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ABSTRACT 

Forced figure-eight motion of a cylinder placed in an 

otherwise uniform stream was investigated for both 

clockwise (CW) and anticlockwise (ACW) directions of 

orbit in this two-dimensional numerical study for Reynolds 

numbers Re=50 to 180. Mechanical energy transfer E 

between the cylinder and fluid, and time-mean and rms 

values of force coefficients were investigated in the lock-in 

domain against frequency ratio up to FR=fy/St0=1 using a 

thoroughly tested finite difference code. It was found that 

both the direction of orbit and Re have a major effect on lift 

and mechanical energy transfer. The time-mean value of lift 

was practically zero over the investigated domain for the 

ACW case, and mainly positive for the CW orbit and 

increased with Re. E values were mainly positive for the 

ACW case, meaning a potential risk of vortex-induced 

vibration (VIV). E values were negative for the CW case for 

all Re (no VIV danger). 

 

 

NOMENCLATURE 
a0x,y cylinder acceleration in x or y directions, respectively, 

non-dimensionalized by U2/d 

Ax,y amplitude of oscillation in x or y directions, 

respectively, non-dimensionalized by d 

CD drag coefficient, 2FD  /(ρU 2 d), dimensionless 

CL lift coefficient, 2FL  /(ρU 2 d), dimensionless 

d cylinder diameter (m), length scale 

D dilation, non-dimensionalized by U/d 

E mechanical energy transfer, dimensionless 

F =FD i + FL j, force per unit length of cylinder (N/m) 

FD drag per unit length of cylinder (N/m) 

FL lift per unit length of cylinder (N/m) 

FR frequency ratio, fy/St0, dimensionless 

fx,y oscillation frequency in x or y directions, respectively, 

non-dimensionalized by dU  

fv vortex shedding frequency (1/s) 

i, j unit vectors in x and y directions, dimensionless 

p pressure, non-dimensionalized by ρU 2 

Re Reynolds number, U d/υ, dimensionless 

R radius, non-dimensionalized by d 

St non-dimensional vortex shedding frequency, fv d/U 

t time, non-dimensionalized by d/U 

T motion period, T=1/fy, dimensionless 

U free stream velocity, velocity scale (m/s) 

u, v velocities in x or y directions, respectively, non-

dimensionalized by U 

v0 =v0x i + v0y j, cylinder velocity, non-dimensionalized 

by U 

x,y Cartesian co-ordinates, non-dimensionalized by d 

υ kinematic viscosity (m2/s) 

  fluid density (kg/m3) 

Subscripts 
fb fixed body 

D drag 

L lift 

rms root-mean-square value 

x, y components in x and y directions 

v vortex 

0 for cylinder motion; for stationary cylinder at 

 same Re 

 
 
INTRODUCTION 

Flow around cylinders oscillating in transverse or in-

line directions to the main stream has long been in the focus 

of attention. In real life, however, this pure one-degree-of-

freedom motion is relatively uncommon; often both 

transverse and in-line motions occur simultaneously, 

resulting in a two-degree-of-freedom (2-DoF) motion. 

Studies dealing with 2-DoF forced cylinder motion 

basically fall into two groups: the first is when the 

frequencies are identical in x and y direction (fx=fy), leading 

to an elliptical path, as e.g. in [1-2]. The second is when the 

frequency of in-line oscillation is double that of the 

transverse oscillation (fx=2fy), resulting in a figure-8 path. 

Two examples of experimental studies in this field are [3] for 

free vibration and [4] for forced vibration. Numerical studies 

often place a cylinder in forced motion in order to gain an 

approximation of fluid-structure interaction. While this is a 

simplified model, and a direct relationship between free and 

forced vibration is difficult to confirm [5], it is a suitable 

starting point for investigation of this complex phenomenon. 

In their numerical study [6] identified the lock-in thresholds 

of a cylinder in forced transverse oscillation and found that 

oscillation amplitude values for an elastically-supported 
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cylinder fell within these thresholds, indicating that 

prediction is possible by forced cylinder motion. 

