place
649 in the side branch decreases with the decrease in the power-law
650 index (or with increasing shear-thinning tendency). The maximum
651 values of viscosities at the bottom wall of the side branch appear at
652 their wake lengths for different values of Reynolds numbers and
653 power-law indices. Furthermore, as the flow disturbances in
654 shear-thinning fluids are much more dominant and exist up to a
655 larger distance in the side branch than in Newtonian fluids, then
656 to compute those disturbances one needs to have a fine mesh to
657 a longer distance.
658 Although, the current work involves a numerical investigation
659 into the problem of 2-D laminar flow of power-law shear-thinning
660 fluids in a T-channel, subsequent experimentation of the same is
661 necessary by using one or the other commercial flow measure-
662 ment techniques viz. Laser Doppler Velocimetry, Particle Image
663 Velocimetry and others. It is also advisable to perform 3-D simu-
664 lations for capturing the accurate flow characteristics of highly
665 shear-thinning fluids in a T-channel at Reynolds number higher
666 than that used in this study. This is because the 2-D numerical
667 simulations may be deemed inadequate to simulate the actual
668 3-D behavior of the shear-thinning fluids at high Reynolds
669 numbers because of the remarkable change in their flow
670 characteristics. Besides this, the same analysis can be performed
671 on T-shaped bend tubes for the analysis of pressure drop and
672 recirculation zones, as done in [24]. In addition to the onset of
673 flow separation, it is also advisable to study the onset of
674 instability in Newtonian and non-Newtonian fluids. This could
675 be performed by some new methods for instability analysis such
676 as the energy gradient method [19,20] or semi-analytical method
677 [39]. Furthermore, a heat transfer study may be performed for the
678 present flow system.
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