In [7] the authors investigated flow around a 

mechanically oscillated cylinder following a figure-eight 

path at Reynolds number Re=400 while varying the 

transverse amplitude of oscillation. They found that the 

orientation of the motion (clockwise (CW) or anticlockwise 

(ACW) orbit, as seen in the upper loop of the figure-eight) 

influences the results, generally leading to higher force 

coefficients and power transfer for the ACW orientation, 

meaning an increased chance of vortex-induced vibration 

(VIV) for a cylinder in free vibration. In their numerical 

study [8] the authors investigated the sensitivity of two-

dimensional flow past a transversely oscillating cylinder to 

streamwise cylinder oscillation at Re=150. The frequency of 

cylinder oscillation in the streamwise direction was double 

that of the transverse direction, resulting in a figure-eight 

cylinder path. They carried out investigations for both CW 

and ACW directions of orbit (in the upper loop of figure-

eight) at frequency ratios FR=fy/St0=0.9 and 1 at amplitude 

ratios Ax/Ay=0 to 0.5 while the dimensionless transverse 

amplitude was varied from 0.1 to 0.6. They found that while 

the energy transfer is negative for the CW orbit, it is positive 

for most of the parameter domain for ACW orbit. 

A numerical study of the present author [9] dealt with 

forced figure-eight motion for Re=200, 250 and 300 against 

frequency ratio, for a slender figure-eight path with 

amplitude ratio Ax/Ay=0.28 for both CW and ACW 

orientations. For the CW orbit a single sudden change in the 

time-mean of lift indicating a switch in the vortex structure 

was identified for both Re=250 and 300. The mechanical 

energy transfer E between fluid and cylinder was found to 

be negative for all investigated CW orbit cases, meaning that 

there is no danger of VIV in this case. However, when the 

cylinder was orbiting in the ACW direction the results were 

different: zero time-mean of lift and positive E for all cases.  

In addition to studies looking at the effect of frequency 

ratio, work has been carried out on the effect of amplitude 

ratio for figure-eight cylinder motion at Re=150 [8, 10]. 

However, to the best knowledge of the author no detailed 

investigation into the effect of Re has been carried out. 

The objective of this study is to fill this gap by 

investigating the flow around a cylinder following a figure-

eight path for both directions of orbit for Re=50 to 180 

against frequency ratio. Time-mean and rms values of force 

coefficients and mechanical energy transfer values for a 

cylinder following a symmetrical figure-8 path are compared 

by direction of orbit in order to determine the influence of 

direction on flow behavior in the given Reynolds number 

domain. 

 

 

GOVERNING EQUATIONS, COMPUTATIONAL 
SETUP 

A non-inertial system fixed to the cylinder is used to 

compute the two-dimensional (2D) flow around a circular 

cylinder placed in a uniform stream and forced to oscillate 

in transverse or in-line direction, or both. The non-

dimensional Navier-Stokes equations for incompressible 

Newtonian fluid, the equation of continuity and the Poisson 

equation for pressure can be written as follows: 
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In these dimensionless equations, u and v are the x and y 

components of velocity, t is time, p is the pressure, Re is the 

Reynolds number and D is the dilation. Although D is 

theoretically equal to 0 for incompressible fluids from Eqn. 

(3), it is kept in Eqn. (4) to avoid the accumulation of 

numerical errors. In Eqns. (1) and (2) a0x and a0y are the x 

and y components of cylinder acceleration, respectively. 

On the cylinder surface, no-slip boundary condition is 

used for the velocity and a Neumann type boundary 

condition for the pressure. Potential flow is assumed at the 

far region. The author is aware that this assumption is not 

valid for the narrow wake at the outlet boundary; earlier 

numerical analysis and tests [1] showed, however, that this 

assumption results in only a small distortion of the velocity 

field near the outlet boundary of the wake region. 

Boundary-fitted coordinates are used to impose the 

boundary conditions accurately. The physical domain 

bounded by two concentric circles is mapped onto a 

rectangular computational domain with equidistant spacing 

in both directions. In the physical domain logarithmically 

spaced radial cells are used, ensuring a fine grid scale near 

the cylinder wall and a coarse grid in the far field. The 

transformed governing equations and boundary conditions 

are solved by finite difference method. Space derivatives are 

approximated by fourth order central differences, except for 

the convective terms for which a third order modified 

upwind scheme is used. The Poisson equation for pressure is 

solved by the successive over-relaxation (SOR) method. The 

Navier-Stokes equations are integrated explicitly and 

continuity is satisfied at every time step (see [1]). 

The 2D code developed by the author has been 

extensively tested against experimental and computational 

results for a stationary cylinder ([11]) and computational 

results for cylinders oscillating in transverse and in-line 

directions or following a circular path, including those of 

[12-14], with good agreement being found (see [1]). In this 

study the dimensionless time step is 0.0005, the number of 

grid points is 361x292 (peripheral x radial), and the physical 

domain is characterized by R2 /R1=160. 

This numerical study investigates the behavior of flow 

past a cylinder placed in a uniform stream with its axis 

perpendicular to the velocity vector of the main flow. The 



cylinder is oscillated mechanically in both in-line and 

transverse directions in relation to the uniform stream. The 

layout of the cylinder path can be seen in Fig. 1. Here U is 

the free stream velocity, d is the cylinder diameter, and Ax 

and Ay are the dimensionless amplitudes in x and y directions, 

respectively. Quantities are non-dimensionalized by the 

combination of U and d. The displacements of the forced 

cylinder motion x0, y0 in x and y directions are given by 

 

x0=Ax sin(2 π fx t+Θ),   (5) 

 

y0= Ay sin(2 π fy t),   (6) 

 

where Ax, Ay and fx, fy are the dimensionless amplitudes and 

frequencies of the cylinder oscillation in x and y directions, 

respectively. If fx =2fy, Eqns. (5) and (6) ensure a figure-eight 

or distorted figure-eight path. Depending on the phase angle 

Θ between cylinder motions in x and y directions, clockwise 

(CW) or anticlockwise (ACW) orbit can be obtained in the 

upper loop of the figure-eight: 

 

 Θff yx    ;2 ,   (for CW),  (7) 

 

0   ;2  Θff yx ,   (for ACW).  (8) 

 

Figure 1 also shows the velocity vectors along the 

cylinder paths near y0=0 for both CW (red filled arrows) and 

ACW (empty black arrows) orbits. Note that although the 

two paths are symmetric about x0 axis, the configuration is 

not symmetric about the y0 axis. As shown in the figure, the 

x component of the cylinder velocity    d d 00 txv x  < 0 for 

CW and    d d 00 txv x  > 0 for ACW orbits near y0=0. At 

both the top and bottom of the trajectory the cylinder moves 

in the direction of the main flow velocity U for CW orbit, 

and against the main flow for ACW orbit. Hence, the two 

directions of orbits lead to substantially different force 

coefficients and energy transfer between fluid and cylinder, 

as is shown later. 

The frequency ratio 

 

0St/FR yf ,   (9) 

 

where St0 is the dimensionless vortex shedding frequency or 

Strouhal number belonging to a stationary cylinder at the 

given Reynolds number. In this study the Strouhal numbers 

belonging to different Re values are taken from [15]. 

Throughout this paper the lift (CL) and drag (CD) 

coefficients used do not contain the inertial forces originating 

from the non-inertial system fixed to the moving cylinder. 

These coefficients are often termed 'fixed body' coefficients 

(see [12]). The two sets of coefficients can be written as 

 

xDfbDyLfbL aCCaCC 00
2

,
2


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where subscript fb stands for fixed body (understood in an 

inertial system) [15]. In Eqn. (10) (and also in Eqns. (1) and 

(2)) a0x and a0y accelerations are the second time derivatives of 

cylinder displacements x0, y0 given in Eqns. (5) and (6). Since 

a0x and a0y are T-periodic functions, their time-mean (TM) 

values vanishes, resulting in identical TM values for lift and 

drag in the two systems. Naturally, the rms values of force 

coefficients will be somewhat different in the inertial and 

non-inertial systems. 

 

 
 

FIGURE 1: LAYOUT FOR FIGURE-EIGHT PATH 

 

The mechanical energy transfer E originally introduced in 

[17] for a transversely oscillating cylinder is extended for 

general 2-DoF cylinder motion in [1]: 
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Since the frequencies in the two directions are different (see 

Eqns. (7) and (8)) the larger period T=Ty=1/fy is chosen here. 

In Eqn. (11) F is the force vector per unit length of cylinder, 

v0=(v0x,v0y) the velocity vector of the cylinder. 

In this study several Reynolds numbers are investigated 

between Re=50 and 180, and the frequency ratios FR is 

varied between the lower lock-in threshold value and 1. 

During the investigation oscillation frequencies are set at 

fx=2fy, and oscillation amplitudes are kept constant at 

Ax=0.14 and Ay=0.5 to ensure a slender figure-eight path. All 

computations are carried out for both directions of orbit. 

 

 

COMPUTATIONAL RESULTS AND DISCUSSION 
In this study computations are carried out for a cylinder 

in forced motion following a fixed slender figure-eight path 

for both clockwise (CW) and anticlockwise (ACW) orbits in 

the upper loop of figure-eight path at low Reynolds numbers. 

Time-mean (TM) and root-mean-square (rms) values of lift 

and drag coefficients and mechanical energy transfer E are 

shown against frequency ratio FR in the lock-in domain, 

basically from FR=0.65 to FR=1 (i.e., when fy=St0). One pair 



of vorticity contours belonging to identical Re, FR, Ax, Ay 

values and cylinder position for the CW and ACW orbits is 

also shown, demonstrating the substantial difference in the 

vortex structures. 

 

 

Time-mean and rms Values of Force Coefficients 
Earlier results of the present author [9] motivating the 

current study are shown in Fig. 2. The clockwise (CW) 

curves (empty signals in the figure) have one jump each for 

Re=250 and 300, showing a sudden switch in vortex 

structure. These curves are similar to those for in-line 

cylinder motion, and the vortex switch is probably due to a 

symmetry-breaking bifurcation [18]. The vortex shedding 

mode [19] is P+S (one pair of vortices and a single vortex 

are shed in one period). Figure 2 also shows the TM of lift 

for the ACW case (filled signals in the figure) for the three 

Reynolds numbers found to be zero in the investigated 

domain due to the regular 2S vortex shedding (two single 

vortices are shed in a period).  

 

 
 

FIGURE 2: TIME-MEAN OF LIFT COEFFICIENT VS. 

FREQUENCY RATIO FOR CW (RE=200, 250, 300) AND 

ACW (RE=200a, 250a, 300a) ORBITS ([9]) 

 

Figure 3 shows results of the current study for the TM 

of lift against frequency ratio for different Reynolds numbers 

(Re=50–180) for CW orientation of orbit. It can be seen that 

unlike larger Re values (cf. Fig. 2) only non-negative TM 

values were obtained in the parameter domain investigated. 

The TM of lift is fully positive only for Re=180 shown in 

Fig. 3. As Re decreases the TM of lift decreases and below 

some FR value the TM of lift becomes zero (see e.g. curves 

for Re=110, 114, 120 and 140 in Fig. 3). For around Re=100 

and below the TM of lift is zero over the whole investigated 

FR domain, similarly to the ACW orbits shown in Fig. 2. 

Figure 4 shows that the TM of lift for the ACW orbit is 

practically zero below FR=0.97, similarly to the Re=200, 

250 and 300 cases shown in Fig. 2 (filled signals). In Fig. 4, 

however, a sudden jump in the TM of lift curve can be seen 

at Re=0.97 for Re=180 and a small change at FR=0.98 for 

Re=160. By comparing Figs. 3 and 4 it can be concluded that 

the TM of lift for the CW and ACW orbits are very different.  

 

 
 

FIGURE 3: TIME-MEAN OF LIFT VS. FREQUENCY 

RATIO FOR CW ORBITS AT DIFFERENT RE  

 

 
 

FIGURE 4: TIME-MEAN OF LIFT VS. FREQUENCY 

RATIO FOR ACW ORBIT AT DIFFERENT RE 

 

To illustrate the difference, computed vorticity contours 

are shown in Figure 5 for Re=180 at FR=0.85 for CW (top) 

and for ACW (bottom) orbits, in both cases belonging to the 

topmost cylinder position (cf. Figs. 3 and 4). Gray indicates 

negative vorticity values (rotating clockwise) and black is 

Figure 8-shape motion; fy=fx/2
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positive (anticlockwise). The vorticity contours are taken at the 

dimensionless times of t=100T=615.0840 for the CW case and 

at t=100.5T=618.1591 (shifted by half a period) for ACW. In 

the top figure (CW orbit) the vortex shedding mode is P+S; one 

positive and one negative vortex is shed at the upper part and a 

single positive vortex at the lower part of the cylinder during a 

vortex shedding period. For this case the time-mean of lift is 

positive (=0.1174) (see Fig. 3). The vortex shedding mode for 

ACW (bottom) looks like 2S; one positive and one negative 

vortex is shed. In this case the TM of lift is zero (see Fig. 4). 

 

 
 

 
 

FIGURE 5: VORTICITY CONTOURS FOR CW (TOP) 

AND ACW (BOTTOM) ORBITS AT TOPMOST 

CYLINDER POSITION (RE=180; FR=0.85) 

 

For the ACW orbit the in-line component of the cylinder 

velocity is positive over the larger part of the orbit (see Fig. 

1); it is still unclear whether this leads to the 2S vortex 

shedding mode (which results in zero TM of lift over the 

largest part of the Re domain [19]). In contrast, in the CW 

orbit the in-line component of the cylinder velocity is 

negative (against the main flow) over the larger part of its 

orbit, which may result in P+S vortex shedding mode for the 

larger Re values investigated. Under Re=100 the TM of lift 

is also zero (see Fig. 3) and 2S shedding is found for the CW 

orbit, just as in the case of the ACW orbit. 

Figure 6 shows the TM of drag against FR for the CW 

orbit for several Reynolds numbers from 50 to 180. The TM 

of drag increases with both FR and Re except in the lower 

Re and FR domains, where the opposite is true (the largest 

TM of drag is for Re=50). The curves belonging to different 

Re numbers are smooth and monotonous functions of FR. 

Although the general trend is similar, this is not quite 

true for the TM of drag plotted against FR for the ACW case 

at different Reynolds numbers and shown in Fig. 7. Some 

small jumps can be seen in the curve for Re=180 at FR=0.97 

(like in Fig. 4) and for Re=140 and 160. The curves spread 

more for larger FR values than for the CW case, and the TM 

of drag values is also somewhat higher. 

 
 

FIGURE 6: TIME-MEAN OF DRAG VS. FREQUENCY 

RATIO FOR CW ORBIT AT DIFFERENT RE 

 

 
 

FIGURE 7: TIME-MEAN OF DRAG VS. FREQUENCY 

RATIO FOR ACW ORBIT AT DIFFERENT RE 

 

The rms values of lift and drag are also investigated. 

Figure 8 shows the rms of fixed body (free of inertial forces) 

lift against FR for the CW orbit for Re from 50 to 180. The 

rms of lift tends to increase with both FR and Re. The 

threshold value for lock in for the Re=80–140 curves is 

FR=0.66; all other curves belong to locked-in states over the 

FR=0.65 to 1 domain. The maximum value of rms of lift is 

0.76 (at Re=180; FR=1) over the parameter domain. 
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FIGURE 8: RMS OF LIFT VS. FREQUENCY RATIO 

FOR CW ORBIT AT DIFFERENT RE 

 

 
 

FIGURE 9: RMS OF LIFT VS. FREQUENCY RATIO 

FOR ACW ORBIT AT DIFFERENT RE 

 

Figure 9 shows the rms of fixed body lift coefficient 

against frequency ratio FR for the ACW orbit. Again, the 

rms of lift increases with both Re and FR, but there are some 

differences compared to the results for the CW orbit: (a) the 

distance between the curves at fixed Re values increases 

with FR; (b) there are irregularities in the curves for higher 

Reynolds numbers; (c) the maximum value of rms of lift is 

1.70 (compared to 0.76 for the CW orbit).  

Rms values of drag for CW orbit are shown in Fig. 10. 

Curves belonging to different Reynolds numbers are strictly 

monotonous functions of FR. The rms of drag increases with 

Re and FR to a maximum of 2.34. The rms of fixed body 

drag against frequency ratio FR for the ACW orbit (not 

shown here) shows similar trends to the CW case. A small 

difference is that the maximum value of rms drag is 1.71. 

 

 
 

FIGURE 10: RMS OF DRAG VS. FREQUENCY RATIO 

FOR CW ORBIT AT DIFFERENT RE 

 

 

Mechanical Energy Transfer 
Earlier, the mechanical energy transfer E between fluid 

and cylinder was found to be negative for the clockwise 

(CW) cylinder orbit at Re=200, 250 and 300 in the 

investigated frequency ratio FR domain [9] (see empty 

signals in Fig. 11). This means that there is no danger of 

vortex-induced vibration (VIV) in the corresponding free 

vibration case. However, when the cylinder was orbiting in 

the ACW direction the results were very different; only 

positive E values were found for all investigated cases (see 

filled signals in Fig. 11) which means risk of VIV.  

E is shown in Fig. 12 for both CW and ACW orbits 

against FR for Reynolds numbers between 50 and 180. It can 

be seen in the figure that all values are negative for the CW 

orbit (lower set of curves) over the investigated parameter 

domain. It can also be observed that the approximate trend 

is that E decreases with both FR and Re. This is not true, 

however, for the small domain of Re=140, 60 and 180 when 

FR < 0.73. E being negative means that there is no potential 

danger of VIV of an equivalent elastically supported 

cylinder for CW orbits at the given amplitude ratio over the 

investigated Re and FR domain [6]. As can be seen in Fig. 

12, E curves for the ACW orbit (upper set of curves in the 

figure) are substantially different from those belonging to 

CW orbit. As a general trend it can be stated that E decreases 

monotonously with Re, yielding negative E values for small 
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Re values. For example the whole curve remains below zero 

for Re=50. The danger of VIV decreases with decreasing Re 

for the ACW orbit. Still, over the larger part of the domain E 

is positive, meaning there is risk of VIV. 

 

 

FIGURE 11: MECHANICAL ENERGY TRANSFER VS. 

FREQUENCY RATIO FOR CW (RE=200, 250, 300) AND 

ACW (RE=200a, 250a, 300a) ORBITS ([9]) 

 

 
 

FIGURE 12: MECHANICAL ENERGY TRANSFER VS. 

FREQUENCY RATIO FOR CW AND ACW ORBITS AT 

DIFFERENT RE 

 

To see the effect of Re and FR on the mechanical energy 

transfer more clearly for the ACW orbit, Fig. 13 zooms in on 

ACW results (cf. top set of curves in Fig. 12). Some sudden 

changes or jumps can be seen at the top right side of the 

figure for Re=140, 160 and 180. This probably indicates a 

switch in the vortex structure [9, 10, 17]. 

Another difference between results for CW and ACW 

orbits is in their behavior as FR tends to unity. For CW orbit 

no significant difference in the dynamics could be detected. 

The same can be said for the ACW orbits below Re=140 

(considering the parameter domain investigated). On the 

other hand, for ACW orbits above Re=140 jumps can be 

seen in E, TM and rms of force coefficients. 

 

 
 

FIGURE 13: MECHANICAL ENERGY TRANSFER VS. 

FREQUENCY RATIO FOR ACW ORBIT AT 

DIFFERENT RE (ZOOM IN) 

 

 

CONCLUSIONS 
Forced two-degree of freedom cylinder motion in the 

shape of a figure-eight path (the cylinder placed across an 

otherwise uniform stream) was investigated for both 

clockwise (CW) and anticlockwise (ACW) directions of 

orbit in the upper loop of figure-eight in this two-

dimensional numerical study. Mechanical energy transfer E 

between the cylinder and fluid, and time-mean (TM) and 

root-mean-square (rms) values of force coefficients were 

investigated against frequency ratio FR=fy/St0 in the lock-in 

domain up to FR=1 for Reynolds numbers Re=50 to 180. 

The computational procedure is based on the finite 

difference method and is thoroughly tested against 

experimental and numerical results available in the 

literature. 

It was found that both Re and the direction of orbit have 

major effects on the force coefficients and the mechanical 

energy transfer. The major findings are as follows: 

(1) The TM of lift was practically zero for ACW orbit for all 

values of Re. For CW orbit lift was also zero below 

around Re=100 irrespective of the FR value investigated. 

Above Re=100, however, the TM of lift is positive above 

a certain critical value of FR that decreases with Re. At 

Re=180 all TM values are positive in the investigated FR 

domain. Vortex contours for Re=180 at FR=0.85 showed 

vortex shedding mode P+S for the CW and 2S for the 

ACW orbit. 

Figure 8-shape motion; fy=fx/2
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(2) The root-mean-square (rms) values of lift were much 

larger for the ACW case than for the CW case. The TM 

and rms of drag were not strikingly different for the two 

directions of orbit. 

(3) As FR tends to unity no significant difference in the 

dynamics was detected for CW orbits or for ACW orbits 

below Re=140; above this jumps are seen in E, TM and 

rms of lift and drag for ACW orbits. 

(4) E was negative for all Re values investigated for the CW 

orbit, meaning no potential danger of vortex-induced 

vibrations (VIV). For the ACW orbit however, E was 

positive over the large part of the parameter domain, 

increasing the potential risk of VIV for the equivalent 

free vibration case. Reducing Re reduces the value of E 

and with this, the risk of VIV. 

Future research might include the investigation of phase 

angle between lift and transverse cylinder displacement 

which might shed some lights on these differences. The 

investigation of the effect of amplitude ratio (shape of the 

cylinder path) is continuing. 
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